M - Matematika - třída 2SAB - celý ročník

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Matematika - třída 2SAB - celý ročník"

Transkript

1 M - Matematika - třída 2SAB - celý ročník Kompletní učebnice obsahující veškeré učivo 2. ročníku. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Stereometrie - Vzájemná poloha Stereometrie Stereometrie je prostorová geometrie; zabývá se prostorovými útvary - tělesy. Vzájemná poloha přímek v prostoru Přímky v prostoru mohou být: rovnoběžné rovnoběžné různé (nemají žádný společný bod) rovnoběžné splývající (mají nekonečně mnoho společných bodů) různoběžné (mají právě jeden společný bod); zvláštním případem různoběžných přímek jsou přímky, které jsou na sebe kolmé. mimoběžné (nemají žádný společný bod, ale nejsou rovnoběžné) Vzájemná poloha rovin v prostoru Roviny v prostoru mohou být: rovnoběžné rovnoběžné různé (nemají žádný společný bod a vzdálenost obou rovin v kterémkoliv místě je vždy stejná) rovnoběžné splývající (mají nekonečně mnoho společných bodů a kterákoliv z obou rovin je vždy podmnožinou roviny druhé) různoběžné (mají nekonečně mnoho společných bodů, které vytvářejí přímku, zvanou průsečnice rovin); zvláštním případem různoběžných rovin jsou dvě roviny, které jsou na sebe kolmé. ± Stereometrie - krychle, kvádr, hranol Krychle Krychle je prostorové těleso, které je tvořeno osmi vrcholy, šesti stěnami a dvanácti hranami. Důležité vzorce: S = 6.a 2... S je povrch krychle, a je hrana krychle V = a 3... V je objem krychle, a je hrana krychle u s = a.ö2... u s je stěnová úhlopříčka, a je hrana krychle u t = a.ö3... u t je tělesová úhlopříčka, a je hrana krychle Kvádr Kvádr je těleso, které je tvořeno osmi vrcholy, šesti stěnami, z nichž každé dvě protější jsou shodné a dvanácti hranami, z nichž zpravidla čtyři jsou vždy shodné. Důležité vzorce: 1 z 63

3 Použité veličiny: a, b, c... délky hran kvádru S... povrch tělesa V... objem tělesa u s... stěnová úhlopříčka u t... tělesová úhlopříčka Zkratka CZ značí tzv. cyklickou záměnu, což představuje záměnu hran v odpovídajícím pořadí. S = 2.(ab + ac + bc) V = a.b.c u s = Ö(a 2 +b 2 )... CZ u t = Ö(a 2 +b 2 +c 2 ) Pozn.: Zvláštním případem je kvádr se čtvercovou podstavou Pokud budeme uvažovat a = b, pak vzorce budou v následující podobě: S = 2a 2 + 4ac V = a 2.c u s = a.ö2 (pro podstavu) nebo u s = Ö(a 2 +c 2 ) (pro boční stěnu) u t = Ö(2a 2 +c 2 ) Hranol Hranol je prostorové těleso, které je tvořeno dvěma shodnými podstavami, které mohou mít tvar libovolného n-úhelníku, a pláštěm, který tvoří n obecně různých obdélníků. Pozn.: Pokud n-úhelník tvořící podstavu má všechny strany stejně dlouhé, pak nazýváme hranol pravidelný. V tomto případě plášť tvoří shodné obdélníky. Pozn.: Pokud má hranol kteroukoliv boční hranu kolmou k rovině podstavy, nazýváme ho hranol kolmý. Budeme se zabývat v dalších výpočtech pouze komými hranoly. Důležité vzorce: S = 2.S p + S Q V = S P. v... S P je obsah podstavy, S Q je obsah pláště... S P je obsah podstavy, v je výška tělesa Uvedené vzorce musíme vždy konkretizovat pro konkrétní zadané těleso. ± Kvádr, krychle, hranol - ukázkové příklady 2 z 63

4 1. V akváriu tvaru kvádru o rozměrech dna 25 cm a 30 cm je 13,5 litru vody. Vypočtěte, do jaké výšky voda sahá. Návod: Řešení: a = 25 cm = 2,5 dm b = 30 cm = 3,0 dm V = 13,5 l = 13,5 dm 3 c =? V = a.b.c 453 V c = a. b c = 1,8 dm = 18 cm c = 13,5 2,5.3,0 Voda v akváriu sahá do výšky 18 cm. 2. Je dána krychle o hraně 5,4 cm. Vypočtěte její tělesovou úhlopříčku. Návod: Řešení: a = 5,4 cm u t =? u t = a.ö3 u t = 5,4.Ö3 u t = 9,4 cm (přibližně) Tělesová úhlopříčka krychle má délku asi 9,4 cm. 3. Trojboký hranol má podstavu tvaru pravoúhlého trojúhelníku, jehož odvěsny mají délky 3 cm a 4 cm. Výška hranolu je 0,25 m. Vypočtěte jeho objem. Návod: Řešení: a = 3 cm b = 4 cm v = 0,25 m = 25 cm V =? V = S p.v a. b V =. v 2 V = 150 cm 3 Objem hranolu je 150 cm 3. ± Kvádr, krychle, hranol - procvičovací příklady 3 z 63

5 1. Hranol s kosočtvercovou podstavou má jednu úhlopříčku podstavy 20 cm a hranu podstavy 26 cm. Hrana podstavy je k výšce hranolu v poměru 2:3. Vypočítejte objem a povrch hranolu. Objem cm 3 ; povrch cm Silniční násep má průřez tvaru rovnoramenného lichoběžníka o základně 16 m a 10 m, ramena délky 5 m. Kolik tun zeminy o hustotě kg/m 3 je v náspu o délce 1 km? t 3. Hranol má podstavu tvaru pravoúhlého trojúhelníka. Přepona tohoto trojúhelníka měří 15 cm, jedna odvěsna 12 cm. Objem hranolu je 1,512 dm 3. Vypočítejte výšku hranolu a jeho povrch. Výška 28 cm, povrch cm 2 4. Objem trojbokého kolmého hranolu je cm 3. Jeho podstavou je rovnoramenný trojúhelník, který má rameno délky 13 cm a výšku na základnu 5 cm. Vypočtěte tělesovou výšku hranolu. 20,8 cm 5. Kolikrát se zvětší objem krychle s hranou 2 dm, jestliže bude hrana 3-krát větší? 27 krát 6. Těleso tvaru kvádru s podstavou obdélníka (24 cm, 12 cm) bylo naplněno vodou do výšky 20 cm. Vypočítejte objem tělesa ponořeného do vody, jestliže voda stoupne o 3 cm. 864 cm Nádoba tvaru kvádru se čtvercovou podstavou a výškou 56 cm byla naplněna po okraj vodou. Do nádoby bylo ponořeno těleso a přitom z nádoby vyteklo 7,5 litru vody. Po vyjmutí tělesa z nádoby poklesla hladina vody v nádobě o 12 cm. Vypočtěte, kolik litrů vody zbylo v nádobě. 27,5 l 8. Kvádr má rozměry a = 3 cm, b = 6 cm, c = 8 cm. Vypočtěte velikost největší stěnové úhlopříčky. 10 cm 9. Jaký objem má prostor pod střechou domu 150 dm dlouhého a 8 m širokého, je-li výška trojúhelníkového štítu v = 350 cm? 210 m Rozměry kvádru jsou v poměru 2:3:6. Jeho tělesová úhlopříčka má délku 14 cm. Určete jeho povrch a objem. 288 cm z 63

6 11. Na obdélníkové zahradě o rozměrech 30 m a 16 m napršely 4 mm vody. Kolika desetilitrovým konvím toto množství odpovídá? Bazén má tvar kvádru, jeho dno je čtvercové. Délka strany čtverce je 25 m. V bazénu je litrů vody. Do jaké výšky sahá voda? 1,5 m 13. Povrch kvádru je cm 2. Šířka kvádru je o 20% menší než jeho délka, výška kvádru je o 50% větší než jeho délka. Vypočtěte rozměry kvádru a objem kvádru cm Z dřevěné válcové klády poloměru 15 cm a délky 5 m o hustotě 750 kg/m 3 byl otesán trám o tloušťce 18 cm s největším možným obdélníkovým průřezem. Vypočítejte hmotnost trámu a počet % odpadlého materiálu. 162 kg, 39 % 15. Kolik tun slámy lze v prostoru pod střechou domu 150 dm dlouhého a 8 m širokého, kde výška trojúhelníkového štítu je 350 cm, uskladnit, je-li hmotnost 1 m 3 lisované slámy 100 kg a prostor je možno zaplnit pouze na 75%? 15,75 t 16. Podstava kolmého trojbokého hranolu je pravoúhlý trojúhelník s odvěsnou6 cm. Obsah největší stěny pláště je 120 cm 2 a výška hranolu je 12 cm. Vypočítejte objem tělesa. 288 cm Hranol s kosočtverečnou podstavou má jednu úhlopříčku podstavy 20 cm a hranu podstavy 26 cm. Hrana podstavy je k výšce hranolu v poměru 2:3. Vypočítejte objem hranolu cm Trojboký hranol má podstavu tvaru pravoúhlého trojúhelníku, jehož odvěsny mají délky 3 cm a 4 cm. Výška hranolu je 0,25 m. Vypočítejte jeho povrch. 312 cm Určete objem a povrch sloupu, který má podstavu tvaru kosočtverce s úhlopříčkami 60 cm a 144 cm. Výška sloupu je 2,5 m. Objem 1,08 m 3 ; povrch 8,7 m Nádrž má obdélníkové dno. Délka strany a = 30 dm a úhlopříčky u = 5 m. Za jak dlouho se naplní do výšky 200 cm, je-li přítok 2 l za sekundu? Čas vyjádřete v hodinách a minutách. 3 h 20 min z 63

7 ± Stereometrie - válec Válec Válec je prostorové těleso, které je tvořeno dvěma shodnými kruhovými podstavami a pláštěm. Důležité vzorce: S = 2p.r 2 + 2p.r.v S = p d 2 /2+ p.d.v V = p.r 2.v V = p.d 2 /4.v S... povrch tělesa; r... poloměr podstavy, v... výška tělesa d... průměr podstavy V... objem tělesa Pozn.: Budeme se zabývat pouze tzv. rotačním válcem, což je takový válec, který může rotovat kolem své osy, která prochází středy obou podstav. Síť válce tvoří obdélník (rozvinutý plášť) a dva kruhy. ± Válec - ukázkové příklady 1. Vypočtěte obsah podstavy válce o objemu 62,8 l a výšce 0,5 m. Návod: Řešení: V = 62,8 l = 62,8 dm 3 v = 0,5 m = 5 dm S p =? V = S p. v S p = V / v S p = 62,8 / 5 S p = 12,56 dm 2 Obsah podstavy válce je 12,56 dm 2. 6 z 63

8 2. Na nátěr otevřeného sudu o průměru 60 cm a výšce 85 cm bylo spotřebováno 0,72 l barvy. Kolik barvy je potřeba na 1 m 2, jestliže se sud natíral zvenku i zevnitř? Návod: Řešení: d = 60 cm = 6 dm v = 85 cm = 8,5 dm V 0 = 0,72 l = 0,72 dm 3 V =? Počítáme povrch válce bez jedné podstavy a výsledek musíme vzít dvakrát (dva nátěry): S = pd 2 /2 + 2p.d.v S = 3, / ,14.6.8,5 = 376,8 S = 376,8 dm 2 = 3,77 m 2 (přibližně) V = V 0/S V = 0,72 / 3,77 V = 0,191 l (přibližně) Na nátěr jednoho metru čtverečného sudu se spotřebuje přibližně 0,191 l barvy. ± Válec - procvičovací příklady 1. Nádoba tvaru válce má průměr podstavy 0,8 m a obsah podstavy je roven obsahu pláště. Do jaké výše naplníme nádobu vodou, chceme-li ji zaplnit ze 30%? Nádobu naplníme do výše asi 0,6 dm. 2. Kolik litrů vody za sekundu může maximálně odvádět koryto, které má průřez půlkruh o poloměru 0,5 m, je-li rychlost proudu 80 cm za sekundu? Koryto může odvádět maximálně 314 litrů vody za sekundu. 3. Vypočtěte výšku válce o objemu 62,8 litru, je-li obsah podstavy 12,56 dm 2. Výška válce je 5 dm. 4. Kolik kilogramových plechovek ekologické barvy je třeba koupit k nátěru padesáti dvousetlitrových otevřených sudů na vodu, jejichž průměr je 60 cm? Výrobce udává, že 1 kg barvy vystačí na plochu o obsahu 5 m 2. Je zapotřebí 33 plechovek. 5. Kanystr tvaru pravidelného čtyřbokého hranolu o délce podstavné hrany 25 cm a výšce 40 cm je plný vody. Vodu jsme přelili do válce o stejné výšce. Jaký průměr má válec, jestliže je také plný? Válec má průměr 28,2 cm z 63

9 6. V nádrži tvaru válce o poloměru 3 m je 942 hl vody. Voda sahá do dvou třetin hloubky nádrže. Jaký je objem celé nádrže? hl 7. V nádrži tvaru válce o průměru 6 m je 942 hl vody. Voda sahá do dvou třetin hloubky nádrže. Jaká je hloubka nádrže? Hloubka nádrže je 5 m. 8. Při nátěru otevřeného sudu zvenku i zevnitř se spotřebuje 0,191 litru barvy na 1 m 2. Sud má poloměr 30 cm a výšku 85 cm. Kolik barvy se na nátěr sudu spotřebuje? Na nátěr sudu se spotřebuje 0,72 litru barvy. 9. Kanystr tvaru válce s průměrem 28,22 cm a výškou 40 cm je plný vody. Vodu jsme přelili do jiného kanystru tvaru kvádru se čtvercovou podstavou a výškou jako má válec. Jaký je obsah podstavy kvádru, je-li po přelití vody také plný? Obsah podstavy kvádru je 625 cm Nádoba tvaru válce má průměr podstavy 0,8 m a obsah podstavy je roven obsahu pláště. Kolik celých litrů vody můžeme nejvýše nalít do nádoby? Do nádoby můžeme nalít maximálně 100 litrů vody ± Stereometrie - jehlan Jehlan Jehlan je prostorové těleso, které je tvořeno podstavou tvaru libovolného n-úhelníka a dále navíc jedním vrcholem, který nazýváme hlavní. U jehlanu, podobně jako u dalších prostorových těles, počítáme povrch a objem. V = S p.v/3 S = S p + S Q Podstava je tvořena n-úhelníkem, plášť několika trojúhelníky, které mohou být i shodné. Shodné jsou 8 z 63

10 tehdy, jestliže podstava je tvořena pravidelným n-úhelníkem. V tomto případě pak jehlan nazýváme pravidelný. Pozn.: Budeme se zabývat pouze tzv. kolmými jehlany, což jsou takové, které mají výšku kolmou k podstavě. Jehlan, který má za podstavu trojúhelník, nazýváme čtyřstěn. Význam má hlavně pravidelný čtyřstěn, který má podstavu i všechny stěny pláště shodné. ± Jehlan - ukázkové příklady 1. Objem pravidelného čtyřbokého jehlanu je 72,0 cm 3. Výška jehlanu se rovná délce podstavné hrany. Vypočítejte délku podstavné hrany a povrch jehlanu. Návod: Řešení: V = 72,0 cm 3 v = a =? S =? V = S p.v/3 V = a 3 /3 483 Po dosazení: a = 6 cm Stěnová výška v a: Po dosazení: v a = 6,71 cm (přibližně) Obsah jedné stěny: S 1 = a.v a/2 Obsah pláště: S Q = 4.S 1 = 2.a.v a Povrch jehlanu: S = S P + S Q = a a.v a Po dosazení: S = ,71 S = 116,5 cm 2 (přibližně) Hrana jehlanu má délku 6 cm a povrch tělesa je 116,5 cm 2. 9 z 63

11 2. Kolik korun bude stát natření střechy věžičky tvaru pravidelného čtyřbokého jehlanu o hraně podstavy 8,4 m a výšce tělesa 6,5 m, stojí-li 1 kg barvy 63 Kč a z jednoho kilogramu natřeme 12 m 2. Zaokrouhlete na stovky. Návod: Řešení: a = 8,4 m v = 6,5 m m 0 = 1 kg c 0 = 63 Kč S 0 = 12 m 2 c =? Je zapotřebí spočítat obsah pláště, proto musíme nejprve spočítat stěnovou výšku po dosazení dostáváme v a = 7,74 m (přibližně) S = 4. a.v a/2 = 2a.v a S = 2. 8,4.7,74 S = 130 m 2 (přibližně) c = S/S 0.c 0 c = 130/12.63 c = 682,5 Kč, což je přibližně 700 Kč Natření stříšky bude stát přibližně 700 Kč. ± Jehlan - procvičovací příklady 1. Vypočtěte objem pravidelného osmibokého jehlanu, jestliže hrana podstavy má délku 3 cm a výška tělesa je 9 cm. Objem pravidelného osmibokého jehlanu je asi 130,3 cm Vypočti povrch pravidelného čtyřbokého jehlanu, má-li hranu podstavy 4 cm a pobočnou hranu dlouhou 15 cm. Povrch pravidelného čtyřbokého jehlanu je asi 135 cm ± Stereometrie - kužel Kužel je prostorové těleso, které je tvořeno jednou podstavou a pláštěm. Podstava má tvar kruhu, plášť, kdybychom ho rozvinuli do roviny, bude mít tvar kruhové výseče. 10 z 63

12 r... poloměr podstavy v... výška kužele V... hlavní vrchol s... strana kužele Vzhledem k tomu, že výše zobrazený kužel může rotovat kolem své výšky, nazýváme tento typ kužele rotační kužel. Budeme se zabývat právě takovými kuželi. U kužele počítáme, podobně jako u dalších těles, povrch a objem. Pozn.: Někdy se také kužel definuje jako těleso, které vznikne rotací pravoúhlého trojúhelníka kolem jedné z jeho odvěsen. Důležité vzorce: V = p. r. v V = p. d. v S. r 2 S = 1 p. d. d. s = p + p. r. s 2 + p 4 2 S... povrch tělesa V... objem tělesa d... průměr podstavy ± Kužel - ukázkové příklady 11 z 63

13 1. Plechová stříška tvaru kužele má průměr podstavy 80 cm a výšku 60 cm. Vypočtěte spotřebu barvy na natření této stříšky, spotřebuje-li se 1 kg barvy na 6 m 2 plechu. Návod: Řešení: d = 80 cm v = 60 cm m 0 = 1 kg S 0 = 6 m 2 m =? [kg] Natíráme pouze plášť kužele, proto S = p d.s/2 (1) Neznáme s, proto ho spočítáme pomocí Pythagorovy věty: s s = = v 2 æ + ç è d 2 ö ø æ ö 60 + ø ç è 80 2 s = 72,11 (po zaokrouhlení) Dosadíme do (1): S = 3, ,11/2 S = 9057 cm 2 = 0,91 m 2 (po zaokrouhlení) kg... 6 m 2 m [kg]... 0,91 m Jedná se o přímou úměrnost, proto m = 1. 0,91/6 m = 0,152 kg (o zaokrouhlení) Na natření stříšky je zapotřebí asi 0,152 kg barvy. 12 z 63

14 2. Jak velký objem by měl kužel, který by vznikl rotací rovnoramenného trojúhelníku s úhlem při základně 25 a ramenem délky 0,75 m? Návod: Řešení: 500 Obrázek je jen ilustrační Výška tělesa je tedy zároveň výškou trojúhelníka. a = 25 s = 0,75 m V =? [m 3 ] sin a = v/s v = s. sin a v = 0,75. sin 25 v = 0,75. 0,4226 v = 0, m = 0,32 m (po zaokrouhlení) cos a = r/s r = s. cos a r = 0,75. cos 25 r = 0,75. 0,9063 r = 0, m = 0,68 (po zaokrouhlení) V = p r 2 v/3 V = 3,14.0,68 2.0,32/3 V = 0,155 m 3 (po zaokrouhlení) V = 155 dm 3 Objem kužele je 155 dm Objem kužele je 12 cm 3, jeho výška je 4 cm. Jaký je obsah podstavy kužele? Návod: Řešení: V = 12 cm 3 v = 4 cm S p =? [cm 2 ] V = Sp. v 3 S p=3v/v S p = 3.12/4 S p= 9 cm 2 Obsah podstavy kužele je 9 cm z 63

15 ± Kužel - procvičovací příklady 1. Rotační kužel má obsah podstavy 28,26 cm 2 a objem celého tělesa je 131,88 cm 3. Určete jeho výšku. Výška kužele je 14 cm. 2. Vypočti objem kužele, který má průměr podstavy roven výšce tělesa. Poloměr podstavy kužele je 7 cm. Objem kužele je 718 cm V závodě na výrobu nápojového skla vyrábějí dva typy skleniček ve tvaru kužele. První typ o průměru 9 cm s výškou 6,5 cm a druhý typ o průměru 6 cm s výškou 14,5 cm. Která sklenička má větší objem? Vejdou se do některé z nich 2 dl nápoje? Větší objem má sklenička 1. typu; 2 dl nápoje se ale nevejdou do žádné skleničky. 4. Nádoba tvaru kužele s průměrem dna 60 cm a stranou délky 50 cm je zcela naplněna vodou. Vodu přelijeme do nádoby, která má tvar válce o poloměru dna 30 cm a výšce 20 cm. Kolik litrů vody je třeba do nádoby tvaru válce dolít, aby byla zcela naplněna? Do nádoby musíme dolít asi 18,8 litru vody. 5. Vypočti objem kužele o poloměru podstavy 35 cm, je-li výška tělesa rovna 19 cm. Objem kužele je cm Vypočti povrch kužele, je-li jeho výška 15 cm a strana 17 cm. Povrch kužele je 628 cm Vypočti objem kužele s průměrem podstavy 32 cm a výškou tělesa 0,5 m. Objem kužele je cm Vypočti povrch kužele, který má výšku 16 cm a poloměr podstavy 0,3 m. Povrch kužele je cm Vypočti povrch kužele, jehož strana je 10 cm a průměr podstavy je 10 cm. Povrch kužele je 235,5 cm Nádobka tvaru kužele o poloměru podstavy 20 cm a výšce 36 cm byla zcela naplněna vodou. Voda byla přelita do nádoby tvaru válce o poloměru podstavy 12 cm. Jak vysoko byla voda v nádobě tvaru válce? Voda v nádobě tvaru válce sahala do výšky asi 33,3 cm. 11. Kolik metrů krychlových je uloženo na hromadě tvaru kužele, je-li výška hromady 2,6 m a největší šířka hromady 7 m? Na hromadě je uloženo asi 33,3 m 3 písku z 63

16 12. Kužel má objem cm 3 a výšku 17 cm. Vypočti poloměr podstavy tohoto kužele. 506 Poloměr podstavy kužele je 9 cm. 13. Kužel má objem 83,7 cm 3 a průměr podstavy 8 cm. Vypočti výšku tělesa. 507 Výška kužele je 5 cm. 14. Nálevka na 1 litr má tvar kužele s poloměrem podstavy 10 cm. Jaká je výška nálevky? 502 Výška nálevky je asi 9,6 cm. ± Stereometrie - koule Koule je prostorové těleso. Jedná se o těleso, které je tvořeno body, jež mají od jediného pevně zvoleného bodu vzdálenost menší nebo rovnu poloměru. U koule počítáme opět povrch nebo objem. r... poloměr koule d... průměr koule Povrch koule: S = 4p.r 2 S = p.d 2 Objem koule: V = 4. p. r 3 3 V = 1. p. d 6 3 ± Koule - ukázkové příklady 1. Kolik metrů čtverečních materiálu bylo potřeba na zhotovení balonu pro vzduchoplavce, jestliže měl poloměr 2,5 m? Návod: 617 Řešení: r = 2,5 m S =? [m 2 ] S = 4.p.r 2 = 4. 3,14. 2,5 2 S = 78,5 m 2 Na zhotovení balonu bylo zapotřebí 78,5 m 2 materiálu. 15 z 63

17 2. Vypočti objem koule o průměru 75 cm. Návod: Řešení: d = 75 cm V =? [cm 3 ] V =. p. d =.3, V = ,25 cm 3 = 0,22 m 3 (po zaokrouhlení) Objem koule je asi 0,22 m ± Koule - procvičovací příklady 1. Jaký průměr má kovová kulička, jestliže po vhození do válcové nádoby o průměru 3 cm naplněné vodou hladina stoupne o 1 mm? Kovová kulička má průměr asi 11 mm Kolik litrů vody se vejde do akvária tvaru koule, mají-li být vodou zaplněny čtyři pětiny objemu celé koule o průměru 0,5 m? Do akvária se vejde asi 52,3 litru vody Vypočti poloměr koule, jejíž objem je 1 litr. Koule má poloměr asi 6,2 cm Jaký poloměr musí mít pouzdro tvaru koule, aby se do něho vešla krychle o hraně 10 cm a byla pevně uložena? Pouzdro musí mít poloměr asi 17,4 cm Na nafukovací plážový míč se spotřebovalo 1,2 m 2 materiálu, ze kterého 30 % činil odpad. Jak velký průměr má míč? Míč má průměr asi 0,52 m Vypočti objem koule o poloměru 0,4 m. Objem koule je 268 dm Vypočti povrch koule o průměru 45 cm. Povrch koule je asi 63,6 dm Kolik olověných kuliček o průměru 18 mm se odlije z 1 kg materiálu o hustotě kg/m 3? Z uvedeného materiálu odlijeme asi 31 kuliček Vypočti povrch koule o poloměru 2 m. Povrch koule je asi 50,2 m z 63

18 10. Vypočti objem koule, je-li její povrch 450 cm Objem koule je asi 898 cm Vypočti objem koule o poloměru 52 cm. 603 Objem koule je 589 dm Vypočti povrch koule o poloměru 0,7 m. 605 Povrch koule je asi 6,2 m Vypočti povrch koule, která má objem 874 cm Povrch koule je asi 442 cm 2. ± Lineární funkce Lineární funkce je funkce, která je dána rovnicí y = ax + b, kde a, b jsou reálná čísla. Grafem lineární funkce je přímka (nebo její část). Definičním oborem každé lineární funkce jsou všechna reálná čísla. Oborem hodnot každé lineární funkce jsou všechna reálná čísla. Průsečíky grafu lineární funkce s osami: 1. s osou x: - v tomto případě je druhá souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za y = 0 a vypočteme první souřadnici průsečíku s osou x. Příklad: Určete průsečík funkce y = 2x - 1 s osou x. Řešení: Hledaný bod X[x; y] Dosadíme za y = 0, proto 0 = 2x - 1 Vyřešíme vzniklou rovnici a dostáváme x = 0,5 Závěr: Hledaný průsečík je X[0.5; 0]. 17 z 63

19 2. s osou y: - v tomto případě je první souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za x = 0 a vypočteme druhou souřadnici průsečíků s osou y. Příklad: Určete průsečík funkce y = 2x - 1 s osou y. Řešení: Hledaný bod Y[x;y] Dosadíme za x = 0, proto y = Vyřešíme vzniklou rovnici a dostáváme y = -1 Závěr: Hledaný průsečík je Y[0; -1]. Zvláštní případy lineární funkce: 1. Je-li v rovnici lineární funkce číslo a = 0, pak y = 0. x + b, neboli y = b - jedná se o tzv. konstantní funkci - grafem je přímka, která je rovnoběžná s osou x 2. Je-li v rovnici lineární funkce číslo b = 0, pak y = ax + 0, neboli y = ax - jedná se o přímou úměrnost - grafem je přímka (nebo její část), která vždy prochází počátkem souřadného systému Vlastnosti lineární funkce: 1. Lineární funkce je rostoucí, je-li a > Lineární funkce je klesající, je-li a < 0. Číslo a se také někdy nazývá směrnice přímky. Pozn.: Je-li a = 0, je funkce konstantní, tedy nerostoucí i neklesající. Určení rovnice lineární funkce ze zadaných bodů 18 z 63

20 Vzhledem k tomu, že víme, že grafem lineární funkce je přímka, a přímka je vždy jednoznačně určena dvěma body, stačí nám pro zadání lineární funkce její dva body. Jedním z těchto bodů může být klidně některý z průsečíků s osami, případně i počátek souřadného systému. Příklad: Určete rovnici lineární funkce, jejíž graf prochází body A[2; 3], B[-1; 2] Řešení: Obecná rovnice je y = ax + b. Dosadíme do ní postupně souřadnice obou bodů: 3 = 2a + b 2 = -a + b Dostali jsme soustavu rovnic, kterou vyřešíme sčítací nebo dosazovací metodou. Já použiji např. sčítací: První rovnici opíšu, druhou vynásobím dvěma: 3 = 2a + b 4 = -2a + 2b Obě rovnice sečtu: 7 = 3b b = 7/3 Vrátím se k původním rovnicím a tentokráte opět první rovnici opíšu a druhou vynásobím (-1): 3 = 2a + b -2 = a - b Opět obě rovnice sečtu: 1 = 3a a = 1/3 Dosadíme zpět do původní obecné rovnice lineární funkce a dostaneme: y 1 7 = x Tím jsme stanovili rovnici lineární funkce, která oběma body prochází. Grafické řešení soustavy lineárních rovnic Obě rovnice převedeme do tvaru y = ax + b a sestrojíme grafy obou nově vzniklých funkcí. Souřadnice průsečíku těchto funkcí představují řešení původní soustavy lineárních rovnic. ± Lineární funkce - procvičovací příklady 19 z 63

21 z 63

22 z 63

23 z 63

24 z 63

25 ± Vyjádření neznámé ze vzorce Při vyjadřování neznámé ze vzorce postupujeme obdobně, jako kdybychom řešili rovnici, s tím, že za neznámou považujeme veličinu, kterou potřebujeme vyjádřit. Základní pravidla: 1. Pokud některý člen převádíme z jedné strany "rovnice" na druhou, měníme u tohoto členu znaménko Příklad: Vyjadřujeme veličinu a ze zápisu 2a + 3b = 4mn, dostáváme 2a = 4mn - 3b 2. Pokud osamostatňujeme proměnnou, která je vázána v součinu, dělíme celou "rovnici" všemi činiteli, které se kromě osamostatňované proměnné v součinu vyskytují Příklad: Vyjadřujeme veličinu a ze zápisu 4abc 2 = 4mn, dostáváme a = (4mn) : (4bc 2 ) 3. Je-li proměnná, kterou chceme osamostatnit, zapsána ve druhé (resp. ve třetí mocnině), provedeme odmocnění (resp. třetí odmocnění) celé "rovnice". Příklad: Vyjadřujeme veličinu a ze zápisu a 2 = 4mn, dostáváme a = Ö(4mn) ± Vyjádření neznámé ze vzorce - procvičovací příklady 1. Ze vzorce pro výpočet povrchu rotačního kužele S = p. r. (r + s) vyjádřete stranu kužele s: S s = - r p. r 2. Pro efektivní proud platí vzorec I = I m. 2/2. Vyjádřete z něj amplitudu I m: I m = I Pro výpočet transformátoru platí vzorec N 2/N 1 = U 2/U 1. Vyjádřete sekundární napětí U 2: U 2 = (N 2. U 1)/N z 63

26 Elektrická práce se vypočítá podle vzorce W = R. I 2. t. Vyjádřete veličinu I: I = W Rt Pro výpočet tepla platí vzorec Q = m. c. (t 2 - t 1). Vyjádřete teplotu t 2: t 2 = Q/(c. m) + t Ze vzorce pro výpočet objemu pravidelného čtyřbokého jehlanu V = (1/3). a 2. v vyjádřete velikost a: a = 3V v Pro výsledný odpor paralelně zapojených rezistorů platí vzorec: 1/R = 1/R 1 + 1/R 2. Vyjádřete veličinu R: R R2 R =. 1 R + R Ze vzorce S = 2. p. r. (r + v) pro výpočet povrchu rotačního válce vyjádřete veličinu v: 2 v = S - 2. p. r 2. p. r 728 ± Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: 2x + 5 = 7x z 63

27 Písmeno zapsané v rovnici nazýváme neznámá. Pokud určíme hodnotu neznámé, získáváme tzv. řešení rovnice nebo též kořen rovnice. Rovnice můžeme mít s jednou neznámou, se dvěma neznámými, s parametrem, s absolutní hodnotou; rovnice mohou být lineární, kvadratické, kubické, exponenciální, logaritmické, apod. Zabývat se budeme i řešením soustav rovnic, což je zápis dvou nebo více rovnic, zpravidla o dvou nebo více neznámých, přičemž všechny rovnice platí současně. Ekvivalentní úpravy rovnic 1. ekvivalentní úprava K oběma stranám rovnice můžeme přičíst (resp. odečíst) stejné číslo. př.: 2x + 3 = 7-3x /+3x 5x + 3 = 7 Pozn.: V praxi se nejedná o nic jiného než o poznatek, který nám říká, že při převodu členu obsaženého v součtu nebo v rozdílu z jedné strany rovnice na druhou měníme u tohoto členu znaménko. 2. ekvivalentní úprava Obě strany rovnice můžeme vynásobit, případně vydělit stejným číslem různým od nuly. př.: 8x = 24 /:8 x = 3 Pozn.: Pokud se u rovnic vyskytuje neznámá ve jmenovateli, musíme před zahájením řešení stanovit podmínky řešitelnosti. Pozn.: Zatím se budeme zabývat tzv. lineárními rovnicemi, což jsou takové rovnice, u nichž se neznámá vyskytuje pouze v první mocnině. Pozn.: Pokud při řešení rovnice vyjde závěr, kterým je nepravdivá rovnost (nerovnost), pak daná rovnice nemá řešení. Pokud při řešení rovnice vyjde závěr, kterým je pravdivá rovnost, pak daná rovnice má nekonečně mnoho řešení; řešením jsou pak všechna reálná čísla, jedná-li se o rovnici bez neznámé ve jmenovateli anebo všechna reálná čísla s výjimkou těch, která odporují podmínce řešitelnosti, jedná-li se o rovnici s neznámou ve jmenovateli Řešení jednoduchých rovnic - ukázkové příklady Příklad 1: Řešení: Příklad 2: 26 z 63

28 Řešení: Příklad 3: Řešení: Příklad 4: Řešení: Příklad 5: x = 9/7 Řešení: 27 z 63

29 ± Lineární rovnice - procvičovací příklady , z 63

30 , , z 63

31 , ,1 30 z 63

32 , z 63

33 z 63

34 Všechna reálná čísla , , , z 63

35 , z 63

36 ± Soustavy rovnic Soustavy rovnic Soustava rovnic je zápis dvou nebo více rovnic, které musí platit současně. V soustavě rovnic se může vyskytovat různý počet neznámých. My se zaměříme na takové soustavy rovnic, kde počet neznámých odpovídá počtu rovnic v soustavě (tedy budeme řešit např. soustavu dvou rovnic o dvou neznámých nebo soustavu třech rovnic o třech neznámých, apod.) Soustavy rovnic můžeme řešit různými metodami - např.: metodou dosazovací metodou sčítací metodou, která kombinuje metodu sčítací a dosazovací metodou grafickou pomocí matic, resp. determinantů Zatím se omezíme na první dvě z uvedených metod. Řešení soustav rovnic metodou dosazovací Tento způsob řešení je založen na postupu, kdy z jedné rovnice vyjádříme jednu neznámou a tu pak dosadíme do zbývajících rovnic soustavy. Pokud byla zadána soustava dvou rovnic, pak už nyní řešíme jednu rovnici o jedné neznámé. Pokud původní soustava obsahovala tři nebo více rovnic, postup vyjádření neznámé opakujeme. Metoda dosazovací je vhodná tehdy, pokud u rovnic v základním tvaru (tj. u rovnic, které dostaneme po odstranění závorek a zlomků a následném sloučení členů) je alespoň u jedné neznámé v některé z rovnic koeficient 1 nebo (-1). Lze ji ale použít i jindy. Metota dosazovací se dále používá tehdy, je-li zadána soustava jedné lineární a jedné kvadratické rovnice. Takovými se ale budeme zabývat později. Metoda dosazovací se s úspěchem dá použít i při řešení soustav třech nebo více rovnic. Ukázkové příklady: Příklad 1: Řešte soustavu rovnic: x + y = 3 x - y = -1 x = 3 - y 35 z 63

37 (3 - y) - y = y - y = -1-2y = -4 y = 2 x = 3-2 x = 1 Výsledek zapíšeme: [x; y] = [1; 2] Zkouška: L 1 = = 3 P 1 = 3 L 2 = 1-2 = -1 P 2 = -1 L 1 = P 1 L 2 = P 2 Příklad 2: Řešte soustavu rovnic: 2. (x + y) - 5. (y - x) = (x + 2y) + 7. (3x + 5y) = 7 Řešení: 2. (x + y) - 5. (y - x) = (x + 2y) + 7. (3x + 5y) = 7 2x + 2y - 5y + 5x = 17 3x + 6y + 21x + 35y = 7 7x - 3y = 17 24x + 41y = y x = y y = y + 41y = y + 287y = y = -359 y = -1 x = 2 Výsledek zapíšeme [x; y] = [2; -1] Zkouška: L 1 = 2. [2 + (-1)] - 5. (-1-2) = 2-5. (-3) = 17 P 1 = 17 L 2 = 3. [2 + 2.(-1)] + 7. [ (-1)] = = 7 P 2 = 7 L 1 = P 1 L 2 = P 2 Příklad 3: Řešte soustavu rovnic 36 z 63

38 x - y = 1 3x - 3y = 3 x = 1 + y 3. (1 + y) - 3y = y - 3y = 3 0 = 0 Soustava má nekonečně mnoho řešení. Výsledek zapíšeme: [x; y] = [x; x - 1] (v tomto obecném zápisu výsledku první neznámou volíme libovolně a druhou neznámou vyjádříme ze kterékoliv zadané rovnice) Ověření správnosti řešení: Pro x = 1 dostáváme [1; 0] L 1 = 1-0 = 1 P 1 = 1 L 2 = = 3 P 2 = 3 L 1 = P 1 L 2 = P 2 Příklad 4: Řešte soustavu rovnic: 3x + y = 2 z + 1 3y + z = 2 x + 1 3x + z = 2 y Stanovíme podmínky řešitelnosti: z ¹ -1; x ¹ -1; y ¹ -1 3x + y = 2. (z + 1) 3y + z = 2. (x + 1) 3x + z = 2. (y + 1) 3x + y = 2z + 2 3y + z = 2x + 2 3x + z = 2y + 2 3x + y - 2z = 2-2x + 3y + z = 2 3x - 2y + z = 2 Z první rovnice vyjádříme neznámou y: y = -3x + 2z + 2 (1) Dosadíme do zbývajících dvou rovnic: 3. (-3x + 2z + 2) + z = 2. (x + 1) 3x + z = 2. (-3x + 2z ) -9x + 6z z = 2x + 2 3x + z = -6x + 4z x + 7z = -4 9x - 3z = 6 Druhou rovnici vykrátíme třemi, poté z ní vyjádříme neznámou z: z = 3x - 2 (2) Dosadíme do první rovnice: 37 z 63

39 -11x + 7. (3x - 2) = -4-11x + 21x - 14 = -4 10x = 10 x = 1 Dosadíme do rovnice (2): z = = 1 Dosadíme do rovnice (1): y = = 1 Výsledky neodporují podmínkám řešitelnosti. Zapíšeme výsledek: [x; y; z] = [1; 1; 1] Zkouška: L = = = P 1 = 2 L 1 = P 1 L = = = P 2 = 2 L 2 = P 2 L = = = P 3 = 2 L 3 = P Shrnutí postupu řešení soustavy rovnic dosazovací metodou: 1. Jsou-li ve jmenovateli neznámé, stanovíme podmínky řešitelnosti 2. Rovnice upravíme do "základního" tvaru, tj. do tvaru, kdy na levé straně rovnice máme sloučené neznámé (v pořadí podle abecedy) a na pravé straně máme číslo; používáme přitom běžného postupu řešení samostatných rovnic - tedy nejprve odstraňujeme závorky, pak zlomky, atd. 3. Z libovolné rovnice vyjádříme libovolnou neznámou (výhodné je volit tu, kde je koeficient 1). 4. Tuto vyjádřenou neznámou dosadíme do zbývající rovnice (příp. do zbývajících rovnic, je-li jich více). 5. Vyřešíme vzniklou rovnici o jedné neznámé běžným způsobem (platí tehdy, pokud byla zadána soustava dvou rovnic o dvou neznámých; pokud rovnic bylo více, vznikla nám nyní soustava více rovnic a musíme dále opakovat kroky 2) - 4) ). 6. Vypočtenou neznámou dosadíme do rovnice, kde jsme vyjádřili první neznámou (krok 3) ) a vyřešíme druhou neznámou. 7. Provedeme zkoušku, a to tak, že dosazujeme do každé strany každé rovnice. 8. Zapíšeme výsledek uspořádanou dvojicí. Řešení soustav rovnic metodou sčítací Sčítací metodu je výhodné použít tehdy, pokud je u všech neznámých v rovnicích upravených do "základního" tvaru koeficient jiný než číslo 1 nebo (-1). Lze ji s výhodou ale samozřejmě použít i v případě, že tam jednička je. Sčítací metodu používáme zpravidla u soustavy dvou rovnic o dvou neznámých. Je ji ale možno použít i pro více rovnic. Ukázkové příklady: Příklad 5: Řešte soustavu rovnic: 2. (x - 3y) = z 63

40 4x - y = -3 2x - 6y = 15 (1) 4x - y = -3 Rovnice upravíme tak, aby po jejich sečtení vypadla neznámá x. Znamená to, že první rovnici vynásobíme číslem (-2) a druhou necháme beze změn. Pozn.: Sečíst rovnice znamená sečíst jejich levé strany a jejich pravé strany. -4x + 12y = -30 4x - y = -3 Rovnice sečteme -4x + 4x + 12y - y = y = -33 y = -3 Vrátíme se k rovnicím v zápisu (1), tj. k rovnicím upraveným do "základního" tvaru. Nyní je upravíme tak, aby po jejich sečtení vypadla neznámá y. Stačí tedy první rovnici ponechat a druhou vynásobit číslem (-6): 2x - 6y = 15-24x + 6y = 18 Obě rovnice opět sečteme: 2x - 24x - 6y + 6y = x = 33 x = -1,5 Zapíšeme výsledek: [x; y] = [-1,5; -3] Zkouška se provádí stejným způsobem jako u dosazovací metody. Pozn.: Někdy se soustava rovnic také řeší tak, že jednu neznámou vyřešíme sčítací metodou a vzniklý kořen pak dosadíme do některé ze zadaných rovnic. Vyřešením rovnice o jedné neznámé pak získáme kořen druhý. V tomto případě ale už nelze hovořit o sčítací metodě. Pozn.: Pokud chceme řešit sčítací metodou soustavu více než dvou rovnic, pak postupujeme tak, že např. v soustavě třech rovnic, která je v "základním" tvaru, upravíme rovnice tak, aby po sečtení libovolných dvou rovnic vypadla jedna neznámá a při sečtení jiné libovolné dvojice vypadla tatáž neznámá. Tím získáme soustavu dvou rovnic o dvou neznámých, kterou pak řešíme podle postupu v příkladu 5. ± Soustavy rovnic - procvičovací příklady Řešením je uspořádaná dvojice [4; 2] Řešením je uspořádaná dvojice [4; -3] 39 z 63

41 Nekonečně mnoho řešení Řešením je uspořádaná dvojice [1; -1] Řešením je uspořádaná dvojice [1; -1] Řešením je uspořádaná dvojice [1; 2] Nemá řešení z 63

42 Řešení je uspořádaná dvojice [1; 3] Řešením je uspořádaná dvojice [3; 2] Nekonečně mnoho řešení Řešením je uspořádaná dvojice [7; 5] Řešením je uspořádaná dvojice [1; -1] Řešením je uspořádaná dvojice [8; 3] 41 z 63

43 Soustava nemá řešení Nemá řešení Řešením je uspořádaná dvojice [11; 6] Nekonečně mnoho řešení ± Slovní úlohy řešené rovnicí Slovní úlohy řešené rovnicí Do této skupisy slovních úloh patří jednak klasické slovní úlohy (např. typu "Ve skladu je ve třech policích... výrobků, v první polici jich je o 10 více než ve druhé a ve třetí o pět méně než v druhé. Kolik výrobků je v každé polici?"). Patří sem ale i slovní úlohy o pohybu ("Z místa A vyjelo auto rychlostí..., z místa B vyjelo auto v opačném směru rychlostí... atd.) nebo úlohy o společné práci ("První zedník by sám postavil zeď za 12 hodin, druhý zedník by ji sám postavil za 8 hodin. Jak dlouho budou stavět zeď oba současně?), ale i úlohy o směsích ("Kolika procentní vznikne roztok, smícháme-li 1 litr 8%-ního octa s 0,5 litrem vody?") Většinu úloh je vhodné řešit pomocí tabulky. Obecný postup řešení (platí pro většínu slovních úloh řešených rovnicí): 42 z 63

44 1. Do tabulky provedeme zápis. 2. Sestavíme rovnici. 3. Vyřešíme rovnici a provedem zkoušku (můžeme též provést zkoušku příkladu). 4. Zapíšemé závěr - odpověď. ± Slovní úlohy řešené rovnicí - procvičovací příklady 1. Ve městě jsou dvě školy, ve kterých je celkem žáků. V první škole je o 9 dívek více než chlapců, ve druhé škole je o 2 chlapce více než dívek. Kolik je v obou školách dohromady chlapců a kolik dívek? 575 chlapců, 582 dívek Písemná práce z matematiky dopadla takto: Polovina žáků vyřešila jen část úloh, všechny úlohy vyřešilo 8 žáků, čtvrtina žáků nevyřešila nic. Kolik žáků psalo písemnou práci? 32 žáků Prodavač prodal za tři dny celkem stíracích losů. Druhý den prodal o 90 losů méně než první den, třetí den prodal 1,5krát více losů než druhý den. Kolik losů prodal první den? 430 losů Denní produkce mléka 630 litrů byla slita do 22 konví, z nichž některé byly po 25 litrech a jiné po 35 litrech. Všechny konve byly plné. Kolik bylo jednotlivých konví? 14 konví po 25 litrech, 8 konví po 35 litrech Mezi tři soutěžící děti byly rozděleny body tak, že poslední získalo jednu šestinu všech bodů, předposlední získalo jednu třetinu všech bodů a první získalo 60 bodů. Kolik bodů se celkem rozdělilo a kolik dostalo druhé dítě? Celkem 120 bodů, druhé dítě 40 bodů Jedna čtvrtina délky pilíře je zaražena v zemi, dvě třetiny jeho délky jsou ve vodě a nad hladinu vyčnívá část dlouhá 1,20 m. Jak dlouhý je pilíř? 14,4 m Žák má ve stavebnici 15 volantů a 53 koleček. Ze všech volantů a koleček sestavuje tříkolky (1 volant a tři kolečka) a autíčka (1 volant a 4 kolečka). Kolik sestavil tříkolek a kolik autíček? 8 autíček, 7 tříkolek Otec chtěl původně rozdělit majetek svým dvěma synům v poměru 7:6. Pak ho však rozdělil v poměru 6:5 (ve stejném pořadí). Jeden ze dvou synů se rozzlobil, že měl původně dostat o 120 Kč víc. Kolik korun dostal každý syn? První syn dostal Kč, druhý syn dostal Kč Dvě dílny jednoho závodu vyrobí denně 26 součástek. Aby společně vyrobily 350 součástek, pracovala první dílna 14 dní a druhá o den méně. Kolik součástek vyrobí každá dílna denně? První dílna 12 součástek, druhá dílna 14 součástek z 63

45 10. Z kovové tyče byly zhotoveny tři součástky. Na první byla spotřebována polovina tyče, na druhou dvě třetiny zbytku a třetí měla hmotnost 3 kg. Jakou hmotnost měla celá tyč? 18 kg Během dne navštívilo výstavu 130 návštěvníků, kteří zaplatili vstupné v celkové částce 630 Kč. Kolik z nich bylo dospělých a kolik bylo dětí, jestliže vstupné pro dospělé bylo 6 Kč a vstupné pro děti bylo 3 Kč. Dospělých 80, dětí Orba skončí v plánovaném termínu, jestliže traktoristé zorají denně 150 ha pole. Díky dobré péči mechaniků pracovaly traktory bez poruchy a traktoristé zorali denně 200 hektarů pole a skončily orbu o dva dny dříve, než se plánovalo. Kolik hektarů pole zorali a za kolik dní? Za 6 dní ha pole Limonáda s kelímkem stála 5,80 Kč. Limonáda byla o 5 Kč dražší než kelímek. Kolik stál kelímek? 40 haléřů Slavného řeckého matematika Pythagora se ptali, kolik žáků navštěvuje jeho školu. Odpověděl: "Polovina žáků studuje matematiku, čtvrtina hudbu, semina mlčí a kromě toho jsou tam ještě tři ženy." Kolik žáků navštěvuje jeho školu? Jana a Eva četly stejnou knihu. Jana přečetla denně 14 stránek a dočetla knihu o den dříve než Eva, která přečetla denně 12 stránek. Kolik stran měla kniha? Přátelé jeli na výlet. Nejprve 15 % celkové trasy jeli vlakem, pak jednu dvacetinu cesty šli pěšky, dalších 6 km jeli lanovkou, poté dvě pětiny cesty urazili pěšky a nakonec 14 km jeli vlakem. Kolik kilometrů ujeli vlakem a kolik kilometrů ušli pěšky? Vlakem 21,5 km, pěšky 22,5 km Když byl cestující ve vlaku v polovině cesty, usnul. Po probuzení zjistil, že má jet ještě pětinu té cesty, kterou projel ve spánku. Jakou část cesty zaspal? Pět dvanáctin celé cesty V teplárně spotřebovali první den pětinu zásoby uhlí, druhý den spotřebovali třetinu zbytku. Třetí a čtvrtý den spotřebovali zbývajících tun uhlí. Jakou zásobu uhlí měla teplárna původně? tun Denní produkce mléka 620 litrů byla slita do 22 konví, z nichž některé byly po 25 litrech a jiné po 35 litrech. Všechny konve byly plné. Kolik bylo jednotlivých konví? 15 konví po 25 litrech, 7 konví po 35 litrech z 63

46 20. Do třídy chodí 27 žáků. V určitý den chybělo 6 chlapců a 1 dívka a počet chlapců a dívek byl v tento den stejný. Kolik chlapců a kolik dívek má třída celkem, jsou-li všichni žáci přítomni? 11 dívek, 16 chlapců Číslo 138 napište jako součet čtyř po sobě jdoucích celých čísel. 33, 34, 35, Na rekreační zájezd jelo 35 účastníků. Bylo zaplaceno celkem Kč. Zaměstnanci platili 165 Kč, rodinní příslušníci 310 Kč. Vypočítejte, kolik bylo zaměstnanců a kolik bylo rodinných příslušníků. 16 zaměstnanců, 19 rodinných příslušníků Dvě stě krabic pracích prášků bylo v obchodě narovnáno ve třech policích. V první bylo o 13 krabic více než ve druhé, ve druhé o jednu pětinu více než ve třetí polici. Kolik krabic bylo ve které polici? První police 79 krabic, druhá police 66 krabic, třetí police 55 krabic Zahradník koupil 80 květináčů za Kč. Menší byly po 32 Kč, větší po 40 Kč. Kolik bylo kterých? 46 květináčů po 32 Kč, 34 květináčů po 40 Kč Žáci 8. ročníku byli na třídenním výletu a ušli celkem 42 km. První den ušli dvakrát více než třetí den a druhý den o 4 km více než třetí den. Kolik kilometrů ušli každý den? První den 19 km, druhý den 13,5 km, třetí den 9,5 km Dvěma sourozencům je dohromady šest let. Jeden je o pět roků mladší než druhý. Určete věk obou sourozenců. Staršímu je 5,5 roku, mladšímu je 0,5 roku Turista utratil každý den polovinu částky, kterou vlastní, a ještě 10 Kč. Za tři dny utratil všechny své peníze. Kolik peněz měl turista původně? 140 Kč Anička jela na jarní prázdniny k babičce. Za cestu zaplatila 38 Kč, což byly dvě třetiny jejích úspor. Babičce koupila dárek za 35,50 Kč a sestřence koupila knížku za 16,70 Kč. Kolik Kč jí zbylo na útratu, jestliže si ještě odložila peníze na zpáteční cestu? 42,80 Kč Podnikatel měl dodat v lednu a v únoru stejné množství výrobků, v březnu pak dvojnásobné množství než v lednu. Kvůli provozním potížím však dodal v lednu o třetinu méně než měl, v únoru ještě o 60 kusů méně než v letnu a teprve v březnu dodal o 280 kusů víc než původně měl dodat za březen. Přesto chybělo ještě 12 kusů ke splnění celé dodávky. Jaké množství měl dodávat v jednotlivých měsících? Leden a únor po 360 kusech, březen 720 kusů z 63

47 30. Petr šel se svou sestrou Ivou na houby. Petr našel o 23 hub více než Iva. Cestou z lesa Iva poprosila Petra: "Dej mi tolik hub, abych jich měla alespoň o 5 více než ty." Petr jí vyhověl. Kolik hub jí nejméně musel dát? 14 hub Viktor ušetřil dvakrát víc korun než Hanka, Tomáš o sedm korun méně než Viktor, Dáša o 13 Kč více než Tomáš. Dohromady ušetřili 293 Kč. Kolik ušetřil každý? Hanka 42 Kč, Tomáš 77 Kč, Viktor 84 Kč, Dáša 90 Kč Ivana si hrála s dvoumiskovými rovnoramennými vahami. Když položila na levou misku autíčko a na pravou míč a dvě kostky, nastala rovnováha. Další rovnováhu docílila, když na levou misku položila autíčko a jednu kostku a na pravou dva míče. Kolik kostek má právě takovou hmotnost jako autíčko? ± Kvadratická funkce Kvadratická funkce je funkce, která je dána rovnicí y = ax 2 + bx + c, kde a, b, c jsou reálná čísla a číslo a ¹ 0. Grafem kvadratické funkce je parabola (nebo její část). Graf kvadratické funkce y -1,5-1 -0,5 0 0,5 1 1,5 x Definičním oborem kvadratické funkce jsou všechna reálná čísla. Je-li číslo a > 0, pak má funkce minimum (viz horní obrázek), je-li a < 0, pak má funkce maximum. 46 z 63

48 Graf kvadratické funkce -1,5-1 -0,5 0 0,5 1 1,5 y x Názvy členů funkce: ax 2... kvadratický člen bx... lineární člen c... absolutní člen I. Kvadratická funkce bez lineárního a bez absolutního členu - jedná se o funkci, která je dána rovnicí y = ax 2 - definičním oborem jsou všechna reálná čísla - oborem hodnot je interval <0; + ), je-li a > 0 a interval (- ; 0> je-li a < 0 - souřadnice maxima (resp. minima): M[0; 0] - graf tedy protíná obě osy v počátku souřadného systému - čím je absolutní hodnota čísla a větší, tím je graf užší, sevřenější. II. Kvadratická funkce bez lineárního členu - jedná se o funkci, která je dána rovnicí y = ax 2 + c - definičním oborem jsou opět všechna reálná čísla - oborem hodnot je interval: pro a > 0... <c; + ) pro a < 0... (- ; c> - souřadnice maxima (resp. minima): M[0; c] - graf tedy protíná osu y v bodě, který nazýváme maximum (resp. minimum) - je-li c > 0 a zároveň a < 0 nebo c < 0 a zároveň a > 0, pak graf protíná i osu x, a to ve dvou bodech, které jsou osově souměrné podle osy y. Souřadnice průsečíků s osou x mají v tomto případě souřadnice: é - c ù X1ê ; 0 ú ë a û é - c ù X 2 ê- ; 0ú ë a û III. Kvadratická funkce se všemi členy - jedná se o funkci, která je dána rovnicí y = ax 2 + bx + c - definičním oborem jsou opět všechna reálná čísla Příklad.: Je dána funkce y = 2x 2 + 3x + 4. Určete, zda má funkce maximum nebo minimum, zjistěte jeho souřadnice a určete souřadnice průsečíků s oběma osami. Řešení: Zda má funkce maximum nebo minimum, to rozhodneme podle čísla a. Vzhledem k tomu, že a = 2, což je větší než nula, má funkce minimum. Jeho souřadnice určíme tzv. doplněním na čtverec. Postup: 1. Vytkneme číslo a... y = 2.(x 2 + 1,5x + 2) 2. Podíváme se, jaké znaménko je u lineárního členu a podle toho rozhodneme, zda použijeme vzorec (A+B) 2 nebo (A-B) 2. V tomto případě použijeme ten první. 3. Z kvadratického členu u trojčlenu v závorce určíme číslo A. V tomto případě je tedy x. 47 z 63

49 4. Z lineárního členu u trojčlenu v závorce určíme číslo B. V tomto případě je tedy 0,75 5. Použijeme vzorec a dostaneme y = 2.[(x + 0,75) 2-0, ] Pozn. 0,75 2 odečítáme proto, aby nebyla porušena rovnost, protože jsme to zahrnuli do závorky 6. Odstraníme hranatou závorku roznásobením číslem a: y = 2.(x + 0,75) 2 + 2, Určíme souřadnice hledaného minima: M[-0,75; 2,875] Všimněme si, že první souřadnici určujeme vždy s opačným znaménkem než má člen v závorce a naopak u druhé souřadnice zůstává znaménko zachováno. Určení průsečíků s osami: a) s osou x V tomto případě y = 0, dosadíme do rovnice funkce a vypočteme x 2x 2 + 3x + 4 = 0 Diskriminant D = = 9-32 = -23 Vzhledem k tomu, že diskriminant vyšel záporný, nemá kvadratická rovnice řešení a neexistují tedy průsečíky s osou x. b) s osou y V tomto případě x = 0, dosadíme do rovnice funkce a vypočteme y y = = 4 Hledané souřadnice tedy jsou Y[0; 4] Pokud máme souřadnice průsečíků a souřadnice extrému (tj. minima nebo maxima), pak můžeme snadno určit průběh grafu a graf tedy načrtnout. Číslo 2 před závorkou nám ještě říká, že graf bude trochu užší. Ačkoliv to nebylo úkolem, můžeme nyní i určit obor hodnot funkce zadané v předcházejícím příkladu. Je to jednoduché. Funkce má minimum, tedy hodnoty se nedostanou pod druhou souřadnici tohoto bodu. Oborem hodnot je tedy interval <2,875; + ) ± Kvadratická funkce - procvičovací příklady z 63

50 z 63

51 Neexistuje - viz graf Platí - viz graf 50 z 63

52 z 63

53 Existuje - viz graf z 63

54 z 63

55 ± Kvadratické rovnice Kvadratické rovnice Kvadratická rovnice je rovnice, která ve svém zápisu obsahuje neznámou ve druhé mocnině a zároveň neobsahuje neznámou v mocnině vyšší než druhé. Obecně lze kvadratickou rovnici zapsat: ax 2 + bx + c = 0, kde a ¹ 0 Podobně jako u kvadratické funkce, můžeme jednotlivé členy nazvat: ax 2... kvadratický člen bx... lineární člen c... absolutní člen Kvadratická rovnice má zpravidla dva kořeny x 1, x 2, může jich mít ale i méně. Zkoušku provádíme pro každý kořen zvlášť. Jakoukoliv kvadratickou rovnici můžeme řešit pomocí vzorce, v němž se vyskytuje tzv. diskriminant kvadratické rovnice. Tento postup si ukážeme později. Pokud totiž kvadratická rovnice neobsahuje všechny členy, můžeme většinou použít i postupy jednodušší. Každou kvadratickou rovnici, která obsahuje závorky, či zlomky, nejprve převedeme do tvaru ax 2 + bx + c = 0 Při řešení samozřejmě nezapomínáme na podmínky řešitelnosti, pro které platí stejná pravidla jako při řešení rovnic lineárních. 1. Kvadratická rovnice bez lineárního a bez absolutního členu Jedná se o rovnici zapsanou obecně: ax 2 = 0 Takovouto rovnici řešíme snadno tak, že v prvním kroku celou rovnici vydělíme koeficientem a. Můžeme to provést, protože z definice víme, že koeficient a je nenulový. Dostaneme tak: x 2 = 0 A odtud tedy: x 1,2= Ö0 x 1,2= 0 Protože vyšly oba kořeny shodné, hovoříme o tzv. dvojnásobném kořenu. Příklad 1: Řešte kvadratickou rovnici 3x 2 = 0 54 z 63

56 Řešení: 3x 2 = 0 :3 x 2 = 0 x 1,2= 0 Můžeme tedy vyslovit jednoduchý závěr: Každá kvadratická rovnice bez lineárního a bez absolutního členu má jeden dvojnásobný kořen, a tím je Kvadratická rovnice bez lineárního členu Jedná se o rovnici zapsanou obecně: ax 2 + c = 0 Rovnici řešíme tak, že v prvním kroku převedeme číslo c na pravou stranu: Dostaneme: ax 2 = - c Dále rovnici vydělíme koeficientem a: Dostaneme: x 2 = -c/a Nyní rovnici odmocníme. Pokud ale řešíme v oboru reálných čísel, můžeme tento krok provést pouze tehdy, že v případě, že je číslo a kladné, musí být číslo c záporné (a tedy -c kladné). Druhou odmocninu totiž můžeme v oboru reálných čísel provádět pouze z nezáporných čísel (číslo 0 už jsme ale rozebrali v předcházejícím odstavci) Dostaneme: x 1,2= ±Ö(-c/a) Znamená to tedy, že x 1 = +Ö(-c/a) x 2 = -Ö(-c/a) Příklad 2: Řešte kvadratickou rovnici -3x = 0 v oboru reálných čísel. Řešení: -3x = 0 :(-1) 3x 2-27 = 0 3x 2 = 27 :3 x 2 = 9 x 1,2= ±Ö9 x 1 = 3 x 2 = -3 Příklad 3: V oboru reálných čísel řešte kvadratickou rovnici 3x = 0 Řešení: 3x 2 = -6 x 2 = -2 V tomto případě nemá rovnice v oboru reálných čísel řešení. Příklad 4: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-6 = 0 Řešení: 3x 2 = 6 x 2 = 2 x 1,2= ±Ö2 x 1 = +Ö2 x 2 = -Ö2 55 z 63

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

M - Slovní úlohy řešené rovnicí - pro učební obory

M - Slovní úlohy řešené rovnicí - pro učební obory M - Slovní úlohy řešené rovnicí - pro učební obory Autor: Mgr. Jaromír Jurek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Slovní úlohy řešené rovnicí pro učební obory

Slovní úlohy řešené rovnicí pro učební obory Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní

Více

M - Příprava na 2. zápočtový test pro třídu 2D

M - Příprava na 2. zápočtový test pro třídu 2D M - Příprava na 2. zápočtový test pro třídu 2D Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

M - Příprava na 1. zápočtový test - třída 2SB

M - Příprava na 1. zápočtový test - třída 2SB M - Příprava na 1. zápočtový test - třída 2SB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci

a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci 9. ročník a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci d) Logické slovní úlohy Obecný postup řešení slovní úlohy: 1. Určení neznámých 2. Stanovení dvou vztahů rovnosti

Více

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]} 1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:

Více

M - Příprava na 2. čtvrtletku - třída 3ODK

M - Příprava na 2. čtvrtletku - třída 3ODK M - Příprava na 2. čtvrtletku - třída 3ODK Učebnice určená k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

Stereometrie pro studijní obory

Stereometrie pro studijní obory Variace 1 Stereometrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vzájemné polohy prostorových

Více

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1.

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1. 1 Rovnice, nerovnice a soustavy 11 Lineární rovnice Rovnice f(x) = g(x) o jedné neznámé x R, kde f, g jsou reálné funkce, se nazývá lineární rovnice, jestliže ekvivalentními úpravami dostaneme tvar ax

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,

Více

PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín

PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás na gymnáziu Omská a přejeme úspěšné vyřešení všech úloh. Úlohy můžete řešit v libovolném pořadí. V matematice pracujeme s čísly

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.

4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3. Didaktika matematiky DM 3 - příklady stereometrie Kvádr, krychle 1. Vypočítejte objem krychle, jejíž povrch je 96 cm 2. 2. Vypočítejte povrch krychle, jejíž objem je 512 cm 3. 3. Jedna stěna krychle má

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,

Více

Přijímačky nanečisto - 2011

Přijímačky nanečisto - 2011 Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány: Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

Maturitní okruhy z matematiky školní rok 2007/2008

Maturitní okruhy z matematiky školní rok 2007/2008 Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: Šablona: Název materiálu: Autor: CZ..07/.4.00/2.356 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_06/07_002_Úlohy

Více

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI Příklad 1: Domácí úkol DU01_p MAT 4AE, 4AC, 4AI Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byly první a Dan předposlední. Příklad : V dodávce

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: Šablona: Název materiálu: Autor: CZ..07/.4.00/.356 III/ Inovace a zkvalitnění výuky prostřednictvím ICT VY_3_INOVACE_0/07_Délka

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový

Více

VY_42_INOVACE_MA_4A_18A Základní škola Nové Město nad Metují, Školní 1000, okres Náchod Autor: Ivana Hynková. Tematický okruh, předmět: Matematika

VY_42_INOVACE_MA_4A_18A Základní škola Nové Město nad Metují, Školní 1000, okres Náchod Autor: Ivana Hynková. Tematický okruh, předmět: Matematika Název: Škola: VY_42_INOVACE_MA_4A_18A Základní škola Nové Město nad Metují, Školní 1000, okres Náchod Autor: Ivana Hynková Ročník: Tematický okruh, předmět: Téma: Číslo projektu: IV. Matematika 4. čtvrtletní

Více

1.2.26 Přepočet přes jednotku - podruhé II

1.2.26 Přepočet přes jednotku - podruhé II 1.2.26 Přepočet přes jednotku - podruhé II Předpoklady: 010225 Pedagogická poznámka: První příklad nechávám řešit žáky, pak diskutujeme důvodech dělení. Př. 1: Za 0,85 hodiny zalévání spotřebovalo zavlažovací

Více

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem. Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

4. R O V N I C E A N E R O V N I C E

4. R O V N I C E A N E R O V N I C E 4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

M - Příprava na 4. zápočtový test pro třídu 2D

M - Příprava na 4. zápočtový test pro třídu 2D M - Příprava na 4. zápočtový test pro třídu D Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami

Více

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce) MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -

Více

M - Příprava na 2. čtvrtletku pro třídu 4ODK

M - Příprava na 2. čtvrtletku pro třídu 4ODK M - Příprava na. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE Tento dokument

Více

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3.

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3. 1..20 Dláždění III Předpoklady: 01019 Př. 1: Najdi n ( 84,96), ( 84,96) D. 84 = 4 21 = 2 2 7 96 = 2 = 4 8 = 2 2 2 2 2 D 84,96 = 2 2 = 12 (společné části rozkladů) ( ) n ( 84,96) = 2 2 2 2 2 7 = 672 (nejmenší

Více

AUTORKA Barbora Sýkorová

AUTORKA Barbora Sýkorová ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy

Více

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009 Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 008/009 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Mongeova projekce - řezy hranatých těles

Mongeova projekce - řezy hranatých těles Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení

Více

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) = Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží

Více

4.2.7 Voltampérová charakteristika rezistoru a žárovky

4.2.7 Voltampérová charakteristika rezistoru a žárovky 4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

1. Soustavy lineárních rovnic se dvěma neznámými

1. Soustavy lineárních rovnic se dvěma neznámými . Soustavy lineárních rovnic se dvěma neznámými.. Slovní úloha na lineární rovnici se dvěma neznámými Příklad : Zákazník kupoval konzervy dvojího druhu levnější po.- Kč a dražší po 5.- Kč. Za konzervy

Více

Jakub Juránek. 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí?

Jakub Juránek. 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí? Jakub Juránek UČO 393110 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí? Kvádr a b c, a, b, c {1, 2,..., 10} a b c = c a b -

Více

M - Příprava na 3. čtvrtletku třídy 1P, 1VK

M - Příprava na 3. čtvrtletku třídy 1P, 1VK M - Příprava na 3. čtvrtletku třídy P, VK Souhrnný studijní materiál určený k přípravě na 3. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE Tento dokument byl kompletně vytvořen, sestaven

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

4 Algebraické rovnice a nerovnice

4 Algebraické rovnice a nerovnice Algebraické rovnice a nerovnice Matematika je stenografie abstraktního myšlení. Je-li používána správně, nenechává prostor žádné neurčitosti ani nepřesné interpretaci. (Louis de Broglie). Základní pojmy

Více

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149 Průběh funkce Robert Mařík 26. září 28 Obsah y = 1 2............................. y = 1............................. 49 y = 2(2 1).......................... ( 1) 2 11 y =............................. 149

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Gymnázium, Šternberk, Horní náměstí 5 Termín zkoušky: 13.

Více