když n < 100, n N, pak r(n) = n,

Rozměr: px
Začít zobrazení ze stránky:

Download "když n < 100, n N, pak r(n) = n,"

Transkript

1 Zúžená aritmetika úvod Nad a Stehlíková Autorem netradiční aritmetické struktury, v rámci které se budeme nadále pohybovat, je Prof. Milan Hejný. Nejdříve si zavedeme základní pojmy. Základem zúžené aritmetiky je zobrazení r : N N, tzv. redukce, které je zavedeno takto: když n < 100, n N, pak r(n) = n, když n 100, rozdělíme číslo odzadu na dvojčíslí a ty spolu sečteme. Pokud je výsledné číslo větší než 99, opět ho rozdělíme odzadu na dvojčíslí a ty spolu sečteme atd. Např. r(171) = r(1 + 71) = 72, r(1 356) = r( ) = 69, r(8 869) = r( ) = = r(157) = r(1 + 57) = 58, r(57 865) = r( ) = r(148) = r(1 + 48) = 49 Necht A 2 = {1, 2, 3,..., 99} je množina prvních devadesáti devíti přirozených čísel. Pomocí redukce r zavedeme binární operace z-sčítání a z-násobení v A 2 takto: x, y A 2, x y = r(x + y) a x y = r(x y). Např = r(134) = 35, 7 55 = r(385) = 88. Symbol A 2 bude nadále používán pro označení množiny i struktury A 2 = (A 2,, ). Čísla z množiny A 2 budeme nazývat z-čísla. Pokud neřekneme jinak, budeme nadále pracovat výhradně v množině A 2. Řešte následující úlohy, které vám pomohou vybudovat teorii zúžené aritmetiky a objevit řadu jejích vlastností. Můžeme si také klást vlastní otázky, které vás při řešení budou napadat. 1. Zjistěte r(100), r(2 574), r(58 693), r( ). 2. Najděte všechny {x N; r(x) = 6} {x N; r(x) = 18}, {x N; r(x) = 99}. 3. Řešte rovnice s neznámou x A 2 : x 17 = 99 x 61 = 4 x 6 = x = x = x = x = 3 x 99 = Zaved te z-odčítání. 5. Řešte rovnice s neznámou x A 2. 1

2 2 x = 40 2 x = 1 2 x = 99 3 x = 30 3 x = 1 3 x = 99 3 x = x = x = 45 6 x = 3 93 x = 3 50 x = 5 6 x = 45 3 x 2 = 83 5 x 10 = 5 6. Zaved te z-dělení. 7. Definujte v A 2 sudá a lichá čísla. 8. Která z-čísla jsou z-dělitelná číslem 2?, 3?, 5?, 9?, 33?, 55? 9. Řešte kvadratické rovnice s neznámou x A 2 (x 2 znamená x x). x 2 = 4 x 2 = 22 x 2 91 x = 99 x 2 3 x = 99 x 2 69 x 81 = 99 x 2 2 x 15 = 99 x 2 8 x 16 = 99 3 x 2 48 x 27 = 99 2

3 Zúžená aritmetika druhé mocniny Nad a Stehlíková Ve výše definované zúžené aritmetice můžeme zkoumat i některé vlastnosti, které nemají obdobu v normální aritmetice. Jednou z vhodných oblastí, která přináší zajímavé výsledky, je téma druhých mocnin. Řešením následujících úloh byste měli odhalit některé zajímavé vlastnosti struktury druhých mocnin. 1. Najděte všechny druhé mocniny v A Řešte rovnice x 2 = a, kde x, a A 2 a x je neznámá a a je parametr. 3. Snažte se zjistit co nejvíce vlastností druhých mocnin a odmocnin v A 2. Které z nich jsou obdobné vlasnostem druhých mocnin a odmocnin v normální aritmetice a které ne? Zapište je. 4. Má množina druhých mocnin v A 2 nějakou strukturu? Rada: Pokuste se je nějak symbolicky zakreslit. Například můžete spojit šipkou číslo a jeho druhou odmocninu. Uděláte-li to se všemi z-čísly, dospějete k zajímavému diagramu. 5. Zkoumejte diagram druhých mocnin. Jakým způsobem jsou v něm znázorněny vlastnosti struktury druhých mocnin, které jste odhalili dříve? Jaká kritéria můžeme použít na rozdělení množiny A 2 na podmnožiny čísel? 6. Znáte jednu odmocninu nějaké druhé mocniny v A 2. Jakým způsobem můžeme dopočítat zbylé odmocniny této druhé mocniny, aniž bychom museli zdlouhavě zjišt ovat druhé mocniny všech z-čísel? 7. Zkoumejte množiny odmocnin z-čísla, které je druhou mocninou v A 2, z hlediska vlastností algebraických struktur (např. zda jsou to aditivní nebo multiplikativní grupy). 8. Ted již umíme v A 2 odmocňovat, můžeme se podívat na řešitelnost kvadratických rovnic v A 2. Problematika kvadratických rovnic v A 2 je poměrně složitá a vyžaduje větší úsilí než předchozí úkoly. Řešte kvadratické rovnice s neznámou x A 2 : x 2 4 x = 99, 2 x 2 3 x = 99, 9 x 2 33 x = 99, x 2 2 x 6 = 99, 7 x 2 6 x 93 = 99, 9 x 2 2 x 66 = 99. 3

4 Popište obecné řešení kvadratických rovnic. Klasifikujte kvadratické rovnice v A 2 podle počtu jejich kořenů. Zjistěte, zda pro kořeny kvadratické rovnice v A 2 platí Viètovy vztahy. Zkoumejte vztahy mezi kořeny kvadratické rovnice v A 2. 4

5 Zúžená aritmetika magické čtverce Michaela Ulrychová V zúžené aritmetice můžeme také zkoumat některé partie rekreační matematiky. Zde uvedeme sérii úloh, kterou lze použít pro zkoumání vlastností magických čtverců v A 2 Na úvod zaved me magické čtverce v množině A 2. Magický čtverec v A 2 je takový soubor čísel z A 2 uspořádaných do tvaru čtverce, že z-součet čísel v každém řádku, v každém sloupci a v každé úhlopříčce je týž. Magické čtverce se rozdělují podle počtu čísel v jednom řádku. Počet čísel v jednom řádku se nazývá řád čtverce, který budeme značit n. V tomto textu se omezíme na řád z množiny A 2. Magické čtverce dělíme na sudé a liché (podle řádu magického čtverce). Z-součet čísel v každém řádku, v každém sloupci a v každé úhlopříčce nazveme konstanta magického čtverce. Konstantu magického čtverce v N budeme značit k, konstantu magického čtverce v A 2 budeme značit k. 1. Vypočítejte z-součet čísel v každém řádku, v každém sloupci a v každé úhlopříčce, magického čtverce na obr. 1. Obr Necht je zadán magický čtverec 4. řádu v oboru přirozených čísel (obr. 2). Převed te tento čtverec do A 2 a vypočítejte jeho konstantu. 5

6 Obr : Doplňte chybějící čísla z A 2 v magickém čtverci na obr. 3 tak, aby jeho konstanta byla 30. Obr Doplňte chybějící čísla z A 2 v magickém čtverci na obr. 4 tak, aby jeho konstanta byla 63. Obr Pro výpočet konstanty k magického čtverce skládajícího se ze všech přirozených čísel od 1 do n 2 platí vztah mezi konstantou k magického čtverce a řádem n magického čtverce: k = 1 2 n(1+n2 ). Zjistěte, zda podobný vztah platí i pro výpočet konstanty k magického čtverce v A Využitím vztahů z předchozí úlohy sestavte tabulku, která bude pro daný řád n magického čtverce udávat konstantu k magického čtverce v N a konstantu k magického čtverce v A 2 (n {3, 4, 5,..., 99}). 7. Sestavte magický čtverec 11. řádu v A 2 a vypočítejte jeho konstantu k. 6

7 8. Je možné určit jednoznačně hodnotu středového čísla (čísla v políčku uprostřed magického čtverce) v lichém magickém čtverci v A 2? 9. V oboru přirozených čísel se můžeme setkat s aritmetickým průměrem čísel. Jak souvisí středové číslo lichého magického čtverce v N s aritmetickým průměrem řádku, sloupce či úhlopříčky? Platí něco podobného v A 2? 10. Vyberte vhodná čísla z čísel 3, 21, 33, 48, 57, 87 a doplňte je do obr. 16 tak, abyste získali magický čtverec v A 2. Vypočítejte jeho konstantu k. Obr. 5 7

8 Zúžená aritmetika pythagorejské trojice Michaela Ulrychová Podobně jako magické čtverce, můžeme také studovat pythagorejské trojice. Opět tak učiníme prostřednictvím úloh. Pythagorejskou trojicí v A 2 nazveme takovou trojici z-čísel (x, y, z), pro kterou platí x 2 y 2 = z 2, přičemž symbol x 2 znamená x x. 1. Ověřte, zda následující trojice čísel tvoří pythagorejskou trojici v A 2 (čísla jsou uvedena v pořadí x, y, z). (a) 5, 66, 49, (b) 11, 33, 88, (c) 16, 62, 1, (d) 3, 18, 27, (e) 4, 99, 5, (f) 23, 26, 13, (g) 23, 27, 13, (h) 99, 99, Najděte všechny pythagorejské trojice v A 2, které obsahují čísla 10 a 66. (Pokud jste již dříve nezkoumali druhé mocniny v A 2, viz výše, bude lépe, pokud nejprve vyřešíte následující úlohu.) 3. Zjistěte, která z-čísla jsou druhou mocninou nějakého z-čísla. 4. Najděte co nejvíce pythagorejských trojic v A Kolik pythagorejských trojic získáme z rovnosti 1 99 = 1? 6. V předchozích dvou úlohách jsme odvodili způsob, jakým zjistíme všechny pythagorejské trojice v A 2. Najděte nějaký vhodný způsob zápisu všech těchto možností. 7. V množině přirozených čísel platí, že pokud přirozená čísla a, b, c tvoří pythagorejskou trojici, pak čísla pa, pb, pc, kde p je přirozené číslo, také tvoří pythagorejskou trojici. Formulujte analogické tvrzení v A 2 a zjistěte, zda platí. 8. Pro pythagorejskou trojici (a, b, c) v N platí, že jedno z čísel a, b musí být dělitelné číslem 3, jedno z těchto čísel musí být dělitelné číslem 4 a některé z čísel a, b, c musí být dělitelné číslem 5. Zformulujte podobné tvrzení pro pythagorejské trojice v A 2. 8

9 Zúžená aritmetika jednodušší varianta Nad a Stehlíková Můžeme vytvořit jednodušší variantu zúžené aritmetiky A 1, kde budou pouze jednociferná čísla bez nuly. Její základ opět tvoří zobrazení r : N N, které budeme nazývat redukce a které zavedeme takto: když n < 10, n N, pak r(n) = n, když n 10, provádíme ciferný součet čísla tak dlouho, dokud nedostaneme číslo od 1 do 9. Například r(71) = = 8, r(135) = = 9, r(869) = r( ) = = r(23) = = 5. Označme množinu A 1 = {1, 2, 3,..., 9}. Pomocí redukce r zavedeme binární operace z-sčítání a z-násobení v A 1 takto: x, y A 1, x y = r(x + y) a x y = r(x y). Například 7 5 = r(12) = 3, 7 5 = r(35) = 8. Můžeme řešit podobné úlohy jako u A 2. Zde některé z nich uvedeme a zaměříme se zejména na zkoumání pythagorejských trojic v A Najděte redukce následujících čísel: 69, 5, 896, 45, 9, 99, Z kterých čísel uděláme redukcí číslo (a) 6, (b) 8, (c) 9? 3. Vypočtěte: 6 3, 8 5, 6 9, 9 3, 7 4, Vypočtěte: 5 4, 6 9, 4 8, 2 2, 3 5, 3 6, 8 8. Poznámka: Pythagorejskou trojicí v A 1 nazveme takovou trojici z-čísel (x, y, z), pro kterou platí x 2 y 2 = z 2. Symbolem x 2 značíme součin x x. 5. Ověřte, zda následující trojice (x, y, z) tvoří pythagorejské trojice v A 1 : (1, 5, 6), (4, 6, 2), (3, 3, 6), (5, 5, 3), (2, 9, 7). 6. Lehce ověříme, že = 2 2 a = 2 2. Budeme považovat trojice (7, 6, 2), (6, 7, 2) za různé? 7. Máme dána tři čísla. Vytvořte z nich pythagorejské trojice (pokud to jde): (a) 4, 6, 7, (b) 1, 8, 9, (c) 3, 6, 9, (d) 2, 6, Máme dána dvě čísla 3 a 8. Najděte všechny pythagorejské trojice, které obsahují tato dvě čísla. 9

10 9. Najděte všechny pythagorejské trojice v A Pro pythagorejské trojice v množině přirozených čísel platí, že pokud tři čísla x, y, z tvoří pythagorejskou trojici, i trojice px, py, pz, kde p N, je pythagorejská. Formulujte toto tvrzení v množině A 1 a zjistěte, zda platí. 11. Najděte co nejmenší množinu pythagorejských trojic v A 1, ze kterých se dá pomocí vynásobení těchto trojic nějakým číslem z A 1 vytvořit množinu všech pythagorejských trojic v A 1. Například z trojice (1, 3, 1) vznikne vynásobením číslem 2 trojice (2, 6, 2), číslem 3 trojice (3, 9, 3) atd. Tuto množinu nazveme množinou základních pythagorejských trojic. 12. Najděte co nejvíce množin základních pythagorejských trojic. 13. Pro pythagorejské trojice (x, y, z) v množině přirozených čísel platí, že k jejich výpočtu můžeme použít vztahů x = p 2 q 2, y = 2pq, z = p 2 +q 2, kde p, q jsou libovolná přirozená čísla a p > q. Platí něco takového i v množině A 1? 14. Prozkoumejte tabulku druhých mocnin v A 2. Zjistěte, jaké jsou vztahy mezi čísly, která mají v A 1 stejnou druhou mocninu. 15. Podívejte se na výsledek úlohy 13. Znáte-li jednu dvojici čísel p, q, která vytvoří určitou trojici, najděte pravidlo, pomocí kterého je možné určit druhou dvojici čísel p, q, které vytvoří stejnou trojici. 16. Zjistili jsme, že pomocí vztahů u úlohy 13 se dají vygenerovat ty pythagorejské trojice, v nichž nejsou všechna čísla vesměs dělitelná třemi. Pokuste se najít jiné vztahy, které by vytvořily (a) právě ty pythagorejské trojice, které obsahují pouze čísla dělitelná třemi, (b) všechny pythagorejské trojice. 17. Pro pythagorejské trojice v množině přirozených čísel také platí, že všechny tzv. primitivní trojice (tj. čísla x, y, z musí být po dvou nesoudělná) se dají vygenerovat pomocí vztahu uvedeného u úlohy 13 za předpokladu, že čísla p, q mají rozdílnou paritu (tj. jedno je sudé a druhé liché). Zjistěte, zda tomu tak je v množině A 1. 10

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

Druhá mocnina a odmocnina Irena Budínová PDF MU budinova@ped.muni.cz

Druhá mocnina a odmocnina Irena Budínová PDF MU budinova@ped.muni.cz Druhá mocnina a odmocnina Irena Budínová PDF MU budinova@ped.muni.cz Materiál byl zpracován v rámci projektu "Systémová podpora trvalého profesního rozvoje (CPD) pedagogických pracovníků propojením pedagogické

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

Důkazové metody. Teoretická informatika Tomáš Foltýnek

Důkazové metody. Teoretická informatika Tomáš Foltýnek Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné

Více

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí DMA Přednáška Speciální relace Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je reflexivní, antisymetrická a tranzitivní. V tom případě značíme relaci a řekneme,

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

Michal Sláma. Pythagorejské trojúhelníky Pythagorean triangles

Michal Sláma. Pythagorejské trojúhelníky Pythagorean triangles Univerzita Karlova v Praze Pedagogická fakulta BAKALÁŘSKÁ PRÁCE Michal Sláma Pythagorejské trojúhelníky Pythagorean triangles Katedra matematiky a didaktiky matematiky Vedoucí bakalářské práce: RNDr. Antonín

Více

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3.

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3. 1..20 Dláždění III Předpoklady: 01019 Př. 1: Najdi n ( 84,96), ( 84,96) D. 84 = 4 21 = 2 2 7 96 = 2 = 4 8 = 2 2 2 2 2 D 84,96 = 2 2 = 12 (společné části rozkladů) ( ) n ( 84,96) = 2 2 2 2 2 7 = 672 (nejmenší

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 03 Operace v množině, vlastnosti binárních operací O čem budeme hovořit: zavedení pojmu operace binární, unární a další operace

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Zlomky sčítání a odčítání. Dušan Astaloš. samostatná práce, případně skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Zlomky sčítání a odčítání. Dušan Astaloš. samostatná práce, případně skupinová práce METODICKÝ LIST DA2 Název tématu: Autor: Předmět: Zlomky sčítání a odčítání Dušan Astaloš Matematika Ročník:. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový

Více

Kapitola 7: Integrál. 1/14

Kapitola 7: Integrál. 1/14 Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]} 1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Buď (T, +, ) těleso. Pak soustava rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2,................................... a m1 x 1 + a m2 x

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

M - Příprava na 2. zápočtový test pro třídu 2D

M - Příprava na 2. zápočtový test pro třídu 2D M - Příprava na 2. zápočtový test pro třídu 2D Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI Příklad 1: Domácí úkol DU01_p MAT 4AE, 4AC, 4AI Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byly první a Dan předposlední. Příklad : V dodávce

Více

Zákonitosti, vztahy a práce s daty

Zákonitosti, vztahy a práce s daty 20mate matematika Jednotlivé kapitoly mají rozsah čtyř stran a každá kapitola je obohacena o rozšiřující učivo. sčítání a odčítání Zákonitosti, vztahy a práce s daty 1 Vyřeš úlohy. a) Součet všech čísel

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_2_03 ŠVP Podnikání RVP 64-41-L/51

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3]. Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,

Více

2.7.1 Mocninné funkce s přirozeným mocnitelem

2.7.1 Mocninné funkce s přirozeným mocnitelem .7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě

Více

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1.

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1. 1 Rovnice, nerovnice a soustavy 11 Lineární rovnice Rovnice f(x) = g(x) o jedné neznámé x R, kde f, g jsou reálné funkce, se nazývá lineární rovnice, jestliže ekvivalentními úpravami dostaneme tvar ax

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

Opakované měření délky

Opakované měření délky Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Opakované měření délky (laboratorní práce) Označení: EU-Inovace-F-6-10 Předmět: fyzika Cílová skupina: 6. třída Autor:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

2.1.13 Funkce rostoucí, funkce klesající I

2.1.13 Funkce rostoucí, funkce klesající I .1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06

Více

PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín

PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás na gymnáziu Omská a přejeme úspěšné vyřešení všech úloh. Úlohy můžete řešit v libovolném pořadí. V matematice pracujeme s čísly

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Reg. č. projektu: CZ 1.04/ 4.1.00/A3.00004. CzechPOINT@office. Pracovní sešit

Reg. č. projektu: CZ 1.04/ 4.1.00/A3.00004. CzechPOINT@office. Pracovní sešit Reg. č. projektu: CZ 1.04/ 4.1.00/A3.00004 CzechPOINT@office Pracovní sešit Materiál vznikl v rámci řešení projektu Vzdělávání v oblasti základních registrů a dalších kmenových projektů egovernmentu, registrační

Více

AUTORKA Barbora Sýkorová

AUTORKA Barbora Sýkorová ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy

Více

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009 Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 008/009 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže

Více

Matematika IV (2015/2016) Program č. 1

Matematika IV (2015/2016) Program č. 1 Matematika IV (2015/2016) Program č. 1 Pokyny: Verzi programu, kterou budete vypracovávat, obdržíte na cvičení. Pokud se tak nestalo, aktivně si o ni řekněte. Program zpracujte samostatně, ovšem diskutovat

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: Šablona: Název materiálu: Autor: CZ..07/.4.00/.356 III/ Inovace a zkvalitnění výuky prostřednictvím ICT VY_3_INOVACE_0/07_Délka

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

Sada 2 - MS Office, Excel

Sada 2 - MS Office, Excel S třední škola stavební Jihlava Sada 2 - MS Office, Excel 20. Excel 2007. Kontingenční tabulka Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 65. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Na tabuli jsou napsána různá přirozená čísla. Jejich aritmetický průměr je desetinné číslo, jehož desetinná část je přesně 0,2016. Jakou

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MS WORD 2007 Styly a automatické vytvoření obsahu

MS WORD 2007 Styly a automatické vytvoření obsahu MS WORD 2007 Styly a automatické vytvoření obsahu Při formátování méně rozsáhlých textů se můžeme spokojit s formátováním použitím dílčích formátovacích funkcí. Tato činnost není sice nijak složitá, ale

Více

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla

Více

Základní chemické pojmy a zákony

Základní chemické pojmy a zákony Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Šablona č. 5, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Matematika a její aplikace Matematika a její aplikace Početní operace násobení a dělení Téma Násobení a dělení čísly 2, 3, 4, 5

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

4. R O V N I C E A N E R O V N I C E

4. R O V N I C E A N E R O V N I C E 4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)

Více

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o. E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4

Více

JAK PŘIDAT UŽIVATELE PRO ADMINISTRÁTORY

JAK PŘIDAT UŽIVATELE PRO ADMINISTRÁTORY JAK PŘIDAT UŽIVATELE PRO ADMINISTRÁTORY Po vytvoření nové společnosti je potřeba vytvořit nové uživatele. Tato volba je dostupná pouze pro administrátory uživatele TM s administrátorskými právy. Tento

Více

ŘEŠENÍ MULTIPLIKATIVNÍCH ROVNIC V KONEČNÉ ARITMETICKÉ STRUKTUŘE

ŘEŠENÍ MULTIPLIKATIVNÍCH ROVNIC V KONEČNÉ ARITMETICKÉ STRUKTUŘE ŘEŠENÍ MULTIPLIKATIVNÍCH ROVNIC V KONEČNÉ ARITMETICKÉ STRUKTUŘE Naďa Stehlíková 1, Univerzita Karlova v Praze, Pedagogická fakulta Úvod Příspěvek navazuje na článek Zúžená aritmetika most mezi elementární

Více

DUM téma: KALK Výrobek sestavy

DUM téma: KALK Výrobek sestavy DUM téma: KALK Výrobek sestavy ze sady: 2 tematický okruh sady: Příprava výroby a ruční programování CNC ze šablony: 6 Příprava a zadání projektu Určeno pro : 3 a 4 ročník vzdělávací obor: 23-41-M/01 Strojírenství

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

Postup práce s elektronickým podpisem

Postup práce s elektronickým podpisem Obsah 1. Obecné informace o elektronickém podpisu... 2 2. Co je třeba nastavit, abyste mohli používat elektronický podpis v MS2014+... 2 2.1. Microsoft Silverlight... 2 2.2. Zvýšení práv pro MS Silverlight...

Více

Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm).

Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm). SÉRIE 1 Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm). Mějme (uspořádanou) trojici čísel a, b, c. Po jednom kroku se trojice

Více

Všechny možné dvojice ze čtyř možností, nezáleží na uspořádání m (všechny výsledky jsou rovnocenné), 6 prvků. m - 5 prvků

Všechny možné dvojice ze čtyř možností, nezáleží na uspořádání m (všechny výsledky jsou rovnocenné), 6 prvků. m - 5 prvků 9.2.2 Pravděpodobnost Předpoklady: 9201 Pedagogická poznámka: První příklad je opakovací, nemá cenu se s ním zabývat více než pět minut. Př. 1: Osudí obsahuje čtyři barevné koule: bílou, fialovou, zelenou,

Více

INFORMACE K POKUSNÉMU OVĚŘOVÁNÍ ORGANIZACE PŘIJÍMACÍHO ŘÍZENÍ SŠ S VYUŽITÍM JEDNOTNÝCH TESTŮ

INFORMACE K POKUSNÉMU OVĚŘOVÁNÍ ORGANIZACE PŘIJÍMACÍHO ŘÍZENÍ SŠ S VYUŽITÍM JEDNOTNÝCH TESTŮ INFORMACE K POKUSNÉMU OVĚŘOVÁNÍ ORGANIZACE PŘIJÍMACÍHO ŘÍZENÍ SŠ S VYUŽITÍM JEDNOTNÝCH TESTŮ INFORMACE PRO UCHAZEČE O PŘIJETÍ KE STUDIU ZÁKLADNÍ INFORMACE KE KONÁNÍ JEDNOTNÝCH TESTŮ Český jazyk a literatura

Více

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 1. Ověření stability tranzistoru Při návrhu úzkopásmového zesilovače s tranzistorem je potřeba

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Matematická analýza III.

Matematická analýza III. 4. Extrémy funkcí více proměnných Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Tato kapitola nás seznámí s metodami určování lokálních extrémů funkcí více proměnných a ukáže využití těchto metod v praxi.

Více

NEKONEČNÉ GEOMETRICKÉ ŘADY

NEKONEČNÉ GEOMETRICKÉ ŘADY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol NEKONEČNÉ GEOMETRICKÉ

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Orientovaná úseka. Vektory. Souadnice vektor

Orientovaná úseka. Vektory. Souadnice vektor Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51

Více