Fyzikální praktikum 1
|
|
- Rostislav Holub
- před 9 lety
- Počet zobrazení:
Transkript
1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte, jakou vlastní a vyšší harmonické frekvence má struna napjatá zátěží 5kg o délce 1 metr víte-li, že její lineární hustota je ς = kg m -1. (b) Do vzorce z předchozího úkolu dosaďte délku struny v praktiku a spočítejte totéž. Ověřte experimentálně pro prvních 10 rezonančních frekvencí. Z naměřených vyšších harmonických frekvencí zpětně dopočítejte lineární hustotu (použijte metodu nejmenších čtverců) a porovnejte s uvedenou konstantou. Dopočítejte rychlost šíření vlnění na struně. (c) Pro cca 10 různých frekvencí v rozsahu až 6 khz hledejte interferenční minima (nebo maxima) prodlužováním a zkracováním Quinckovy trubice. Vyneste do grafu závislost vlnové délky zvuku (prodloužení trubice) na frekvenci. Z naměřených údajů dopočítejte rychlost zvuku proložením naměřených hodnot s errorbary vhodnou funkcí. (d) Najděte vlastní frekvence Helmholtzova dutinového rezonátoru. Vyneste závislost vlastní frekvence na objemu rezonátoru (změnou objemu rezonátoru provádějte vléváním vody). Vodu přilévejte po 50ml a pouze do poloviny objemu. Pro hledání vlastní frekvence využijte Fourierovské frekvenční analýzy. Z naměřených hodnot určete rychlost zvuku proložením naměřených hodnot vhodnou funkcí.. Použité přístroje a pomůcky Struna, frekvenční generátor, generátor mechanických kmitů, Quinckova trubice, reproduktor, mikrofon, osciloskop, skleněná baňka, rozhraní COBRA, teploměr, metr. 3. Teoretický úvod 3.1 Zvuk a kmitavý pohyb Kmitavý pohyb je fyzikální děj. Při tomto ději se v závislosti na čase periodicky mění charakteristické veličiny. Tyto veličiny mohou být například poloha, rozměr, tlak, rychlost apod. Zvuk je jedním z příkladů kmitavého pohybu. Zdroj zvuku působí na částice vzduchu (nebo jiné látky ve které zdroj působí), které se poté v těsné blízkosti periodicky přibližují či vzdalují. Tyto změny se od zdroje poté šíří k dalším a dalším částicím. Ve vzduchu se zvuk šíří přibližonou rychlostí v = 340 m s -1. Přesná hodnota je (1), v=( t)m s 1 (1) kde t je teplota. Šíření vzduchu můžeme popsat vlnoplochou. Matematicky ji lze popsat vlnovou - 1 -
2 rovnicí, což je parciální diferenciální rovnice druhého řádu. Speciální případ harmonické postupné vlny poté vyjádříme (), f (t)= A sin(ω t +ϕ) () kde A je amplituda, ω je úhlová frekvence, t je čas a φ je fáze vlny. 3. Skládání vln Může nastat situace, kde se dvě vlny popsané rovnicí () setkají ve stejném prostředí (může i více vln). Budeme dále předpokládat, že vlny mají stejnou amplitudu. V tuto chvíli může nastat jev zvaný interference, čili skládání vln. Pomocí vzorce pro sčítání dvou sinu můžeme sečíst obě vlny a získat (3), f (t)= A sin( ω 1 +ω t + ϕ 1 +ϕ )cos( ω 1 ω t + ϕ ϕ 1 ) Při skládání může nastat několik speciálních případů. 1) Vlny jsou stejné a mají stejnou fázi. Tato možnost způsobí, že se vlny kompletně sečtou tak, že vznikne jedna vlna () s dvojnásobnou amplitudou. ) Vlny jsou stejné, ale mají opačnou fázi. Tento případ se nazývá destruktivní interference a výsledná vlna je nulová. 3) Vlny mají stejnou fázi, ale různé úhlové frekvence, které jsou si velmi blízké. Při tomto případu vzniknou takzvané zázněje a amplituda vzniklé vlny se mění s časem. 3.3 Fourierova transformace Každý reálný signál lze popsat součtem několika (případně nekonečno ale spočetně mnoha) harmonickými funkcemi za použití rozkladu do Fourierovy řady (4). (3) f (t)= a 0 + an sin(nωt)+b n cos(nωt) n=1 Konstanty a n a b n vypočítáme pomocí integrálů (5) a (6). t a n = T t 1 f (t)cos(nωt)dt (4) (5) t b n = T t 1 f (t)sin(nωt)dt (6) 4. Postup měření 4.1 Stojaté vlnění na struně Obr. 1 Vyobrazení měřící aparatury pro měření stojatého vlnění na struně. Převzato z [] - -
3 Na obrázku (Obr. 1) nalezneme měřící soustavu. Závaží pověšené na struně má velikost 5kg. Lineární hustotu struny vyjádříme pomocí vzorce (7), f n = n L T ρ =an;a= 1 L T ρ kde ρ je lineární hustota struny, L délka struny, n počet uzlů a T napínací síla. Před začátkem měření jsme z (7) vypočítali první rezonanční frekvenci naší struny a od této hodnoty jsme poté na generátoru vlnění vždy nastavovali celočíselný násobek této hodnoty. Uzle byly vždy vidět v určitém malém rozsahu rezonančních frekvencí, tento rozsah jsme zaznamenali. Měření jsme provedli celkem pro 10 rezonančních frekvencí. Amplitudu jsme při měření upravovali tak, aby vždy byly dobře vidět uzle. Měření se muselo provádět v rozsahu 10Hz až 300Hz, aby se nepoškodila struna. Také se během měření hýbat s aparaturou. 4. Quinckova trubice Jedná se o dvoucestný interferometr, kde můžu měnit délku jednoho ramene. Jako zdroj signálu použijeme zdroj z úlohy o stojaté vlně na struně. Při měření jsme pracovali v rozsahu frekvencí až 4 khz. Nastavíme libovolnou frekvenci a poté pomocí osciloskopu nalezneme maximum. Vzdálenost mezi jednotlivými frekvencemi poté změříme. Maxima zvolíme kvůli tomu, že mikrofón snímající zvuk z trubice je náchylný na rušení a při hledání maxim není rušení tolik znát. Pro každou frekvenci nalezneme 6 maxim. Při posunutí trubice o Obr. - Quinckova trubice, převzáno z [] vzdálenost d musí zvuk projít vzdálenost d. Z toho odvodíme vzdálenost závislost vlnové délky a vzdálenost maxim jako λ = Δd. Frekvenci známe z generátoru. Rychlost zvuku z získáme jako v = f λ. Pro naše měření si vztah zapíšeme jako (8). (7) λ= v f (8) 4.3 Helhmoltzův rezonátor Obr. 3 Aparatura pro Helhmoltzův rezonátor, převzato z [] Helhmoltzova rezonance je rezonance mechanického vlnění plynů v uzavřené dutině. Jako zdroj pro reproduktor opět použijeme zdroj ze stojatého vlnění na struně. Mikrofón poté přes rozhraní COBRA připojíme do počítače. Na počítači data zpracovává program PHYWE, který provádí rychlou fourierovu transformaci (fast fourier transformation). Při měření pozorujeme píky ve - 3 -
4 fourierovském spektru a tam, kde dosáhne maximální amplitudy se nachází rezonanční frekvence. Opět si zapíšeme drobné okolí frekvence u píku. Tímto zajistíme, že do měření zahrneme i chybu. Při měření měníme objem baňky vždy přilitím 50ml vodu. Pomocí rovnice (9) získáme hodnotu rychlosti zvuku. f =a 1 (9) V ; a= v π r π l+1.4 r V tomto vzorci je v rychlost zvuku, l délka hrdla baňky, r poloměr hrdla baňky a V objem dutiny. 5. Vypracování 5.1 Stojaté vlnění na struně Na výpočet využijeme vzorec (7), kde máme známé hodnoty T = N a L = (1.3 ± 0.001) m. f 1 [Hz] f [Hz] n [-] Tab. 1 f 1 - frekvence, kde začala být znát rezonanční frekvence, f - frekvence, kde přestala a n - počet uzlů. Hodnoty zaneseme do grafu (Obr. 4). Proložíme-li tyto hodnoty lineární funkcí dostaneme pro konstantu hodnotu A = (1.79 ± 0.16). Rovnice má tedy tvar (10) f (n)=(1.79±0.16) n (10) Obr. 4 Měření frekvence módů struny. Nyní z rovnice (7) a hodnoty A = (1.79 ± 0.16) získáme ρ = ( ± 0.000) kgm -1. Rychlost - 4 -
5 spočítáme jako v= T /ρ, čili v = (53.4 ± 0.4) m s Quinckova trubice Hodnoty zaneseme do tabulky (Tab. ). # f [Hz] λ [m] Tab. f frekvence, při které jsme měřili. λ vypočítaná vlnová délka pro danou frekvenci. Zaneseme výsledky do Grafu (Obr. 5), ze kterého vynecháme hodnotu číslo 7 z toho důvodu, že střední kvadratická chyba aritmetického průměru při měření vlnových délek u této frekvenci byla prakticky ¼ této hodnoty. Obr. 5 1/f převrácená hodnota frekvence. λ vlnová délka s errorbary Výsledná hodnota konstantního členu a ve fitu se rovná rychlosti zvuku v z rovnice (8). Tato hodnota je tedy v = (315 ± 9) m s Helhmoltzův rezonátor # V [ml] f 0 [Hz] f 1 [Hz] Tab. 3 V objem lahve, f 0 začátek rezonance, f 1 konec rezonance - 5 -
6 Naměřené hodnoty zaneseme do tabulky (Tab. 3) a vytvoříme graf (Obr. 6). Obr. 6 V Objem lahve, f naměřená frekvence. Z fitu tohoto grafu dostaneme funkci (11) f = 5.50±0.0 (11) (V ) Nyní z rovnice (9) a hodnot r = m a l = 0.07 m (tyto hodnoty naleznu v []) vypočítáme rychlost zvuku v = (309. ± 0.) m s Diskuze V prvním měření mohla největší chyba vzniknout hlavně nestabilitou místnosti. Projela-li tramvaj, došlo k otřesům, které mohli mít vliv na stabilitu experimentu. Při pozorování uzlů na struně jsme používali papír, proti kterému byly uzle lépe znát. Z toho plyne další chyba, uzle byly velmi špatně vidět a tím pádem se špatně odhadovalo jestli už nastala rezonanční frekvence, nebo ne. Druhé měření bylo podle mě ze všech nejméně přesné. Prvně se na oscilátoru špatně odhadovalo, kdy přesně nastává maximum, které jsme si zvolili z důvodu, že hledání minima bude ještě více ovlivněno okolím a proto bude ještě těžší. Za druhé to bylo jednoznačně rušení z okolí, v praktikách byl neustálý šum a každý zvuk se projevil na osciloskopu. Za třetí to bylo velmi špatné ovládání samotné trubice. Srovnáme-li naší rychlost zvuku s hodnotou zapsané v teoretickém úvodu, zjistíme, že se liší o 5 metrů za sekundu, což je opravdu velký rozdíl. Během třetího měření nám nejdříve nefungoval přístroj, který konvertoval signál do počítače a proto jsme museli měření opakovat. Při měření jsem si všiml, že tenká trubička ve, které byl umístěn mikrofón měla na svém konci blanku z vody, která mohla zkreslovat příchozí zvuk a tím upravovat naše výsledky. Další vliv jistě byl způsobený hlukem s okolí. Srovnáme-li výsledek opět s rychlostí zvuku, kterou máme v teoretickém úvodu zjistíme, že se liší dokonce o 31 metrů za - 6 -
7 sekundu. To je opět velký rozdíl a důkaz, že naše měření bylo velmi nepřesné. Příště bych primárně změnil hlučnost v praktiku, která si myslím, že na pokusy se zvukem má největší vliv. 7. Závěr Při prvním měření získáme lineární hustotu struny ρ = ( ± 0.000) kgm -1 a rychlost šíření vlny v = (53.4 ± 0.4) m s -1. V druhém měření jsme naměřili rychlost zvuku jako v = (315 ± 9) m s -1. Ve třetím měření jsme poté naměřili hodnotu v = (309. ± 0.) m s Použitá literatura [1] Chyby měření. In: [online]. FJFI v Praze, 014 [cit ]. Dostupné z: n.pdf [] Základní experimenty akustiky. [online]. FJFI v Praze, 014 [cit ]. Dostupné z:
1 Pracovní úkoly. 2 Vypracování. Úloha #9 Akustika.
FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #9 Akustika. Datum m ení: 18.10.2013 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1. Domácí
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 1: Akustika Datum měření: 4. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Spočítejte, jakou
Základní experimenty akustiky
Základní experimenty akustiky Jakub Kákona, kaklik@mlab.cz Abstrakt Obsahem je popis několika metod pro měření rychlosti zvuku, rezonančních frekvencí, vlnové délky a shrnutí jejich výsledků. 1 Úvod 1.
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 9: Základní experimenty akustiky Datum měření: 27. 11. 29 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:3 Spolupracovala:
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník
Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 9 : Akustika
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 9 : Akustika Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 2.11.2012 Klasifikace: 1 Zadání 1. Domácí úkol: Spočítejte, jakou vlastní
Základní experimenty akustiky
Číslo úlohy: 9 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 19. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Základní experimenty
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí
Akustická měření - měření rychlosti zvuku
Akustická měření - měření rychlosti zvuku Úkol : 1. Pomocí přizpůsobené Kundtovy trubice určete platnost vztahu λ = v / f. 2. Určete rychlost zvuku ve vzduchu pomocí Kundtovy a Quinckeho trubice. Pomůcky
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #12 Stirlingův stroj Jméno: Ondřej Finke Datum měření: 1.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě diskutujte rozdíl
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM I Úloha číslo: X Název: Rychlost šíření zvuku Vypracoval: Ondřej Hlaváč stud. skup.: F dne: 7. 3. 00 Odevzdal dne:
Vlny v trubici VUT FSI v Brně
Vlny v trubici VUT FSI v Brně Měření provedeno: Vedoucí práce: Měření provedli: Zpracoval: Úkol: Měřením rezonančních frekvencí podélného vlnění v trubici určit rychlost šíření zvuku ve vzduchu. Teoretická
Název: Měření rychlosti zvuku různými metodami
Název: Měření rychlosti zvuku různými metodami Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, biologie Ročník: 4.
plynu, Měření Poissonovy konstanty vzduchu
Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník
( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty
Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!
MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,
Měření logaritmického dekrementu kmitů v U-trubici
Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový
22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ NA VEDENÍ 102-4R-T,S Zadání 1. Sestavte měřící
3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte
Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K
zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 17 Název: Měření absorpce světla Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17. 4. 008 Odevzdal dne:...
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová
Základním praktikum z laserové techniky
Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr
Název: Pozorování a měření emisních spekter různých zdrojů
Název: Pozorování a měření emisních spekter různých zdrojů Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, chemie Ročník:
6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
Izolaní materiály. Šastník Stanislav. 4. týden
Izolaní materiály 4. týden Šastník Stanislav Vysoké uení technické v Brn, Fakulta stavební, Ústav technologie stavebních hmot a dílc, Veveí 95, 60 00 Brno, Tel: +40 5 44 7507, Fax +40 5 44 750, Email:
Zvukové jevy. Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku
Zvukové jevy Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku 2. musí existovat látkové prostředí, kterým se zvuk šíří - ve vakuu se zvuk nešíří! 3.
V i s k o z i t a N e w t o n s k ý c h k a p a l i n
V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úlohač.8 Název: Kalibrace odporového teploměru a termočlánku- fázové přechody Pracoval: Lukáš Ledvina stud.skup.17 24.3.2009
13. Vlnová optika I. Interference a ohyb světla
13. Vlnová optika I. Interference a ohyb světla Od časů Isaaca Newtona si lidstvo láme hlavu problémem, je-li světlo vlnění nebo proud částic. Tento spor rozdělil svět vědy na dva zdánlivě nesmiřitelné
ZVUKY KMITAJÍCÍCH TYČÍ
ZVUKY KMITAJÍCÍCH TYČÍ BŘETISLAV PATČ, ZŠ BRANDÝS N. L., LEOŠ DVOŘÁK, KDF MFF UK PRAHA *) ÚVOD Za tyče považujeme v akustice pevná pružná tělesa, u kterých převažuje jeden rozměr nad ostatními dvěma. Tyče
Vlny kolem nás. Název. Jméno a e-mailová adresa autora Cíle
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Vlny kolem nás Vlnění Jiří Kvapil renata.holubova@upol.cz Žáci rozeznají typy vlnění a podstatu vlnění v každodenním životě
SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY
SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY V této úloze budou řešeny symetrické čtyřpóly jako frekvenční filtry. Bude představena jejich funkce na praktickém příkladu reproduktorů. Teoretický základ Pod pojmem čtyřpól
Tlumené kmitání tělesa zavěšeného na pružině
Tlumené kmitání tělesa zavěšeného na pružině Kmitavé pohyby jsou důležité pro celou fyziku a její aplikace, protože umožňují relativně jednoduše modelovat řadu fyzikálních dějů a jevů. V praxi ale na pohybující
Mechanicke kmita nı a vlneˇnı
Fysikální měření pro gymnasia III. část Mechanické kmitání a vlnění Gymnasium F. X. Šaldy Honsoft Liberec 2008 ÚVODNÍ POZNÁMKA EDITORA Obsah. Třetí část publikace Fysikální měření pro gymnasia obsahuje
1 Pracovní úkoly. 2 Vypracování. Úloha #8 Studium ultrazvukových vln.
FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #8 Studium ultrazvukových vln. Datum m ení: 11.10.2013 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum 1 Úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jan Kotek stud.sk.: 17 dne: 2.3.2012 Odevzdal dne:... možný počet bodů
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: IX Název: Charakteristiky termistoru Pracoval: Pavel Brožek stud. skup. 12 dne 31.10.2008
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 3 Název: Mřížkový spektrometr Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10. 4. 2008 Odevzdal dne:...
Studium ultrazvukových vln
Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových
Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr
Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření
Úloha č. 8 Vlastnosti optických vláken a optické senzory
Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před
Digitalizace signálu (obraz, zvuk)
Digitalizace signálu (obraz, zvuk) Základem pro digitalizaci obrazu je převod světla na elektrické veličiny. K převodu světla na elektrické veličiny slouží např. čip CCD. Zkratka CCD znamená Charged Coupled
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky M UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 5 Teoretická
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
MĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU
niverzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 4 MĚŘEÍ HYSTEREZÍ SMYČKY TRASFORMÁTOR Jméno(a): Jiří Paar, Zdeněk epraš (Dušan Pavlovič, Ondřej
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 1 Název: Studium rotační disperze křemene a Kerrova jevu v kapalině Pracoval: Matyáš Řehák stud.sk.:
sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj
http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru
K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014
K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav
Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku
Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá
Netlumené kmitání tělesa zavěšeného na pružině
Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento
Měření hustoty kapaliny z periody kmitů zkumavky
Měření hustoty kapaliny z periody kmitů zkumavky Online: http://www.sclpx.eu/lab1r.php?exp=14 Po několika neúspěšných pokusech se zkumavkou, na jejíž dno jsme umístili do vaty nejprve kovovou kuličku a
ELEKTŘINA A MAGNETIZMUS
EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3
Měření indexu lomu kapaliny pomocí CD disku
Měření indexu lomu kapaliny pomocí CD disku Online: http://www.sclpx.eu/lab4r.php?exp=1 Tento experiment vychází svým principem z klasického experimentu měření vlnové délky světla pomocí CD disku, který
4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada
(Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem
STUDIUM FOTOEFEKTU A STANOVENÍ PLANCKOVY KONSTANTY. 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h.
Úkol měření: 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h. 2) Určete mezní kmitočet a výstupní práci materiálu fotokatody použité fotonky. Porovnejte tuto hodnotu s
Po stopách Alberta Michelsona, Marina Mersenna a dalších
Po stopách Alberta Michelsona, Marina Mersenna a dalších J. Dvořák, Gymnázium Botičská, Praha 1, dvorak1430@seznam.cz K. Rydlo, Gymnázium Dobruška, Krystof.Rydlo176@gmail.com V. Mikeska, Gymnázium Františka
PROTIHLUKOVÁ STĚNA Z DŘEVOCEMENTOVÝCH ABSORBČNÍCH DESEK
PROTIHLUKOVÁ STĚNA Z DŘEVOCEMENTOVÝCH ABSORBČNÍCH DESEK Rudolf Hela, Oldřich Fiala, Jiří Zach V příspěvku je popsán systém protihlukových stěn za využití odpadu z těžby a zpracování dřeva. Pro pohltivou
Bezkontaktní měření vzdálenosti optickými sondami MICRO-EPSILON
Laboratoř kardiovaskulární biomechaniky Ústav mechaniky, biomechaniky a mechatroniky Fakulta strojní, ČVUT v Praze Bezkontaktní měření vzdálenosti optickými sondami MICRO-EPSILON 1 Měření: 8. 4. 2008 Trubička:
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
5.3.3 Interference na tenké vrstvě
5.3.3 Interference na tenké vrstvě Předpoklady: 530 Bublina z bublifuku, slabounká vrstva oleje na vodě, někteří brouci jasné duhové barvy, u bublin se přelévají, barvy se mění s úhlem, pod kterým povrch
Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).
Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro
Vycházím se studijního textu k fyzikálnímu praktiku [1]. Existují různé možnosti, jak měřit svítivost
1 Pracovní úkoly 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 19 Název: Měření indexu lomu Jaminovým interferometrem Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 17.3.2014
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
Vlnění, optika a atomová fyzika (2. ročník)
Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Elektrická vodivost elektrolytů. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. 26 Název: Elektrická vodivost elektrolytů Pracoval: Lukáš Vejmelka stud. skup. FMUZV 73) dne 12.12.2013 Odevzdal
ČÁST VI - K M I T Y A V L N Y
ČÁST VI - K M I T Y A V L N Y 23. Harmonický oscilátor 24. Vlnění 25. Elektromagnetické vlnění 26. Geometrická optika 27. Fyzikální optika 28. Nelineární optika 261 Periodické pohyby částic a těles (jako
Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých
Úloha 6 02PRA1 Fyzikální praktikum 1 Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých měření i ověří Gay-Lussacův zákon.
v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9
České vysoké učení technické v Praze Algoritmy pro měření zpoždění mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 31. března 23 Obsah 1 Zadání 1 2 Uvedení do problematiky měření zpoždění signálů 1
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení
Měření rozložení optické intenzity ve vzdálené zóně
Rok / Year: Svazek / Volume: Číslo / Number: 1 1 5 Měření rozložení optické intenzity ve vzdálené zóně Measurement of the optial intensity distribution at the far field Jan Vitásek 1, Otakar Wilfert, Jan
Základní praktikum laserové techniky
Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 8: Akustooptický modulátor s postupnou a stojatou akustickou vlnou Datum m ení: 11.3.2015 Skupina: G Zpracoval: David Roesel
y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich
Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM F34 Fyzikální praktikum Zpracoval: Dvořák Martin Naměřeno: 1. 11. 9 Obor: B-FIN Ročník: II. Semestr: III. Testováno:
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZI KY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 1.11.006 Stud. rok 006/007 Ročník. Datum odevzdání 15.11.006 Stud.
215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI
215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.
3 Elektromagnetické vlny ve vakuu
3 Elektromagnetické vlny ve vakuu Od mechanických vln s pružinkami a závažími se nyní přesuneme k vlnám elektromagnetickým. Setkáváme se s nimi na každém kroku radiové vlny, mikrovlny, světlo nebo třeba
9. Úvod do teorie PDR
9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod
INFORMACE NRL č. 12/2 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí Hz I. Úvod V poslední době se stále častěji setkáváme s dotazy na vliv elektromagnetického pole v okolí
8 b) POLARIMETRIE. nepolarizovaná vlna
1. TEORETICKÝ ÚVO Rotační polarizace Světlo má zároveň povahu vlnového i korpuskulárního záření. V optických jevech se světlo chová jako příčné vlnění, přičemž světelné kmity probíhají všemi směry a směr
APLIKOVANÁ OPTIKA A ELEKTRONIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.
DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám
10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí
SMĚŠOVAČ 104-4R 6.10. 13.10. 7
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy SMĚŠOVAČ 104-4R Zadání 1. Sestavte měřící obvod pro měření
Měření povrchového napětí kapaliny metodou maximální kapky
Měření povrchového napětí kapaliny metodou maximální kapky Online: http://www.sclpx.eu/lab2r.php?exp=3 Tento experiment byl publikován autorem práce v [33] a jedná se o zcela původní metodu pro experimentální
terénní praktikum : Pila Ptení jméno a příjmení : třída : datum :
Pracovní list vytvořil : Mgr. Lenka Krčová lektor terénních praktik : Mgr. Petr Žůrek terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Základní škola Prostějov, Dr. Horáka 24 1) Jistě