Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnost a statistika (BI-PST) Cvičení č. 1"

Transkript

1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

2 Podmínky získání zápočtu Aktivní účast na cvičeních a povinné absolvování nejméně 4 testů. Během cvičení bude 6 testů po 4 bodech, započítá se nejlepších 5 výsledků, dohromady lze získat celkem 20 bodů. Vypracování a odevzdání domácích úkolů po 10 bodech - celkem až 20 bodů. Celkově je nutné ze cvičení získat alespoň 20 bodů ze 40 možných. Testy budou na náhodně zvolených cvičeních z materiálů i z předchozích přednášek, ne pouze ze cvičení! (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

3 Pravděpodobnost Statistika Teorie pravděpodobnosti - matematická disciplína zabývající se popisem náhodných jevů. Tj. jevů které jsou (třeba jen z pozice pozorovatele) nedeterministické. Znám obsah krabice Vytáhnu náhodně 30 krát Odhaduji výsledek 60% červených kuliček po sobě kuličku P(20 z 30 je červených) = = ( 30 20) = (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

4 Pravděpodobnost Statistika Matematická statistika - zabývá se teoretickým rozborem získávání a analýzy empirických dat obsahujících nahodilost. Tj. na základě dat hledá vlastnosti náhodné veličiny. Neznám obsah krabice Vytáhnu náhodně 30 krát Znám výsledek po sobě kuličku 20 z 30 je červených Kolik procent kuliček v krabici je červených? (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

5 Pravděpodobnost Statistika Matematická statistika - zabývá se teoretickým rozborem získávání a analýzy empirických dat obsahujících nahodilost. Tj. na základě dat hledá vlastnosti náhodné veličiny. Neznám obsah krabice Vytáhnu náhodně 30 krát Znám výsledek po sobě kuličku 20 z 30 je červených Kolik procent kuliček v krabici je červených? Bodový odhad: 2/3 = 66.67% Intervalový odhad: s 95% spolehlivostí 48.76% 84.57% (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

6 Pravděpodobnost Statistika Matematická statistika - zabývá se teoretickým rozborem získávání a analýzy empirických dat obsahujících nahodilost. Tj. na základě dat hledá vlastnosti náhodné veličiny. Neznám obsah krabice Vytáhnu náhodně 30 krát Znám výsledek po sobě kuličku 20 z 30 je červených Kolik procent kuliček v krabici je červených? Testování hypotéz: Je v krabičce 40% červených kuliček? Protože důvěřujeme intervalovému odhadu tak závěr s 95% jistotou NE. (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

7 Příklad 1.1 Chevalier de Mere Dva lidé hrají turnaj složený ze série her. Každou z nich s pravděpodobností 50% vyhraje jeden nebo druhý z nich (hod mincí). V turnaji vítězí ten kdo první vyhrál 6 her. Bohužel jsou nuceni turnaj předčasně ukončit za situace 1. vyhrál 5 her a 2. pouze 3 Jakým způsobem si mají co nejspravedlivěji rozdělit výhru? (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

8 Příklad 1.2 Monty Hall Show Za třemi dveřmi jsou náhodně schované 2 kozy a jedno auto. Uvaděč ví kde je auto. Hráč zvolí jedny dveře. Uvaděč potom otevře ze zbylých 2 dveří ty, ve kterých je koza. Poté uvaděč hráče vybídne, aby případně změnil svoji volbu (nyní už může vybírat pouze ze 2 dveří). Dveře, které nakonec vybere, se otevřou a pokud je za nimi auto - vyhrál ho. Vyplatí se hráči výběr dveří změnit? (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

9 Příklad 1.3 Dva hráči hrají hru se 2 mincemi. Jestliže padne PO (pana, orel) nebo OP vyhraje první hráč. Jestliže padne PP nebo OO vyhraje druhý hráč. Určete pravděpodobnost, že první hráč vyhraje pokud: a) pravděpodobnost, že padne hlava je P(P) = 0.5. b) pravděpodobnost, že padne hlava je P(P) = p (0, 1). Pro kterou hodnotu p = P(P) má první hráč největší pravděpodobnost výhry? (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

10 Příklad 1.4 Dva lidé hrají hru při které se dvakrát hází neznámou mincí. Jestliže padne PO vyhrává první hráč. Jestliže OP vyhrává druhý hráč. Pokud padne PP nebo OO, hází se znovu (opět dvojhod). Určete pravděpodobnosti výher obou hráčů a pravděpodobnost, že hra neskončí. (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

11 Příklad 1.5 Budeme dvakrát házet kostkou. Předpokládejme, že jsou hody nezávislé a každé číslo může padnout se stejnou pravděpodobností. Určete pravděpodobnost s jakou je rozdíl prvního a druhého hodu roven 1, tj. P(1. 2. = 1). (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

12 Příklad 1.6 Jaká je pravděpodobnost, že při dvou hodech poctivou 6-ti stěnnou kostkou bude maximum z hodů větší nebo rovno 5? (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

13 Příklad 1.7 Student si musí vybrat přesně 2 ze tří volitelných předmětů: kreslení, francouzština, matematika. Víme, že si vybere kreslení s pravděpodobností 5/8 francouzštinu s pravděpodobností 5/8 kreslení a současně francouzštinu s pravděpodobností 1/4 Jaká je pravděpodobnost, že si vybere a) matematiku? b) kreslení nebo matematiku? (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

14 Příklad 1.8 Pro daný experiment zapište výběrový prostor Ω a vyjádřete množinově následující jevy: a) Hod mincí: i) výsledek je panna ii) výsledek není orel iii) výsledek je panna nebo orel b) Hod kostkou: i) výsledek je číslo 3 ii) výsledek je liché číslo iii) výsledek je větší než 3 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

15 Příklad 1.9 Dokažte, že a) pro jevy A a B platí P(A B) = P(A) + P(B) P(A B). b) pro jevy A, B a C platí P(A B C) = P(A) + P(B) + P(C) P(A B) P(B C) P(C A)+ + P(A B C). (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/ / 14

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

S U P E R G A M E S HERNÍ PLÁN

S U P E R G A M E S HERNÍ PLÁN Zadávání kreditů : S U P E R G A M E S HERNÍ PLÁN Přístroj přijímá mince v hodnotě 5, 10 a 20 Kč. Akceptor bankovek přijímá bankovky dle nastavení provozovatele v hodnotách : 50,100, 200, 500, 1000 a 2000

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

HERNÍ PLÁN IVT SYNOT

HERNÍ PLÁN IVT SYNOT HERNÍ PLÁN IVT SYNOT 1 Celtic Magick Celtic Magick je hra se čtyřmi válci a 81 výherními liniemi. Hra obsahuje 10 různých symbolů. Ve hře Celtic Magick může hráč nastavit sázky v následujících krocích:

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

RIV aneb Člověče, publikuj!

RIV aneb Člověče, publikuj! RIV aneb Člověče, publikuj! pravidla společenské hry 1 Katedra matematiky Fakulty aplikovaných věd Západočeská univerzita v Plzni Nečtiny, 8. 11. 2007 Člověče, publikuj! 16. 18. listopadu 2007 1 / 9 Člověče,

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Prezentace oboru Letový provoz

Prezentace oboru Letový provoz Prezentace oboru Letový provoz motto: Aktivity v letovém provozu jsou podmíněné vysokou odborností a profesionalitou v oboru doc. Ing. Luděk Beňo, CSc. VŠO Katedra letecké dopravy 1 V čem spočívá rozdíl

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Herní plán DIRTY MONEY

Herní plán DIRTY MONEY Herní plán DIRTY MONEY Dirty Money 1. Úvod Dirty Money je hra s pěti válci a 9 výherními liniemi. Hra obsahuje 9 různých symbolů. 2. Pravidla hry a její průběh Ve hře Dirty Money může hráč nastavit sázky

Více

Kajot Casino Ltd. Popis hry Joker 27

Kajot Casino Ltd. Popis hry Joker 27 Joker 27 Joker 27 Popis a pravidla Joker 27 je hra se třemi kotouči. Zobrazený výsledek se skládá ze tří řad po třech symbolech (každý kotouč zobrazuje tři symboly). Náhledy Uvedený obrázek představuje

Více

GOLDEN BANK 300. Universe games, s.r.o., U Habrovky 247/11, 140 00 Praha 4. Herní plán

GOLDEN BANK 300. Universe games, s.r.o., U Habrovky 247/11, 140 00 Praha 4. Herní plán Herní plán vstup mincí: 2, 5, 10, 20 Kč případně 50 Kč vstup bankovek: 100, 200, 500, 1000 Kč případně 2000, 5000 Kč max. SÁZKA na 1 hru : 2 Kč (2 kredity) max. výhra : 300 Kč (300 kreditů) v jedné hře

Více

Základy pravděpodobnosti poznámky. Jana Klicnarová

Základy pravděpodobnosti poznámky. Jana Klicnarová Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

V tomto prostředí jsou postupně zaváděny různé typy úloh.

V tomto prostředí jsou postupně zaváděny různé typy úloh. Matematické prostředí Děda Lesoň umožňuje dětem pracovat s veličinou zapsanou ikonicky (nikoliv číslem). Uvedeno je příběhem o dědovi Lesoňovi, ochránci zvířátek. Nejprve jsou u Lesoně pouze tři druhy

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

FINANČNÍ GRAMOTNOST. 4. 6. 2014 Praha Mistrovství ČR ve Finanční svobodě Mgr. Petr Jakeš ZŠ a MŠ Štoky reditel@zsmsstoky.cz

FINANČNÍ GRAMOTNOST. 4. 6. 2014 Praha Mistrovství ČR ve Finanční svobodě Mgr. Petr Jakeš ZŠ a MŠ Štoky reditel@zsmsstoky.cz FINANČNÍ GRAMOTNOST 4. 6. 2014 Praha Mistrovství ČR ve Finanční svobodě Mgr. Petr Jakeš ZŠ a MŠ Štoky reditel@zsmsstoky.cz Obsah prezentace 1. Základní dokumenty pro oblast finanční gramotnosti (FG) 2.

Více

Autoři hry: Jan Rojewski a Michał Stajszczak HRA PRO 2 6 HRÁČŮ VE VĚKU 8 99 LET

Autoři hry: Jan Rojewski a Michał Stajszczak HRA PRO 2 6 HRÁČŮ VE VĚKU 8 99 LET Autoři hry: Jan Rojewski a Michał Stajszczak HRA PRO 2 6 HRÁČŮ VE VĚKU 8 99 LET FORMULE jsou hra, díky níž mohou hráči zažít vzrušení, jež znají jen závodní jezdci. Není přitom potřeba mít řidičský průkaz,

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

HERNÍ PLÁN. Multi Lotto je modulární systém pro obsluhu více her v jednom terminál.

HERNÍ PLÁN. Multi Lotto je modulární systém pro obsluhu více her v jednom terminál. HERNÍ PLÁN Systém: MULTI LOTTO Multi Lotto je modulární systém pro obsluhu více her v jednom terminál. Super Fruit Je to 3 -kotoučová hra s pěti výherními liniemi. Možné sázky jsou od 1 do 500 CZK dle

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

RULETKY. Nejjednodušeji formulovaný problém je určit s jakou pravděpodobností padne např. žlutá barva na každé ze znázorněných ruletek.

RULETKY. Nejjednodušeji formulovaný problém je určit s jakou pravděpodobností padne např. žlutá barva na každé ze znázorněných ruletek. PC hry a simulace RULETKY Aplikace by měla sloužit k demonstraci některých stochastických jevů a problémů, měla by vést žáky k samostatnému experimentování, formulaci hypotéz a jejich experimentálnímu

Více

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV Filozofické problémy přírodních věd Teorie a zákon Lukáš Richterek Katedra experimentální fyziky PF UP, 17 listopadu 1192/12, 771 46 Olomouc lukasrichterek@upolcz Podklad k předmětu KEF/FPPV 2 / 10 Logické

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

RED GAMES MOD elektronik, s.r.o., Bělisko 1386, Nové Město na Moravě

RED GAMES MOD elektronik, s.r.o., Bělisko 1386, Nové Město na Moravě Herní plán vstup mincí 5, 10, 20, 50 Kč vstup bankovek: 100, 200, 500, 1000, 2000 Kč případně 5000 Kč max. sázka na 1 hru: 5 Kč (5 kreditů) max. výhra: 750 Kč (750 kreditů) v jedné hře výherní podíl: 91

Více

Finanční a pojistná matematika. Den otevřených dveří 6. ledna 2012

Finanční a pojistná matematika. Den otevřených dveří 6. ledna 2012 Finanční a pojistná matematika Den otevřených dveří 6. ledna 2012 Ing. Pavel Hanuš asistent Katedry matematiky PřF UHK garant ekonomických předmětů katedry daňový poradce http://www.pavelhanus.cz pavel.hanus@uhk.cz

Více

POPIS HRY. Apex Multi Magic. APEX MULTI MAGIC III CZ kat.2 V1.01 Minimální vklad 1 Kč Maximální vklad 100 Kč

POPIS HRY. Apex Multi Magic. APEX MULTI MAGIC III CZ kat.2 V1.01 Minimální vklad 1 Kč Maximální vklad 100 Kč POPIS HRY Apex Multi Magic APEX MULTI MAGIC III CZ kat.2 V1.01 Minimální vklad 1 Kč Maximální vklad 100 Kč Pravidla hry APEX MULTI MAGIC III CZ kat.2 V1.01 Výherní přístroj /dále jen VHP/ APEX Multi Magic

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Chytrý medvěd učí počítat

Chytrý medvěd učí počítat CZ Habermaaß-hra 3151A /4547N Chytrý medvěd učí počítat Medvědí kolekce vzdělávacích her pro 2 až 5 hráčů ve věku od 4 do 8 let. S navlékacím počítadlem Chytrého medvěda a třemi extra velkými kostkami.

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Domino jako losovací nástroj a nositel matematických idejí a struktur

Domino jako losovací nástroj a nositel matematických idejí a struktur Domino jako losovací nástroj a nositel matematických idejí a struktur Adam Płocki, Akademia Pedagogiczna, Krakow (Polsko) ABSTRACT: Práce se týká domina jako nositele a tvůrce matematických idejí a problémů.

Více

Binomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1

Binomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1 Binomické rozdělení Někdy se říká, že statistika je užitý počet pravděpodobnosti, a na tomto tvrzení je nepochybně něco pravdy, pokud se nevezme doslovně. Připomeňme si, že statistiku lze rozdělit na statistiku

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Medvídek Teddy barvy a tvary

Medvídek Teddy barvy a tvary CZ Habermaaß-hra 5878 Moje první hra Medvídek Teddy barvy a tvary Moje první hra Medvídek Teddy barvy a tvary První umísťovací hra pro 1 až 4 malé medvídky od 2 let. Autor: Christiane Hüpper Ilustrace:

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Na počátku hry nemáš nic než trochu peněz a malé pozemky. Dominion svět plný napínavých dobrodružství.

Na počátku hry nemáš nic než trochu peněz a malé pozemky. Dominion svět plný napínavých dobrodružství. Na počátku hry nemáš nic než trochu peněz a malé pozemky. Avšak brány světa jsou ti otevřeny dokořán, neboť svou říši si můžeš budovat stavbou vesnic, založením tržiště či postavením trůnního sálu. Ale

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Cíl hry. Obsah. Příprava

Cíl hry. Obsah. Příprava PRAVIDLA HRY Cíl hry Ocitli jste se v kůži malého prasátka. Vaším největším přáním je postavit pevný a krásný dům, kde budete moci trávit dlouhé zimní večery. Abyste toho docílili, nebudete potřebovat

Více

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům MINISTERSTVO FINANCÍ Státní dozor nad sázkovými hrami a loteriemi Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům Podle ust. 1 odst. 1 zákona č. 202/1990 Sb., o loteriích a jiných podobných

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

Zásady školení trenérů licence B

Zásady školení trenérů licence B Zásady školení trenérů licence B Článek I Systém vzdělávání trenérů 1. Trenérsko-metodická komise Českého svazu je na základě rozhodnutí orgánů Českého svazu házené odpovědna za realizaci systému vzdělávání

Více

Pravidlové systémy. František Fjertil Špoutil

Pravidlové systémy. František Fjertil Špoutil Pravidlové systémy František Fjertil Špoutil 2 pravdy o LARPu: 1) Pravidla vymezují rámec akce 2) Má-li hráč schopnost, tak ji bude chtít i použít PRAVIDLO - definice Je to takový herní mechanismus, který

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Varianty Monte Carlo Tree Search

Varianty Monte Carlo Tree Search Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost 6. Pravděpodobnost a statistika 6.1. Pravděpodobnost Pravděpodobnost (hovorově šance; značka je P z anglického probability) je hodnota vyčíslující jistotu resp. nejistotu výskytu určité události. K pojmu

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

VY_32_INOVACE_09.12 1/5 3.2.09.12 IQ cesta čekým středověkem

VY_32_INOVACE_09.12 1/5 3.2.09.12 IQ cesta čekým středověkem 1/5 3.2.09.12 Pravidla hry: 1. Hra je určena minimálně pro 2 hráče. 2. Jeden hráč (může se účastnit i hry) bude kontrolovat správnost odpovědí na Listině odpovědí. 3. Každý si vybere figurku jiné barvy

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Česká asociace sport pro všechny KOMISE REKREAČNÍCH SPORTŮ KUBB. pravidla. zpracoval: Petr Kolář

Česká asociace sport pro všechny KOMISE REKREAČNÍCH SPORTŮ KUBB. pravidla. zpracoval: Petr Kolář Česká asociace sport pro všechny KOMISE REKREAČNÍCH SPORTŮ KUBB pravidla zpracoval: Petr Kolář OBSAH KAPITOLA I. HŘIŠTĚ...3 1. Hřiště...3 2. Hrací pole...3 2.1. Středová čára...3 2.2. Základní čáry...3

Více

Současná pravidla regulace hazardu na území obcí a připravované změny

Současná pravidla regulace hazardu na území obcí a připravované změny Současná pravidla regulace hazardu na území obcí a připravované změny Odbor 34 Státní dozor nad sázkovými hrami a loteriemi Olomouc 9. dubna 2015 Obecně závazné vyhlášky Současná právní úprava zmocnění

Více

Chance 3x3 Tour 2014

Chance 3x3 Tour 2014 PROGRAM Uvnitř programu Kalendář Chance 3x3 Tour Co je basketbal 3x3 a proč ne streetball? Časový harmonogram Praha Pravidla Výsledky Fotogalerie SÁZEJTE ONLINE! TŘEBA NA BASKET www.chance.cz/registrace

Více

Výnos č. 30.11/14 Upřesnění kreditního systému VŠCHT Praha pro akademický rok 2014/2015. Oddíl I Bakalářský studijní program

Výnos č. 30.11/14 Upřesnění kreditního systému VŠCHT Praha pro akademický rok 2014/2015. Oddíl I Bakalářský studijní program Všem pracovištím AS VŠCHT V Praze dne 2. 6. 2014 Č.j. 961/258/2014 Výnos č. 30.11/14 Upřesnění kreditního systému VŠCHT Praha pro akademický rok 2014/2015 Oddíl I Bakalářský studijní program V souladu

Více

9.2.1 Náhodné pokusy, možné výsledky, jevy

9.2.1 Náhodné pokusy, možné výsledky, jevy 9.2.1 Náhodné pokusy, možné výsedky, jevy Předpokady: 9110, 9114 Hodím kámen za normáních okoností jediný výsedek = spadne na zem Hodíme kámen na terč někoik možných výsedků (trefíme desítku, devítku,,

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Byznysplán. Seminární práce předmětu Základy managementu pro informační specialisty

Byznysplán. Seminární práce předmětu Základy managementu pro informační specialisty Byznysplán Seminární práce předmětu Základy managementu pro informační specialisty ZS 2002/2003 Karolína Kučerová, 1. roč. navazujícího magisterského studia Tento byznysplán operuje se situací, kdy se

Více

Habermaaß-hra 4511. Divocí Vikingové

Habermaaß-hra 4511. Divocí Vikingové CZ Habermaaß-hra 4511 Divocí Vikingové Hra Habermaaß č. 4511 Divocí Vikingové Riskantní sázková hra pro 2 5 odvážných Vikingů ve věku 6 99 let. Autor: Ilustrace: Délka hry: Wolfgang Dirscherl Michael Menzel

Více

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI 5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI Hry v kostky Podle archeologických nálezů se hrací kostky používaly již v době před 40 tisíci lety. Nejprve se jednalo o přírodní nepravidelné předměty,

Více

MONSTRA & MÝTY. (Monster & Mythen)

MONSTRA & MÝTY. (Monster & Mythen) MONSTRA & MÝTY (Monster & Mythen) Alan R. Moor Richard Borg 1.0 Úvod V jednom fantastickém světě spolu bojují mocní čarodějové, trpaslíci, trollové, skřeti a nemrtví. Hráči velí jejich armádám (pěchotě,

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Habermaaß-hra 4280. Nešikovná čarodějnice

Habermaaß-hra 4280. Nešikovná čarodějnice CZ Habermaaß-hra 4280 Nešikovná čarodějnice Nešikovná čarodějnice Okouzlující sledovací hra podporující rychlé rozhodování, pro 2 až 4 hráče ve věku od 5 do 99 let. Hra má FEX efekt pro zvýšení stupně

Více

Finanční a pojistná matematika. Den otevřených dveří 10. ledna 2014

Finanční a pojistná matematika. Den otevřených dveří 10. ledna 2014 Finanční a pojistná matematika Den otevřených dveří 10. ledna 2014 Ing. Pavel Hanuš asistent Katedry matematiky PřF UHK garant ekonomických předmětů katedry daňový poradce http://www.pavelhanus.cz pavel.hanus@uhk.cz

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Herní řád soutěžního pořadu,,míň JE VÍC!

Herní řád soutěžního pořadu,,míň JE VÍC! Herní řád soutěžního pořadu,,míň JE VÍC! I. Soutěž a pořadatel soutěže 1. Pořad Míň je víc! je všeobecná znalostní televizní soutěž, v níž vždy tří soutěžní páry soutěží o to, který z nich uvede takovou

Více