Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
|
|
- Vítězslav Slavík
- před 7 lety
- Počet zobrazení:
Transkript
1 Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
2 Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet testovací statistiky 4. Rozhodnutí
3 Testování hypotéz o rozdílu průměrů 4 možné typy problémů: porovnáváme průměr vzorku s průměrem populace jednovýběrový t-test porovnáváme průměry dvou vzorků t-test pro nezávislé výběry porovnáváme dva průměry jednoho vzorku t-test pro závislé výběry (tzv. párový t-test) porovnáváme více průměrů analýza rozptylu
4 T-test pro nezávislé výběry tento test používáme, pokud chceme porovnat průměry dvou skupin případů např. průměrné skóre v neurocitismu u mužů a žen průměr v indexu životní spokojenosti u extravertů a introvertů atd.
5 T-test pro nezávislé výběry - příklad Výzkumník chce otestovat účinnost nového léku proti bolesti hlavy. Získá 20 dobrovolníků, náhodně je rozdělí do dvou skupin po 10 osobách: jedna skupina si domů odnese placebo, druhá testovaný lék (ani účastníci, ani výzkumník nevědí, kdo je ve které skupině). Účastníci studie si mají vzít lék ve chvíli, kdy je začne bolet hlava a zaznamenat, jak dlouho poté bolest trvala (kolik minut).
6 T-test pro nezávislé výběry - příklad skupina s placebem skupina s test. lékem
7 T-test pro nezávislé výběry placebo průměrná délka bolesti 93 minut; směrodatná odchylka testovaný lék průměrná délka bolesti 67 minut; směrodatná odchylka 24.28
8 1. Určení statistické hypotézy nulová hypotéza: délka trvání bolesti hlavy po aplikaci léku a po aplikaci placeba se neliší (=účinnost testovaného léku se neliší od účinnosti placeba) jinými slovy: rozdílné průměry (93 a 67 minut) trvání bolesti je možno vysvětlit náhodou vzorky mohou pocházet z populace o stejném průměru
9 1. Určení statistické hypotézy alternativní hypotéza: délka trvání bolesti hlavy po aplikaci léku a po aplikaci placeba je rozdílná (= mezi účinností testovaného léku a účinností placeba je rozdíl) jinými slovy: rozdíl v průměrech skupin (93 a 67 minut) v trvání bolesti je velmi nepravděpodobně pouze náhodný (je velmi nepravděpodobné, že by oba vzorky pocházely z populace o stejném průměru)
10 2. Určení hladiny chyby hladina významnosti: použijeme =5% pokud je pravděpodobnost získání takto rozdílných průměrů z jedné populace menší než 5%, pak zamítneme H 0 (závěr lék je účinný) pokud je pravděpodobnost získání takto rozdílných průměrů z jedné populace větší než 5%, pak H 0 nezamítneme
11 T-test pro nezávislé výběry ptáme se vlastně: jak velká je pravděpodobnost, že bychom získali dva takto rozdílné průměry, pokud by platila nulová hypotéza, tj. pokud by lék nebyl účinnější než placebo? pokud je tato pravděpodobnost velmi malá, nepřipíšeme zjištěný rozdíl náhodě, ale nezávislé proměnné (lék vs. placebo)
12 3. Výpočet testovací statistiky obecně se testová statistika t vypočítá jako rozdíl výběrových průměrů dvou nezávislých výběrů očekávaný rozdíl, pokud platí H 0 (=0) a vydělíme ho odhadem směrodatné chyby rozdílu výběrových průměrů tj. rozdíl průměrů vydělíme tzv. sdruženým odhadem variability
13 3. Výpočet testovací statistiky
14 3. Výpočet testovací statistiky t = (93 67) / ( / /10) t = 26 / t = 2.82 df = n-2 = 20-2 = 18 (počet stupňů volnosti pro vyhledání pravděpodobnosti v tabulce t-rozdělení)
15
16 4. Rozhodnutí kritická hodnota t je (tj. 95% všech standardizovaných rozdílů průměrů je do hodnoty +/-2.101) získaná hodnota t je 2.82 větší než kritická hodnota rozdíl průměrů obou skupin je tedy statisticky významný na hladině 5%
17 4. Rozhodnutí pravděpodobnost, že bychom vzorky o tak rozdílných průměrech získali z jedné populace je menší než 5% je velmi málo pravděpodobné, že by byl takový rozdíl v průměrech, pokud by lék byl ve skutečnosti neúčinný
18 T-test pro nezávislé výběry v SPSS Group Statistics trv ani_bolesti lecba 0 placebo 1 testov aný lék Std. Error N Mean Std. Dev iation Mean 10 93, 00 16, 021 5, , 00 24, 290 7, 681 Independent Samples Test trv ani_bolesti Equal v ariances assumed Equal v ariances not assumed Lev ene's Test f or Equality of Variances t-test f or Equality of Means 95% Conf idence Interv al of the Mean Std. Error Dif f erence F Sig. t df Sig. (2-tailed) Dif f erence Dif f erence Lower Upper,690,417 2,826 18,011 26,000 9,201 6,668 45,332 2,826 15,584,012 26,000 9,201 6,451 45,549
19 T-test pro nezávislé výběry předpoklady t-testu pro nezávislé výběry výběry jsou skutečně nezávislé (tj. oba výběry tvoří jiní lidé, zvířata atd.) měřený znak má normální rozdělení (mírné odchylky je možno tolerovat; u větších odchylek a malých vzorků použít raději neparametrické testy) homogenita rozptylů rozptyly jsou shodné u obou skupin
20 T-test pro nezávislé výběry homogenita rozptylů obvykle nejsou směrodatné odchylky (či rozptyly) zcela shodné, ale rozdíly by neměly být příliš velké
21 T-test pro nezávislé výběry homogenita rozptylů zda se rozptyly liší, je možno otestovat některým testem pro rozdíl rozptylů, např. F-testem pokud nevyjde stat. významný, pak rozptyly pokládáme za shodné pokud vyjde stat. významný, interpretujeme modifikovaný t-test pro rozdílné rozptyly (equal variances not assumed)
22 F-test pro shodu rozptylů ve Statistice Group Statistics trv ani_bolesti lecba 0 placebo 1 testov aný lék Std. Error N Mean Std. Dev iation Mean 10 93, 00 16, 021 5, , 00 24, 290 7, 681 Independent Samples Test trv ani_bolesti Equal v ariances assumed Equal v ariances not assumed Lev ene's Test f or Equality of Variances t-test f or Equality of Means 95% Conf idence Interv al of the Mean Std. Error Dif f erence F Sig. t df Sig. (2-tailed) Dif f erence Dif f erence Lower Upper,690,417 2,826 18,011 26,000 9,201 6,668 45,332 2,826 15,584,012 26,000 9,201 6,451 45,549
23 T-test pro závislé výběry označuje se někdy také jako t-test pro párované výběry v naprosté většině případů se používá pro porovnání dvou měření u stejných osob (tj. páru měření u jedné skupiny osob) někdy také pro porovnání průměrů u dvou skupin osob, které tvoří páry (např. manželské či podle jiného klíče věku, pohlaví, nemoci atd.)
24 T-test pro závislé výběry - příklad Psychiatr chce vyhodnotit úspěšnost určitého způsobu terapie poruch příjmu potravy. Terapie se účastnilo 10 dívek. U každé z nich byla zaznamenána váha před a po terapii. Psychiatr si chce ověřit, zda jejich hmotnost průkazně vzrostla.
25 T-test pro závislé výběry - příklad hmotnost před terapií hmotnost po terapii
26 T-test pro závislé výběry průměrná hmotnost před zahájením terapie 44.1 kg směrodatná odchylka 5.90 průměrná hmotnost po ukončení terapie 51.6 kg směrodatná odchylka 9.35
27 T-test pro závislé výběry - příklad před po rozdíl (před po)
28 T-test pro závislé výběry průměrný rozdíl hmotnosti před a po terapii byl 7.5 kg směrodatná odchylka rozdílu 7.49
29 1. Určení statistické hypotézy nulová hypotéza: terapie není účinná rozdíl v hmotnosti před a po terapii je nulový jinými slovy: je velká pravděpodobnost, že zjištěný rozdíl o této velikosti (7.5 kg) je pouze náhodný
30 1. Určení statistické hypotézy alternativní hypotéza: terapie je účinná existuje rozdíl v hmotnosti před a po terapii jinými slovy: je jen velmi malá pravděpodobnost, že rozdíl o této velikosti (7.5 kg) je pouze náhodný
31 2. Určení hladiny chyby hladina významnosti: použijeme =5% pokud je pravděpodobnost získání takto rozdílných průměrů menší než 5%, pak zamítneme H 0 (závěr terapie je účinná) pokud je pravděpodobnost získání takto rozdílných průměrů větší než 5%, pak H 0 nemůžeme zamítnout
32 3. Výpočet testovací statistiky průměrný rozdíl před a po směrodatná odchylka průměrného rozdílu
33 3. Výpočet testovací statistiky t = /(7.48/10) t = / 2.37 t = df = n-1 = 10-1 = 9 (počet stupňů volnosti pro vyhledání pravděpodobnosti v tabulce t- rozdělení)
34
35 4. Rozhodnutí kritická hodnota t je získaná hodnota t je 3.16 větší než kritická hodnota rozdíl obou průměrů je tedy statisticky významný na hladině 5% můžeme zamítnout nulovou hypotézu terapie je účinná
36 T-test pro závislé výběry v SPSS Paired Samples Statistics Pair 1 hmotnost_pred hmotnost_po Std. Error Mean N Std. Dev iation Mean 44, , 896 1, , , 348 2, 956 Paired Samples Test Paired Dif f erences Pair 1 hmotnost_pred - hmotnost_po 95% Conf idence Interv al of the Std. Error Dif f erence Mean Std. Dev iation Mean Lower Upper t df Sig. (2-tailed) -7,500 7,487 2,368-12,856-2,144-3,168 9,011
37 Porovnání výzkumných plánů t-test pro nezávislé výběry se používá většinou u výzkumných plánů s výzkumnou a kontrolní skupinou zatímco t-test pro závislé výběry většinou u výzkumných plánů s opakovaným měřením u stejných osob
38 Porovnání výzkumných plánů výhody opakovaného měření: kontrola vlivu intervenujících proměnných (všichni jsou v jedné skupině, nehrají roli případné náhodné rozdíly mezi skupinami) postačí menší vzorek (test pro závislé výběry má větší statistickou sílu spíše zamítne nulovou hypotézu, pokud neplatí)
39 Porovnání výzkumných plánů nevýhody opakovaných měření: nemůže být použito pro všechny výzkumné problémy (porovnání mužů a žen, vzdělaných a nevzdělaných ) možný vliv učení či únavy při testování výkonovými testy
40 Kontrolní otázky jaké testy se používají pro testování hypotéz o rozdílu průměrů? pro jaké typy výzkumných plánů použijete jednovýběrový t-test? porovnejte užití t-testu pro nezávislé a pro závislé výběry
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ
1 LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STATISTICKÉ HYPOTÉZY neboli formální výroky o: neznámých parametrech základního souboru, o tvaru rozložení četností, o statistických vztazích mezi soubory či proměnnými
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Analýza rozptylu. opakovaná měření faktoriální analýza rozptylu analýza kovariance vícerozměrná analýza rozptylu
Analýza rozptylu opakovaná měření faktoriální analýza rozptylu analýza kovariance vícerozměrná analýza rozptylu Analýza rozptylu porovnání více průměrů sledujeme F-statistiku: poměr rozptylu mezi skupinami
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.
Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Plánovací diář a Google Calendar
České vysoké učení technické v Praze FAKULTA ELEKTROTECHNICKÁ Kvantitativní test uživatelského rozhraní Plánovací diář a Google Calendar Semestrální práce do předmětu Testování uživatelského rozhraní LS
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
STATISTICA Téma 7. Testy na základě více než 2 výběrů
STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.
Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 9: Úvod do induktivní statistiky Obsah Induktivní statistika... 2 Kdy můžeme zobecňovat?... 2 Logika statistické indukce... 3 Proč nelze jednoduše
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza
Korelační a regresní analýza 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza Pearsonův korelační koeficient u intervalových a poměrových dat můžeme jako
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Opakování: Nominální proměnná více hodnotová odpověď.
Analýza dat z dotazníkových šetření Cvičení 4. - Zobecňování výběru na populaci Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/37771/ - Seznamte se s dotazníkem a strukturou otázek,
diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme
motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
Uni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel
Dvouvýběrové a párové testy Komentované řešení pomocí MS Excel Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci glukózy v
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Vypracovaly: Renata Němcová, Andrea Zuzánková, Lenka Vítová, Michaela Ťukalová, Kristýna
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích
Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové
II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Testování uživatelského rozhraní
České vysoké učení technické v Praze, fakulta elektrotechnická 2012/2013 Semestrální práce na předmět Testování uživatelského rozhraní Kvantitativní test Jiří Blažek blazej18@fel.cvut.cz Obsah Obsah...1
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Jste aktivní sportovec?(pravidelně sportuji alespoň 2x týdně) Jakým sportovním činnostem se pravidelně věnujete? (alespoň 1 x za dva týdny v sezóně)
Seznam příloh Příloha 1 Dotazník sportovních aktivit... 1 Příloha 2 Homogenita souboru věk... 3 Příloha 3 Homogenita souboru pohlaví... 4 Příloha 4 4Elements Inventory a sportovní aktivita... 5 Příloha
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer
A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)