Přednáška III. Data, jejich popis a vizualizace. Náhodný výběr, cílová a výběrová populace Typy dat Vizualizace různých typů dat Popisné statistiky
|
|
- Radovan Novotný
- před 8 lety
- Počet zobrazení:
Transkript
1 Přednáška III. Data, jejich popis a vizualizace Náhodný výběr, cílová a výběrová populace Typy dat Vizualizace různých typů dat Popisné statistiky
2 Opakování podmíněná pravděpodobnost Ω A A B B Jak můžu vyjádřit podmíněnou pravděpodobnost jevu A za nastoupení jevu B? A co platí v případě nezávislosti těchto dvou jevů?
3 Opakování celková pravděpodobnost Populaci můžeme rozdělit dle věku na tři skupiny: děti (H 0 ), dospělé v produktivním věku (H 1 ) a dospělé v postproduktivním věku (H 2 ), přičemž známe rozdělení populace, tedy známe P(H 0 ), P(H 1 ) a P(H 2 ). Ω H 0 H 1 H 2 Označme jev A: stane se úraz. Známe pravděpodobnost úrazu u dítěte, P(A H 0 ), u dospělého v produktivním věku, P(A H 1 ), a u dospělého v postproduktivním věku, P(A H 2 ). Jsme schopni pomocí vzorce pro celkovou pravděpodobnost spočítat P(A)?
4 Opakování diagnostické testy Co vyjadřují následující charakteristiky? Senzitivita Specificita Prediktivní hodnota pozitivního testu Prediktivní hodnota negativního testu
5 1. Jak vznikají data?
6 Jak vznikají data? Záznamem skutečnosti
7 Jak vznikají data? Záznamem skutečnosti kterou chceme dále studovat smysluplnost? více či méně dokonalým kvalita?
8 Jak vznikají data? Záznamem skutečnosti kterou chceme dále studovat smysluplnost? (krevní tlak, glykémie počet srdcí, počet domů) více či méně dokonalým kvalita? (variabilita = informace + chyba)
9 Cílová populace, výběrová populace Cílová populace skupina subjektů, o které chceme zjistit nějakou informaci. Odpovídá základnímu prostoru Ω. Experimentální vzorek neboli výběrová populace podskupina cílové populace, kterou pozorujeme, měříme a analyzujeme. Jakékoliv výsledky chceme zobecnit na celou cílovou populaci. Výběrová populace musí svými charakteristikami odpovídat cílové populaci (reprezentativnost). Toho můžeme docílit náhodným, ale i záměrným výběrem. Prostor všech možností (dán genofondem) Cílová populace Vzorek
10 Popis cílové populace popis pozorované variability Cílová populace Náhodný výběr dle optimálního plánu Reprezentativní vzorek n subjektů Měření charakteristiky Zobecnění závěrů? Reprezentativnost Spolehlivost Přesnost Hodnocení variability hodnot ve výběrovém souboru VÝSLEDKY?
11 2. Typy dat a jejich vizualizace
12 Typy dat Kvalitativní proměnná (kategoriální) lze ji řadit do kategorií, ale nelze ji kvantifikovat, resp. nemá smysl přiřadit jednotlivým kategoriím číselné vyjádření. Příklady: pohlaví, HIV status, užívání drog, barva vlasů Kvantitativní proměnná (numerická) můžeme jí přiřadit číselnou hodnotu. Rozlišujeme dva typy kvantitativních proměnných: Spojité: může nabývat jakýchkoliv hodnot v určitém rozmezí. Příklady: výška, váha, vzdálenost, čas, teplota. Diskrétní: může nabývat pouze spočetně mnoha hodnot. Příklady: počet krevních buněk, počet hospitalizací, počet krvácivých epizod za rok, počet dětí v rodině.
13 Typy dat příklady Kvalitativní proměnná Kvantitativní proměnná
14 Kvalitativní data lze dělit dále Binární data pouze dvě kategorie typu ano / ne. Nominální data více kategorií, které nelze vzájemně seřadit. Nemá smysl ptát se na relaci větší/menší. Ordinální data více kategorií, které lze vzájemně seřadit. Má smysl ptát se na relaci větší/menší.
15 Kvalitativní data příklady Binární data diabetes (ano/ne) pohlaví (muž/žena) stav (ženatý/svobodný) Nominální data krevní skupiny (A/B/AB/0) stát EU (Belgie/ /Česká republika/ /Velká Británie) stav (ženatý/svobodný/rozvedený/vdovec) Ordinální data stupeň bolesti (mírná/střední/velká/nesnesitelná) spotřeba cigaret (nekuřák/ex kuřák/občasný kuřák/pravidelný kuřák) stadium maligního onemocnění (I/II/III/IV)
16 Kvantitativní data Mají větší informační hodnotu než data kvalitativní. Spojitá data mají větší informační hodnotu než data diskrétní. Větší informační hodnota znamená, že nám stačí méně pozorování na detekci určitého rozdílu (pokud ten rozdíl samozřejmě existuje). Kvůli interpretaci je někdy výhodné kvantitativní data agregovat do kategorií (např. věk) tímto krokem však ztrácíme část informace. Zpětně nejsme schopni data rekonstruovat. Spojitá data Kategoriální data Diskrétní data Kategoriální data
17 Typy dat dle škály hodnot Data Otázky Příklady Poměrová Kolikrát? Glykémie, váha Informační hodnota dat Intervalová Ordinální O kolik? Větší, menší? Teplota ve C PS, kouření Nominální Rovná se? Pohlaví, KS
18 Další typy dat odvozená data Pořadí (rank) místo absolutních hodnot známe někdy pouze jejich pořadí. Jedná se sice o ztrátu určitého množství informace, nicméně i pořadí lze v biostatistice využít. Procento (percentage) sledujeme li např. zlepšení v určitém parametru, je výhodné sledovat procentuální zlepšení. Př.: ejekční frakce levé srdeční komory. Podíl (ratio) mnoho indexů je odvozeno jako podíl dvou měřených veličin. Př.: BMI. Míra pravděpodobnosti (rate) týká se výskytu různých onemocnění, kdy počet nových pacientů v daném čase (studii) je vztažen na celkový počet zaznamenaných osobo roků. Př.: výskyt nádorového onemocnění u pacientů ve studii. Skóre (score) jedná se o uměle vytvořené hodnoty charakterizující určitý stav, který nelze jednoduše měřit jako číselné hodnoty. Př.: indexy kvality života. Vizuální škála (visual scale) pacienti často hodnotí svoje obtíže na škále, která má formu úsečky o délce např. 10 cm. Př.: hodnocení kvality života.
19 Další typy dat odvozená data
20 Absolutní vs. relativní četnost Vyjádření výsledků v relativní formě (procento) má často příjemnou interpretaci, ale může být zavádějící. Relativní vyjádření účinnosti by mělo být vždy doprovázeno absolutním vyjádřením účinnosti. Příklad: Srovnání účinnosti léčiva ve smyslu prevence CMP u kardiaků. Studie 1: Výskyt CMP ve skupině A je 12 %, ve skupině B je 20 %. Relativní změna v účinnosti = 40 %; absolutní změna = 8 %. Studie 2: výskyt CMP ve skupině A je 0,9 %, ve skupině B je 1,5 %. Relativní změna v účinnosti = 40 %; absolutní změna = 0,6 %. Výsledkem je rozdílný přínos léčby při stejné relativní účinnosti.
21 Další typy dat cenzorovanádata Cenzorovaná data charakterizují experimenty, kde sledujeme čas do výskytu předem definované události. Vprůběhu sledování událost nemusí nastat u všech subjektů. Subjekty však nelze vinit ztoho, že jsme u nich nebyli schopni danou událost pozorovat a už vůbec je nelze z hodnocení vyloučit. O čase sledování takového subjektu pak mluvíme jako o cenzorovaném. Toto označení indikuje, že sledování bylo ukončeno dříve, než u subjektu došlo kdefinované události. Nevíme tedy, kdy a jestli vůbec daná událost u subjektu nastala, víme pouze, že nenastala před ukončením sledování.
22 Další typy dat cenzorovanádata c 4 Ztracen ze sledování t 4 Nepozorované časy úmrtí t 2 c 3 Úmrtí t 3 Ukončení studie t 1 Úmrtí 0 t
23 3. Vizualizace a popis různých typů dat
24 Reálná data
25 Proč je popis a vizualizace dat třeba? Chceme zpřehlednit pozorovaná data ve vhodných grafech. Chceme zachytit případné odlehlé a extrémní body nebo nečekané, nelogické hodnoty. Chceme popsat naměřené hodnoty. Chceme vypočítat vhodné sumární statistiky, které budou pozorovaná data dále zastupovat při prezentaci, srovnáních apod. Chceme pozorovanou informaci uložit v zástupných statistikách, použití všech pozorovaných dat je nepraktické až nemožné.
26 Jaké jsou výstupy popisné analýzy? Obecně neformální, jde o shrnutí pozorovaného a ne o formální testování. Vztahují se pouze na pozorovaná data (respektive na experimentální vzorek). Mohou sloužit jako podklad pro stanovení hypotéz.
27 Co chceme u dat popsat? Kvalitativní data četnosti (absolutní i relativní) jednotlivých kategorií. Kvantitativní data těžiště a rozsah pozorovaných hodnot.
28 Popis těžiště míry polohy Mějme pozorované hodnoty: Seřaďme je podle velikosti: x 1, x2,..., x n x( 1) x(2)... x( n ) Minimum a maximum nejmenší a největší pozorovaná hodnota nám dávají obraz o tom, kde se na ose x pohybujeme. Průměr charakterizuje hodnotu, kolem které kolísají ostatní pozorované hodnoty. Je to fyzikální obraz těžiště stejně hmotných bodů ose x. Medián je to prostřední pozorovaná hodnota. Dělí pozorované hodnoty na dvě půlky, půlka hodnot je menší a půlka hodnot je větší než medián. x x x min max = = x = 1 n x( n ) n (1) i= 1 ~ x = x ~ x = ( x 1 2 x i (( n+ 1)/2) ( n/2) + x ( n/2+ 1) ) pro n liché pro n sudé
29 Výpočet mediánu Příklad 1: N = 8 (n + 1) / 2 pozice je mezi 4. a 5. prvkem po seřazení uděláme průměr Data = Seřazená data = Medián = (4 + 6) / 2 = 5 Příklad 2: N = 9 (n + 1) / 2 pozice znamená 5. pozice po seřazení Data = 3,0 4,2 1,1 2,5 2,2 3,8 5,6 2,7 1,7 Seřazená data = 1,1 1,7 2,2 2,5 2,7 3,0 3,8 4,2 5,6 Medián = 2,7
30 Průměr vs. medián Máme li symetrická data, je výsledek výpočtu průměru i mediánu podobný. Vše je OK. Systolický tlak u mužů Průměr = 149,9 mmhg Počet mužů Medián = 150,0 mmhg Tlak (mmhg)
31 Průměr vs. medián Nemáme li symetrická data, je výsledek výpočtu průměru i mediánu rozdílný. Není to OK. Výpočet průměru je v tuto chvíli nevhodný! Příklad 1:známkování ve škole Student A: 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5 Průměr = 1,35 Medián = 1,00 Student B: 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2 Průměr = 1,13 Medián = 1,00 Příklad 2: plat v ČR v roce 2003 Medián: Průměr: Kč Medián Průměr x
32 Pojem kvantil Ve statistice je kvantil definován pomocí kvantilové funkce, což je inverzní funkce k distribuční funkci budeme se jí věnovat příště. Laicky lze kvantil definovat jako číslo na reálné ose, které rozděluje pozorovaná data na dvě části: p% kvantil rozděluje data na p % hodnot a (100 p) % hodnot. x x p p = x = 1 2 ( k+ 1) ( x + x )) ( k) ( k+ 1 pro k np pro k = np
33 Kvantil příklad Máme soubor 20 osob, u nichž měříme výšku. Chceme zjistit 80% kvantil souboru pozorovaných dat. n = 20 Průměr těchto dvou = 80% kvantil 16 / 20 = 80 % hodnot 4 / 20 = 20 % hodnot 110 cm 140 cm 170 cm 200 cm 230 cm Výška v cm R
34 Významné kvantily Minimum = 0% kvantil Dolní kvartil = 25% kvantil Medián = 50% kvantil Horní kvartil = 75% kvantil Maximum = 100% kvantil Medián je významná charakteristika vypovídající o těžišti pozorovaných hodnot. Není to ale jenom popisná charakteristika, na mediánu (a kvantilech obecně) je založeno mnoho neparametrických statistických metod.
35 Popis rozsahu míry variability Nejjednodušší charakteristikou variability pozorovaných dat je rozsah hodnot (rozpětí) = maximum minimum. Je snadno ovlivnitelný netypickými (odlehlými) hodnotami. Kvantilové rozpětí je definováno p% kvantilem a (100 p)% kvantilem a je méně ovlivněno odlehlými hodnotami. Speciálním případem je kvartilové rozpětí, které pokrývá 50 % pozorovaných hodnot. Rozptyl průměrný čtverec odchylky od průměru. Velmi ovlivnitelný odlehlými hodnotami. s 2 x 1 = n 1 n n 2 ( xi x) = i= 1 n 1 i= 1 Směrodatná odchylka odmocnina z rozptylu. Výhodou směrodatné odchylky je, že má stejné jednotky jako pozorovaná data. 1 x 2 i nx 2
36 Popis rozsahu míry variability Příklad čtverců odchylek od průměru pro n = 3. Rozptyl je možno značně ovlivnit odlehlými pozorováními. s 2 x = 1 n 1 n i= 1 ( x i x) 2 0,269 0,547 0,638 0,733 x 1 x x 2 x 3
37 4. Kvalitativní data
38 Vizualizace a popis nominálních dat Vizualizace sloupcovým / koláčovým grafem absolutní i relativní četnost. Sumarizace procentuálním výskytem kategorií v tzv. frekvenční tabulce. Smysluplná agregace kategorií zjednodušuje interpretaci i validitu výsledků. K popisu může sloužit i tzv. modus nejčetnější pozorovaná hodnota. Frekvenční tabulka Sloupcový graf Koláčový graf Proměnná n % N Kategorie % 5.0% 120 Kategorie Kategorie Kategorie Celkem % %
39 Vizualizace a popis ordinálních dat Vizualizace sloupcovým / koláčovým grafem absolutní i relativní četnost. Sumarizace procentuálním výskytem kategorií v tzv. frekvenční tabulce. Smysluplná agregace kategorií zjednodušuje interpretaci i validitu výsledků. K popisu může sloužit i tzv. modus, případně medián (pouze dává li to smysl). Frekvenční tabulka Sloupcový graf Koláčový graf Proměnná n % N Kategorie % 5.0% 120 Kategorie Kategorie Kategorie Celkem % %
40 Co je na tom obrázku zavádějící?
41 Co je na tom obrázku zavádějící? Ve chvíli, kdy obě skupiny mají různý počet pacientů, je srovnání absolutních čísel nekorektní.
42 5. Kvantitativní data
43 Frekvenční tabulka pro kvantitativní data Primární data Frekvenční tabulka 1,21 1,48 1,56 0,31 1,21 1,33 0,33 0,21 1,32 1, n = 100 d i šířka intervalu n i absolutní četnost v daném intervalu n i / n relativní četnost v daném intervalu i tý interval d i n i n i / n % <0 0,4) 0,4 20 0,2 20 <0,4 0,8) 0,4 10 0,1 10 <0,8 1,2) 0,4 40 0,4 40 <1,2 1,4) 0,2 20 0,2 20 <1,4 1,6) 0,2 10 0,1 10 Celkem 1,
44 Histogram Histogram je grafický nástroj pro vizualizaci kvantitativních dat (poměrových, intervalových, spojitých i diskrétních). Každá oblast histogramu odráží absolutní nebo relativní četnost na jednotku sledované proměnné na ose x. Histogram není sloupcový graf! Histogram pro relativní četnost: Histogram pro absolutní četnost: f ( i) = f ( i) = ni / n d n d i i i
45 Sumarizace kvantitativních dat histogramem Pozorovaná data: 1,21; 1,48; 1,56; 0,31; 1,21; 1,33; 0,33; 0,21; 1,32 n Setřídění dat podle velikosti Vytvoření intervalů na ose x Výpočet relativních nebo absolutních četností f(i) Vykreslení histogramu
46 Histogram příklad Histogram pro absolutní četnost Histogram pro relativní četnost n n ,4 0,8 1,2 1,4 1, ,4 0,8 1,2 1,4 1,6
47 Histogram příklad Jaký obsah má plocha histogramu pro relativní četnost? 1 n Histogram pro relativní četnost A proč? ,4 0,8 1,2 1,4 1,6
48 Histogram příklad Jaký obsah má plocha histogramu pro relativní četnost? i ( i) = = i n / n f 1 d i i 1 n Histogram pro relativní četnost A proč? Histogram lze použít pro odhad hustoty pravděpodobnosti. Je to tedy grafická vizualizace rozložení pravděpodobnosti kvantitativních (zejména spojitých) dat ,4 0,8 1,2 1,4 1,6
49 Který histogram je správný a proč? Chceme pomocí histogramu vykreslit počty zraněných při automobilových haváriích na předměstí Londýna v roce Data máme zadána jako počty v daných věkových kategoriích.
50 Histogram ve skutečnosti Histogram je ve skutečnosti zřídka vyjadřován pomocí výrazů: f ( i) = ni / n d i f ( i) = n d i i Daleko častěji se jedná o prosté absolutní nebo relativní počty pozorování v daném intervalu (výhodné kvůli snadné čitelnosti a interpretaci): f ( i) = ni / n f ( i) = ni Důležité však je, aby intervaly měly stejnou šířku, aby výsledky byly srovnatelné!
51 Počet intervalů určuje kvalitu výstupu Počtem zvolených intervalů v histogramu rozhodujeme o tom, jak bude vypadat. Při malém počtu můžeme přehlédnout důležité prvky v datech, při velkém zase může být informace roztříštěná. 3 intervaly 5 intervalů n i /d i n i /d i n i /d i intervalů
52 Krabicový graf box plot Maximum = 100% kvantil Horní kvartil = 75% kvantil Medián = 50% kvantil Dolní kvartil = 25% kvantil Minimum = 0% kvantil
53 Co je extrémní (odlehlá) hodnota? Jednoduše řečeno se jedná o netypické pozorování, které nezapadá do pravděpodobnostního chování souboru dat. Definujeme ji jako hodnotu, která leží několikanásobek (3, 5, 7) směrodatné odchylky, respektive kvartilového rozpětí, od průměru, respektive mediánu. Definice je ale vágní, závisí na naší znalosti dané problematiky, které hodnoty jsou či nejsou možné!
54 Vliv odlehlé hodnoty na popisné statistiky Správná data Cílem je určit průměrnou hladinu cholesterolu vybrané populace mužů (hodnoty v mmol/l) Průměrná hodnota 6,32 Směrodatná odchylka 1,34 Průměrná hodnota Směrodatná odchylka Která charakteristika se zvýší výrazněji? Průměr nebo směrodatná odchylka??? Nesprávná data
55 Vliv odlehlé hodnoty na popisné statistiky Správná data Cílem je určit průměrnou hladinu cholesterolu vybrané populace mužů (hodnoty v mmol/l) Průměrná hodnota Průměrná hodnota 6,32 8,94 Směrodatná odchylka Směrodatná odchylka 1,34 12, Nesprávná data
56 Identifikace odlehlých hodnot Na menších souborech stačí vizualizace. Na větších datových souborech nelze bez vizualizace a popisných statistik. Grafická identifikace: pomocí histogramu a box plotu. Identifikace pomocí popisných statistik: srovnání mediánu a průměru.
57 Identifikace odlehlých hodnot příklad Histogram Histogram Správná data Box plot Box plot Nesprávná data
58 Identifikace odlehlých hodnot příklad Správná data Cílem je určit průměrnou hladinu cholesterolu vybrané populace mužů (hodnoty v mmol/l) Medián Medián 6,30 6,30 Průměrná hodnota Průměrná hodnota 6,32 8,94 Směrodatná odchylka Směrodatná odchylka 1,34 12, Nesprávná data
59 Reklama na příští týden Středem zájmu statistiky a biostatistiky je tzv. náhodná veličina. Základní prostor Ω Pravděpodobnost P Jev A ω 1 Náhodná veličina X 0 P(A) 1 R 0 x R
60 Poděkování Rozvoj studijního oboru Matematická biologie PřFMU Brno je finančně podporován prostředky projektu ESF č. CZ.1.07/2.2.00/ Víceoborová inovace studia Matematické biologie a státním rozpočtem České republiky
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Základy popisné statistiky
Základy popisné statistiky V této kapitole se seznámíme se základy popisné statistiky, představíme si základní pojmy a budeme si je ilustrovat na praktických příkladech. Kapitola je psána formou volného
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky
řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesův vzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
VŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
4. Zpracování číselných dat
4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2
Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality
Přednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky
řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesůvvzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Úvod do statistické metodologie
Přenos jakékoli části této prezentace mimo účastníky semináře je zakázán bez písemné dohody se StatSoft CR s.r.o. (Dell Software Group). Úvod do statistické metodologie 1. lékařská fakulta Univerzity Karlovy
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?
Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/
Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika
Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)
Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data
Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data Náhodná veličina Rozdělení pravděpodobnosti náhodných veličin Normální rozdělení a rozdělení příbuzná Transformace náhodných veličin
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.) 1 respondent (pacient,
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce
Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života