CVIČENÍ č. 3 STATIKA TEKUTIN

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "CVIČENÍ č. 3 STATIKA TEKUTIN"

Transkript

1 Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením a. Cisterna je naplněna do /3 svého objemu. Určete takové zrychlení a, aby se volná hladina dotkla horního rohu cisterny. Určete sílu na zadní čelo a dno cisterny. Zadané hodnoty: H = m, L = 4 m, B =, m, a = 1,5 m.s -, ρ = 70 kg.m -3, α = 5 Vypočtěte: a, F čelo, F dno Zvolíme souřadný systém dle obrázku. Dále je nutné si uvědomit, že musíme rozložit gravitační zrychlení do složek zvoleného souřadného systému: g = g sinα = 9,81 sin(5 ) = 0,85 m s g = g cosα = 9,81 cos(5 ) = 9,77 m s Nyní již máme vnější zrychlení rozložená do složek dle souřadného systému a dále se již nemusíme zabývat faktem, že automobil se pohybuje po nakloněné rovině. Využijeme rovnici hladinových ploch v zobrazeném souřadném systému, dosadíme vnější setrvačná zrychlení, rovnici integrujeme a určíme integrační konstantu z okrajových podmínek.

2 0 = R d R = a g R = g 0 = (a + g ) dx g dy Volná hladina bude procházet zadním rohem cisterny, tudíž využijeme jeho souřadnice, určíme integrační konstantu, kterou dosadíme zpět do původní rovnice. 0 = (a + g ) x g y + C x = 0, y = H 0 = (a + g ) x + g (H y) Jelikož víme, že bod o souřadnicích [L/, /3.H] leží na volné hladině, dosadíme tyto souřadnice do rovnice volné hladiny a následně určíme zrychlení a takové, aby se volná hladina dotkla levého horního rohu cisterny. 0 = (a + g ) x + g (H y) S: x = L, y = 3 H a = g (a + g ) x = g (H y) a + g = g H y x H y x g = g H H g a = g H 3 L g = 9,81 cos(5 ) =, 4 m s 3 4 Aby bolo možné určit sílu na zadní čelo popřípadě na dno, je nutné znát rozložení tlaku na těchto plochách. Rozložení tlaku obecně v tekutině je možné určit z Eulerovy rovnice hydrostatiky. dp = ρ R d R = a g, R = g dp = ρ (a + g ) dx + g dy p = ρ (a + g ) x + g y + C Pro určení integrační konstanty je možné využit znalosti tlaku v bodě [0, H], kde je určitě atmosférický tlak, protože se nacházíme na volné hladině. C: x = 0, y = H: p = p p = p + ρ (a + g ) x + g (H y)

3 Při výpočtu síly budeme vycházet ze základní definice síly: F = pds V tomto případě je možné využít získané rovnice popisující rozložení tlaku v tekutině, nicméně je nutné si uvědomit, že atmosférický tlak působí uvnitř i vně cisterny, proto jej nebudeme do výpočtu síly zavádět. Dále musíme vyjádřit rozložení tlaku na požadované ploše, protože se jedná o zadní čelo cisterny, pro nějž platí x = 0, dosadíme tuto hodnotu do obecné rovnice rozložení tlaku. Elementární plochu ds můžeme vyjádřit jako B.dy.. F č = p B dy p = ρ g (H y) F č = B ρ g (H y) dy = B ρ g H H H = B ρ g cosα F č =, 70 9,81 cos5 = N Obdobným způsobem získáme sílu na dno cisterny. Vyjádříme rozložení tlaku na požadované ploše, protože se jedná o dno cisterny, pro nějž platí y = 0, dosadíme tuto hodnotu do obecné rovnice rozložení tlaku. Elementární plochu ds můžeme vyjádřit jako B.dx, kde B je šířka cisterny a tudíž konstanta. Naznačenými úpravami získáme výslední vztah pro výpočet síly na dno cisterny. F = p B dx F = pds. p = ρ (a + g ) x + g H F = B ρ (a + g ) x + g H dx = L ρ B g H (a + g ) L F = 4 70, 9,77 (,4 + 0,85) 4 = 861, 44 N

4 Příklad č. : Válcová nádoba o poloměru R a výšce H, je za klidu zcela naplněna vodou o hustotě ρ. Nádoba rotuje konstantními otáčkami n, je otevřena, tudíž nad volnou hladinou je tlak p 0. Určete tlaky p A a p B, obecné rozložení tlaku v tekutině, rovnici volné hladiny, otáčky, při nichž se paraboloid dotkne dna a objem vylité vody při těchto otáčkách. Zadané hodnoty: ρ = 1000 kg.m -3, H = 0,6 m, R = 0,3 m, p 0 = 0,1 MPa Vypočtěte: p, p A, p B, n, V v Vyjdeme z Eulerovy rovnice hydrostatiky. Vnější zrychlení vyjádříme v cylindrickém souřadném systému. Integrační konstantu určíme ze znalosti tlaku v některém bodě uvnitř tekutiny, popř. využijeme volné hladiny, kde je určitě tlak p 0. dp = ρ R d R = ω r, R = g dp = ρ (ω r dr g dy) p = ρ ω r g y + C C: r = R, y = H, p = p C = p ρ ω R g H p = p + ρ ω (r R ) + g (H y) Dále učíme velikosti tlaků v konkrétních bodech A a B, dosadíme souřadnice bodů do výše odvozené rovnice obecného rozložení tlaku a vypočteme tlaky p A a p B. Souřadnice bodu A = [0, 0]: p = p + ρ ω R + g H Souřadnice bodu B = [R, 0]: p = p + ρ g H = ,81 0,6 = Pa

5 Tlak p B jsme byli schopni vypočítat na základě zadaných parametrů. Co se týče tlaku p A, neznáme úhlové zrychlení, proto ho musíme určit z rovnice tlakové hladiny. Úpravou Eulerovy rovnice pro p = konst, tudíž dp = 0 a ρ 0 získáme rovnici tlakové hladiny. Budeme postupovat obdobně jako v případě řešení Eulerovy rovnice. 0 = R d R = ω r, R = g 0 = ω r dr g dy 0 = ω r g y + C Integrační konstantu určíme ze znalosti bodu, jimž má volná hladina procházet. C: r = R, y = H 0 = ω r g H + C C = g H ω R 0 = ω (r R ) + g (H y) V rovnici se vyskytuje ještě neznámá v podobě úhlové rychlosti, takže použijeme další bod, který byl dán v zadání. Jedná se o vrchol rotačního paraboloidu. Nyní již vyjádříme a vypočteme neznámou úhlovou rychlost. r = 0, y = 0 0 = ω (0 g H 9,81 0,6 R ) + g (H 0) ω = R = 0,3 = 11,4368 rad s ω = π n n = ω π = 11,4368 = 1, 811 s1 π Takto jsme získali úhlovou rychlost, resp. otáčky, při nichž se paraboloid dotýká dna a prochází horním okrajem nádoby. p = p + ρ ω R + g H = ,4368 0,3 + 9,81 0,6 = Pa Zbývá určit objem vylité vody z nádoby, což určíme jako objem mezi horním okrajem nádoby a paraboloidem. Pro lepší představu vypočteme objem "vzduchu" v nádobě nad volnou hladinou. Z rovnice volné hladiny vyjádříme poloměr r = r(y).

6 V = π r dy r = g (y H) ω + R Následnými úpravami získáme vztah pro výpočet objemu vylité tekutiny. V = π g ω (y H) + R dy = π g ω H H + R H = π R g H π ω H V = π H R g ω H = π 0,6 0,3 9,81 0,6 = 0, 0848 m3 11,4368 Příklad č. 3: Určete minimální velikost síly Fy potřebné k nadzdvižení stavidla o hmotnosti 10 kg a šířce,5 m, je-li hloubka 1,3 m. Hustota kapaliny je 998,5 kg/m 3 a součinitel tření mezi stavidlem a vodícími lištami je 0,3. Zadané hodnoty: ρ = 998,5 kg.m -3, m = 10 kg, b =,5 m, h = 1,3 m, f = 0,3 Vypočtěte: F y F = h ρ g S = h ρ g h b = 1 h b ρ g F = 1 1,3,5 998,5 9,81 = 069,5 N T = F f = 069,5 0,3 = 607,8 N Rovnováha sil ve směru osy y: F T m g = 0 F = m g + T = 10 9, ,8 = 7385 N

7 Příklad č. 4: Vypočítejte sílu působící na čtvercový a kruhový poklop a hloubku jejího působiště. Zadané hodnoty: ρ = 1000 kg.m -3, h 1 = 0 m, h = 0,5 m, a = d = 1m Vypočtěte: F 1,(h=0 m), F 1,(h=0,5 m), h c1,(h=0 m), h c1,(h=0,5 m), F,(h=0 m), F,(h=0,5 m), h c,(h=0 m), h c,(h=0,5 m) 1. Čtverec (h 1 = 0 m) F,( ) = ρ g h S = ρ g h + a a F,( ) = , = 4905 N h,( ) = y = J, S y + y =. Čtverec (h 1 = 0,5 m) a = 1 h + + h + a a h + + y = 1 h,( ) = = 0, 667 m F,(, ) = ρ g h S = ρ g h + a a h + + h + a = F,(, ) = ,81 0, = 9810 N h,(, ) = y = J, S y + y = a = 1 h + + h + a a h + + y = 1 h,(, ) = 1 0, ,5 + 1 = 1, 083 m h + + h + a =

8 3. Kruh (h 1 = 0 m) F,( ) = ρ g h S = ρ g h + d d π 4 F,( ) = , π = 385 N 4 h,( ) = y = J, S y + y = d + h π h + + = d 16 h + + h + d 1 h,( ) = = 0, 65 m 4. Kruh (h 1 = 0,5 m) F,(, ) = ρ g h S = ρ g h + d d π 4 F,(, ) = ,81 0, π = 7705 N 4 h,(, ) = y = J, S y + y = + h π h h,(, ) = 16 0, ,5 + 1 = 1, 06 m d = d 16 h + + h + d

Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami. cvičení Dřevěné konstrukce Hřebíkové spoje Základní pojmy. Návrh spojovacího prostředku Na hřebíkové spoje se nejčastěji používají ocelové stavební hřebíky s hladkým dříkem kruhového průřezu se zápustnou

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

CVIČENÍ č. 8 BERNOULLIHO ROVNICE

CVIČENÍ č. 8 BERNOULLIHO ROVNICE CVIČENÍ č. 8 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Z injekční stříkačky je skrze jehlu vytlačovaná voda. Průměr stříkačky je D, průměr jehly d. Určete výtokovou rychlost,

Více

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t 7.3 Odpory při valení Valení je definováno tak, že dotykové body valícího se tělesa a podložky jsou v relativním klidu. Je zaručeno příkladně tak, že těleso omotáme dvěma vlákny, která jsou upevněna na

Více

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?) () Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

fyzika v příkladech 1 a 2

fyzika v příkladech 1 a 2 Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Mechanika: kapaliny a plyny zadání 1. Ve dně nádoby je otvor, kterým vytéká voda. Hladina vody v nádobě je 30 cm nade dnem. Jakou rychlostí vytéká

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Rotující kotouče Drahomír Rychecký Drahomír Rychecký Rotující kotouče

Rotující kotouče Drahomír Rychecký Drahomír Rychecký Rotující kotouče Nabídka Kotouče bez otvoru Obecná úloha zde Volný kotouč zde Kotouč zatížený tahovým napětím na vnějším poloměru zde Kotouče s otvorem Obecná úloha zde Volný kotouč zde Kotouč zatížený tahovým napětím

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice

Více

Studentská tvůrčí činnost. O letu volejbalového míče při podání

Studentská tvůrčí činnost. O letu volejbalového míče při podání Studentská tvůrčí činnost O letu volejbalového míče při podání Jan Dumek Vedoucí práce : Prof. Ing. Pavel Šafařík, CSc O letu volejbalového míče při podání Jan Dumek Abstrakt Práce se zabývá pozorováním

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Měření kinematické a dynamické viskozity kapalin

Měření kinematické a dynamické viskozity kapalin Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

Rotační skořepiny, tlakové nádoby, trubky. i Výpočet bez chyb. ii Informace o o projektu?

Rotační skořepiny, tlakové nádoby, trubky. i Výpočet bez chyb. ii Informace o o projektu? Rotační skořepiny, tlakové nádoby, trubky i Výpočet bez chyb. ii Informace o o projektu? Kapitola vstupních parametrů 1. Výběr materiálu a nastavení jednotek 1.1 Jednotky výpočtu 1.2 Materiál SI Units

Více

Z PRÁŠ. lení. s použit. itím m tlaku bez použit. ití tlaku. ení tvaru výrobku. pevnosti

Z PRÁŠ. lení. s použit. itím m tlaku bez použit. ití tlaku. ení tvaru výrobku. pevnosti ZHUTŇOV OVÁNÍ VÝROBKŮ Z PRÁŠ ÁŠKŮ (formování) Účel vytvářen ení tvaru výrobku zajištění manipulační pevnosti Základní rozdělen lení s použit itím m tlaku bez použit ití tlaku Chování částic práš ášků Volně

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády.

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády. Řešení úlo celostátnío kola 55 ročníku fyzikální olympiády AutořiJTomas(134)aMJarešová() 1a) Pro určení poloy těžiště umístíme jelan do poloy podle obr R1 Obsa příčnéo řezu jelanem ve vzdálenosti od vrcolu

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY

ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY ZÁKLADNÍ POJMY SVĚTELNÉ TECHNKY 1. Rovinný úhel α (rad) arcα a/r a'/l (pro malé, zorné, úhly) α a α a' a arcα / π α/36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω S/r (sr) steradián, Ω 4π 1 spat

Více

Vztlaková síla působící na těleso v atmosféře Země

Vztlaková síla působící na těleso v atmosféře Země Vztlaková síla působící na těleso v atmosféře Země (Učebnice strana 140 141) Na pouti koupíme balonek. Pustíme-li ho v místnosti, stoupá ke stropu.po určité době (balonek mírně uchází) se balonek od stropu

Více

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2. VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:

Více

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

V i s k o z i t a N e w t o n s k ý c h k a p a l i n V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

1.8.3 Hydrostatický tlak

1.8.3 Hydrostatický tlak .8.3 Hydrostatický tlak Předpoklady: 00802 Z normální nádoby s dírou v boku voda vyteče, i když na ni netlačí vnější síla. Pokus: Prázdná tetrapacková krabice, několik stejných děr v boční stěně postupně

Více

MOLEKULOVÁ FYZIKA KAPALIN

MOLEKULOVÁ FYZIKA KAPALIN MOLEKULOVÁ FYZIKA KAPALIN Struktura kapalin Povrchová vrstva kapaliny Povrchová energie, povrchová síla, povrchové napětí Kapilární tlak Kapilarita Prof. RNDr. Emanuel Svoboda, CSc. STRUKTURA KAPALIN Tvoří

Více

Clemův motor vs. zákon zachování energie

Clemův motor vs. zákon zachování energie Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této

Více

b=1.8m, c=2.1m. rychlostí dopadne?

b=1.8m, c=2.1m. rychlostí dopadne? MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m

Více

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení... 34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická

Více

Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy)

Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy) Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy) Úvod: Problematika výtoku kapaliny z nádrže se uplatňuje při vyprazdňování nádrží a při nejjednodušším nastavování konstantních průtoků.

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y 3. Násobné integrály 3.. Oblasti v R. Načrtněte množinu R a najděte meze integrálů f(x, y)dxdy, kde je dána: () = {(x, y) : x, y 3} () vnitřek trojúhelníka tvořeného body [, ], [, ] a [, ]. (3) vnitřek

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. 7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

Kapka kapaliny na hladině kapaliny

Kapka kapaliny na hladině kapaliny JEVY NA ROZHRANÍ TŘÍ PROSTŘEDÍ Kapka kapaliny na hladině kapaliny Na hladinu (viz obr. 11) kapaliny (1), nad níž je plynné prostředí (3), kápneme kapku jiné kapaliny (2). Vzniklé tři povrchové vrstvy (kapalina

Více

3. TEKUTINY A TERMIKA 3.1 TEKUTINY

3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit

Více

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Základy rádiové navigace

Základy rádiové navigace Základy rádiové navigace Obsah Definice pojmů Způsoby navigace Principy rádiové navigace Pozemské navigační systémy Družicové navigační systémy Definice pojmů Navigace Vedení prostředku po stanovené trati

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Provedení nevýrobních objektů v závislosti na konstrukčním řešení a požární odolnosti stavebních konstrukcí.

Provedení nevýrobních objektů v závislosti na konstrukčním řešení a požární odolnosti stavebních konstrukcí. Ústav územního rozvoje, Jakubské nám. 3, 658 34 Brno Tel.: +420542423111, www.uur.cz, e-mail: sekretariat@uur.cz LIMITY VYUŽITÍ ÚZEMÍ Dostupnost: http://www.uur.cz/default.asp?id=2591 4.5.201 NEVÝROBNÍ

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

MATEMATIKA rozšířená úroveň

MATEMATIKA rozšířená úroveň Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

Identifikátor materiálu: ICT 1 16

Identifikátor materiálu: ICT 1 16 Identifikátor materiálu: ICT 1 16 Registrační číslo projektu Náze projektu Náze příjemce podpory náze materiálu (DUM) Anotace Autor Jazyk Očekáaný ýstup Klíčoá sloa Druh učebního materiálu Druh interaktiity

Více

12 Prostup tepla povrchem s žebry

12 Prostup tepla povrchem s žebry 2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem

Více

Technická univerzita v Liberci. cvičebnice k předmětu MECHANIKA TEKUTIN

Technická univerzita v Liberci. cvičebnice k předmětu MECHANIKA TEKUTIN Technická univerzita v Liberci Fakulta mechatroniky a mezioborových inženýrských studií cvičebnice k předmětu MECHANIKA TEKUTIN J. ŠEMBERA Katedra modelování procesů Liberec 00 Obsah Úvod 5 Příklady ke

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování

Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování Západočeská univerzita v Plzni Fakulta strojní Semestrální práce z Matematického Modelování Dynamika pohybu rakety v 1D Vypracoval: Pavel Roud Obor: Technologie obrábění e mail:stu85@seznam.cz 1 1.Úvod...

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Identifikátor materiálu: ICT 2 58

Identifikátor materiálu: ICT 2 58 Identifikátor materiálu: ICT 58 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh interaktivity

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum :

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Pracovní list vytvořil : Mgr. Lenka Krčová lektor terénních praktik : Mgr. Petr Žůrek terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Základní škola Prostějov, Dr. Horáka 24 1) Jistě

Více

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Pomůcka pro demonstraci dynamických účinků proudu kapaliny

Pomůcka pro demonstraci dynamických účinků proudu kapaliny Pomůcka pro demonstraci dynamických účinků proudu kapaliny Energie proudící vody je lidmi využívána již několik tisíciletí. Základní otázkou vždy bylo, kolik energie lze z daného zdroje využít. Úkolem

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organické technologie (111) Ing. I. Dudková Doc. Ing. B. Dvořák, CSc. budova A, místnost č. S31 MĚŘENÍ VYBRANÝCH TECHNICKÝCH

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) = Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží

Více