Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Rozměr: px
Začít zobrazení ze stránky:

Download "Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D."

Transkript

1 Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D.

2 Príklad Předpokládejme že máme náhodnou veličinu X která má hustotu pravděpodobnosti definovanou takto: f(x) = 1 x (a, b) b a 0 x jinak Distribuční funkci získáme snadno jako F(x) = x f(t)dt = x 1 b a dt = 0 x a x a a x < b b a 1 x b Necht pro naší X platí a = 0 b = 2. Pak tedy:

3 Príklad a F(x) = x f(x) = f(t)dt = x 1 x (0, 2) 2 0 x jinak 1 2 dt = 0 x 0 x 2 0 x < 2 1 x 2

4 Střední hodnota náhodné veličiny Nejčastěji používanou číselnou charakteristikou polohy je první obecný moment, který se nazývá střední hodnota náhodné veličiny X. Budeme jej označovat symbolem E(X). Pro diskrétní náhodnou veličinu X, x [a; b] s pravděpodobnostní funkcí P(X = x) je E(X) definována jako: E(X) = n i=1 x i P(X = x i ) = n i=1 x i p i. Pro spojitou náhodnou veličinu X s hustotou pravděpodobnosti f(x) je E(X) definována jako: E(X) = b a xf(x)dx.

5 Rozptyl náhodné veličiny Popis polohy je třeba často doplnit o informaci, jak se rozptylují jednotlivé hodnoty náhodné veličiny kolem nějaké charakteristiky polohy (nejčastěji kolem střední hodnoty). Tuto informaci podávají charakteristiky variability. Mezi ně patří rozptyl D(X). Ten je stanoven jako druhý centrální moment: D(X) = E{[X E(X)] 2 } V případě diskrétní náhodné veličiny X je definován jako: D(X) = n i=1 [x i E(X)] 2 p i. V případě spojité náhodné veličiny X je definován jako: D(X) = b [x i E(X)] 2 f(x)dx. a

6 Příklad Předpokládejme, že náhodná veličina X popisující podíl jisté reklamní společnosti na tuzemském trhu, během jistého týdne, může být popsána následující hustotou pravděpodobnosti: f(x) = 3 2 (1 x2 ) 0 x 1 0 jinak Určeme: Distribuční funkci, střední hodnotu, medián, a rozptyl. Distribuční funkce F(x) = x (1 y2 )dy = 3 [ [y] x y ]x 0 = 3 2 [ x x3 3 ].

7 Příklad Střední hodnota: E(X) = 1 0 x 3 2 (1 x2 )dx = 3 2 [ x 2 2 ]1 0 [ x 4 4 ]1 0 = 3 8. Rozptyl: K výpočtu rozptylu naší náhodné veličiny X využijeme známého vzorce D(X) = E(X 2 ) [E(X)] 2. E(X 2 ) = 1 0 x 23 2 (1 x2 )dx = 3 2 [ x 3 3 ]1 0 [ x 5 5 ]1 0 = 1 5.

8 Příklad Pak již jednoduše: D(X) = 1 [ ] = = = 0,

9 Bernoulliho rozdělení Bern(π) Někdy také Alternativní rozdělení. Pomocí tohoto rozdělení lze popsat ty situace, ve kterých může náhodná proměnná nabývat pouze dvou možných hodnot. Příkladem může být hod ideální mincí. Bernoulliho rozdělení je definováno pomocí parametru π. Tento parametr lze interpretovat jako pravděpodobnost zdaru. Pravděpodobnostní funkce Bernoulliho rozdělení je definována takto f(x; π) = (1 π) pokud x = 0 π pokud x = 1.

10 Bernoulliho rozdělení Bern(π) Pravděpodobnostní funkci pro Bernoulliho rozdělení lze zapsat ekvivalentně jako: P(X = x) = π x (1 π) (1 x). Distribuční funkci tohoto rozdělení pak zapíšeme jako F(x; π) = (1 π) pokud x = 0 1 pokud x = 1. Střední hodnota náhodné veličiny sledující Bernoulliho rozdělení je dána hodnotou π, rozptyl takové veličiny pak hodnotou π(1 π). Symbolickým zápisem X Bern(π), říkáme, že náhodná veličina X sleduje Bernoulliho rozdělení s parametrem π.

11 Binomické rozdělení Bi(n; π) Pokud budeme opakovat n-krát určitý pokus při dodržení stejných podmínek, přičemž v každém pokusu bude moci nastat náhodný jev A, se stejnou pravděpodobností π a naopak nenastat s pravděpodobností 1 π, pak takové schéma pokusů nazýváme Bernoulliho schéma pokusů. Počet realizací jevu A v n nezávislých pokusech Bernoulliho schematu je zřejmě diskrétní náhodnou veličinou s definičním oborem {0, 1,..., n}. Vzhledem k tomu, že jsou tyto pokusy navzájem nezávislé lze psát: P(X = x) = ( n x ) π x (1 π) n x.

12 Binomické rozdělení Bi(n; π) Střední hodnotu lze pak určit jako: E(X) = E(X 1 ) + E(X 2 ) E(X n ) = nπ. Pro rozptyl pak D(X) = D(X 1 ) + D(X 2 ) D(X n ) = nπ(1 π).

13 Bi(n, p) P(x) x

14 Multinomické rozdělení - mimo soutěž Multinomické rozdělení je zobecněním binomického rozdělení pro p-rozměrnou náhodnou veličinu X = (X 1, X 2,..., X p ) se sdruženou pravděpodobnostní funkcí P(X 1 = x 1 ; X 2 = x 2,..., X p = x p ) = n! x 1!x 2!, x p! πx 1π x 2 π x p a kde x i = 0, 1, 2,..., n. Zároveň platí p i=1 x i = n a p i=1 π i = 1.

15 Poissonovo rozdělení P o(λ) V některých případech není počet událostí výsledkem předem stanoveného počtu zkoušek. Vhodný pravděpodobnostní model pak představuje Poissonovo rozdělení. Poissonovo rozdělení má pouze jeden jediný parametr a tím je λ, který udává jak střední hodnotu tak rozptyl. Maximálně věrohodným odhadem parametru λ je prostý aritmetický průměr. Pokud náhodná veličina X sleduje Poissonovo rozdělení s parametrem λ, pak píšeme X P o(λ).

16 Poissonovo rozdělení P o(λ) Poissonova pravděpodobnostní funkce je definována takto f(x; λ) = P(X = x; λ) = e λ λ x x! Distribuční funkce pak jako x e λ λ z F(x; λ) = z! z=0

17 Po(2) P(x) x

18 Hypergeometrické rozdělení H(M; N; n) Náhodná veličina X má hypergeometrické rozdělení s parametry N, M, n, jestliže má definovanou pravděpodobnostní funkci následujícím způsobem: P(X = x) = ( M x )(N M n x ) ( N n ) pokud x max(0, M N + n); min(m, n) 0 jinak. Přičemž N, M, n a x jsou přirozená čísla, pro která platí n M N a 1 n N. Uvědomte si, že faktoriály jsou definovány pouze pro nulu a přirozená čísla: n! = n (n 1) (n 2) 2 1 0! = 1

19 Hypergeometrické rozdělení H(M; N; n) Pro malá n/n přibližně pro n/n 0, 1 lze hypergeometrické rozdělení aproximovat binomickým rozdělením s parametrem π = M/N. V případě, že je n/n a M/N malé a n velké, řekněme n/n 0, 1, M/N 0, 1 a n > 30, lze hypergeometrické rozdělení aproximovat tzv. Poissonovým rozdělením s parametrem λ = nm/n.

20 Vícerozměrné hypergeometrické rozdělení - mimo hru Vícerozměrné hypergeometrické rozdělení je rozdělení náhodného vektoru X = (X 1, X 2,..., X p ) se sdruženou pravděpodobnostní funkcí kde P(X 1 = x 1 ; X 2 = x 2,..., X p = x p ) = ( M1 )( ) ( ) M2 x 1 x Mp 2 x ( ) p N, n x i = max[0; M i N + n],..., min[m i ; n] a dále p i=1 x i = n a π i=1 M i = N.

21 Co Vám to připomíná?

22 Normální rozdělení N(µ; σ 2 ) Patří mezi nejdůležitější spojitá rozdělení náhodných veličin. Má zásadní význam jak v statistické teorii, tak i v aplikacích. Lze říci, že tímto rozdělením lze popsat jevy, na jejichž koĺısání má vliv velký počet nepatrných a vzájemně nezávislých vlivů. Hustota pravděpodobnosti tohoto rozdělení je dána funkcí: f(x µ; σ 2 ) = 1 (x i µ) 2 σ 2π e 2σ 2 pro x i (, ) Normální rozdělení je symetrické kolem své střední hodnoty, která je současně mediánem i modem.

23

24 Normalni rozdeleni dnorm (x) x

25 Standardizace Pokud bychom hodnoty náhodné veličiny X s normálním rozdělením vhodně transformovali resp. normovali, pak bychom získali náhodnou veličinu U jejíž rozdělení bylo opět normální, resp. normální normované rozdělení, s jednotkovým rozptylem a nulovou střední hodnotu. Náhodnou veličinu U získáme transformací náhodné veličiny X N(µ; σ 2 ) takto: U = X E(X) D(X) = X µ σ Rozdělení N(0; 1) se nazývá normálním normovaným rozdělením.

26 Každé normální rozdělení, lze transformovat, na normální normované rozdělení. Hustotu normovaného normálního rozdělení důsledně označujeme symbolem ϕ(x). Distribuční funkci rozdělení N(0, 1) důsledně označujeme prostřednictvím symbolu φ(x). Tabulky hustoty pravděpodobnosti spolu s distribuční funkcí jsou sestaveny většinou pro nezáporné hodnoty normované veličiny U. Hodnoty pro x < 0 plynou ze vztahů ϕ( x) = ϕ(x) φ( x) = 1 φ(x)

27 Pojem: α100%ní kvantil Ve statistice je velmi důležitý pojem kvantilu. Kvantilem, resp. α100%-ním kvantilem náhodné veličiny X, která má jisté spojité rozdělení náhodné veličiny s distribuční funkcí F(x) a hustotu pravděpodobnosti f(x), je číslo x α pro které platí F(x α ) = P(X x α ) = x α f(x)dx = α. Alfa procentní kvantil normálního normovaného rozdělení N(0; 1) označujeme prostřednictvím symbolu u α. Pro normální normované rozdělení platí u α = u 1 α.

28 5% kvantil normálního normovaného rozdělení - u 0,05 Normal Distribution mu = 0, sigma = 1 Probability Density P( X < ) = 0.05 P( X > ) =

29 50% kvantil normálního normovaného rozdělení - u 0,50 Normal Distribution mu = 0, sigma = 1 Probability Density P( X < 0 ) = 0.5 P( X > 0 ) =

30 95% kvantil normálního normovaného rozdělení - u 0,95 Normal Distribution mu = 0, sigma = 1 Probability Density P( X < ) = 0.95 P( X > ) =

31 Tabulky rozdělení N(0; 1) Tabelované Hodnoty pro N(0; 1) vyjadřující P (X x) 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0 0,500 0,504 0,508 0,512 0,516 0,520 0,524 0,528 0,532 0,536 0,1 0,540 0,544 0,548 0,552 0,556 0,560 0,564 0,568 0,571 0,575 0,2 0,579 0,583 0,587 0,591 0,595 0,599 0,603 0,606 0,610 0,614 0,3 0,618 0,622 0,626 0,629 0,633 0,637 0,641 0,644 0,648 0,651 0,4 0,655 0,659 0,663 0,666 0,670 0,674 0,677 0,681 0,684 0,687 0,5 0,696 0,695 0,699 0,702 0,705 0,709 0,712 0,716 0,719 0,722 0,6 0,725 0,729 0,732 0,736 0,739 0,742 0,745 0,749 0,752 0,754 0,7 0,758 0,761 0,764 0,767 0,770 0,773 0,776 0,779 0,782 0,785 0,8 0,788 0,791 0,794 0,797 0,800 0,802 0,805 0,808 0,811 0,813 0,9 0,816 0,817 0,821 0,824 0,826 0,829 0,832 0,834 0,837 0, ,841 0,844 0,846 0,849 0,851 0,853 0,855 0,858 0,860 0,862 1,1 0,864 0,867 0,869 0,871 0,873 0,875 0,877 0,879 0,881 0,88 1,2 0,885 0,887 0,889 0,891 0,893 0,894 0,896 0,898 0,900 0,901 1,3 0,903 0,905 0,907 0,908 0,910 0,912 0,913 0,915 0,916 0,917 1,4 0,919 0,921 0,922 0,924 0,925 0,927 0,928 0,929 0,931 0,931 1,5 0,933 0,935 0,936 0,937 0,938 0,939 0,941 0,942 0,943 0,944 1,6 0,945 0,946 0,947 0,948 0,9495 0,9505 0,952 0,953 0,954 0,954 1,7 0,955 0,956 0,957 0,958 0,959 0,960 0,961 0,962 0,963 0,963 1,8 0,964 0,965 0,966 0,966 0,967 0,968 0,969 0,969 0,970 0,970 1,9 0,971 0,972 0,973 0,973 0,974 0,974 0,975 0,976 0,976 0,976

32 Chi kvadrát rozdělení χ 2 (v) Uvažujme navzájem v nezávislých náhodných veličin U 1, U 2,, U v, z nichž každá má normované normální rozdělení. Potom rozdělení součtu čtverců těchto náhodných veličin má χ 2 rozdělení. Tedy χ 2 = v Ui 2 i=1 Součet čtverců v vzájemně nezávislých normovaných normálních náhodných veličin má hustotu pravděpodobnosti danou předpisem f(x) = 1 )e χ2 22Γ( v 2 v 2 (χ2 ) 2 v 1, χ 2 > 0 0, χ 2 0 Parametr v se nazýváme počtem stupňů volnosti. V našem případě mluvíme o χ 2 rozdělení o v stupních volnosti, které značíme χ 2 (v). Distribuční funkce tohoto rozdělení je definována

33 Chi kvadrát rozdělení χ 2 (v) rovnicí F (x) = 1 χ 2 22Γ( v 2 v ) 0 e 2t t v 2 1 dt, χ 2 > 0 0, χ 2 0 Charakteristiky tohoto rozdělení jsou E(χ 2 ) = v D(χ 2 ) = 2v. Frekvenční funkce χ 2 rozdělení je asymetrická. Její průběh závisí na počtu stupňů volnosti. S rostoucím v se χ 2 rozdělení bĺıží normálnímu rozdělení N(v, 2v). Pokud v > 30 lze toto rozdělení aproximovat normovaným normálním rozdělením.

34 Studentovo nebo také t-rozdělení t(n) Jedním z nejčastěji využívaným rozdělením je tzv. Studentovo rozdělení. Lze jej definovat pomocí dvou nezávislých náhodných veličin U a χ 2, které mají po řadě N(0, 1) a χ 2 (v) rozdělení. Náhodná veličina t kde ta je definována jako t = má hustotu pravděpodobnosti f(u; χ 2 ) = 1 2π e u2 2 U χ 2 v 1, (1) 2 v 2Γ( v 2 )e χ 2 2 (χ 2 ) v 2 1 (2) kde < u < a χ 2 > 0. Počet stupňů volnosti veličiny χ 2 ve jmenovateli veličiny t určuje počet stupňů volnosti Studentova rozdělení.

35 Studentovo nebo také t-rozdělení t(n) Rozdělení t při rostoucím počtu stupňů volnosti rychle konverguje k normálnímu rozdělení. Pro v > 30 lze nahradit Studentovo rozdělení normálním normovaným rozdělením. Studentovo rozdělení je symetrické jednovrcholové. Vzhledem k symetrii platí: t α (v) = t 1 α (v)

36 Fisherovo-Snedecorovo rozdělení F (v 1 ; v 2 ) Dalším hojně využívaným rozdělením je Fisherovo-Snedecorovo rozdělení. Lze jej definovat prostřednictvím dvou nezávislých náhodných veličin které pocházejí z Chi-kvadrát rozdělení s v 1 resp. v 2 stupni volnosti. Náhodná veličina F je definována takto: F = χ 2 1 v 1 χ 2. 2 v 2 Rozdělení s touto hustotou pravděpodobnosti se nazývá Fisherovo- Snedecorovo rozdělení či F rozdělení o v 1 a v 2 stupních volnosti.

37 Fisherovo-Snedecorovo rozdělení F (v 1 ; v 2 ) Symbolicky se zapisuje jako F (v 1, v 2 ). Uvědomte si, že zde záleží na pořadí stupňů volnosti v 1, v 2. Nicméně platí vztah F α (v 1, v 2 ) = 1 F 1 α (v 2, v 1 ) Rozdělení F se při velkých počtech stupňů volnosti bĺıží k rozdělení normálnímu, ale dosti pomalu. Toto rozdělení je asymetrické.

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

11 Rovnoměrné a normální rozdělení psti

11 Rovnoměrné a normální rozdělení psti 11 Rovnoměrné a normální rozdělení psti 11 Rovnoměrné a normální rozdělení psti Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá část kapitoly 13 ze skript [1] a vše, co se nachází v kapitole

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích K pojmu distiribuční funkce Distribuční funkce je definována vztahem: F (x) = P (X x i ) Distribuční

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Diskrétní rozdělení Vilém Vychodil KMI/PRAS, Přednáška 6 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 6) Diskrétní rozdělení Pravděpodobnost a

Více

Významná diskrétní rozdělení pravděpodobnosti

Významná diskrétní rozdělení pravděpodobnosti Alternativní rozdělení Příklad Střelec vystřelí do terče, pravděpodobnost zásahu je 0,8. Náhodná veličina X udává, jestli trefil: položíme X = 1, jestliže ano, a X = 0, jestliže ne. Alternativní rozdělení

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Ing. Jana Šenkapoulová VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a.s. Brno, Soběšická 156, 638 1 Brno ÚVOD Každé rekonstrukci

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I Statistika I 1 Popisná statistika 1.1 Základní pojmy Statistický soubor konečná množina prvků, které jsou nositeli určitého hromadného jevu Rozsah s.s. počet prvků množiny Statistické jednotky prvky s.s.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M3 ZÁKLADY TEORIE ODHADU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA doc. RNDr. Tomáš Mrkvička, Ph.D. November 17, 2015 Bibliography [1] J. Anděl: Statistické metody, Matfyzpress, Praha 1998 [2] V. Dupač, M. Hušková: Pravděpodobnost

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Statistické metody. Martin Schindler KAP, tel. 48 535 2836, budova G. martin.schindler@tul.cz. naposledy upraveno: 9.

Statistické metody. Martin Schindler KAP, tel. 48 535 2836, budova G. martin.schindler@tul.cz. naposledy upraveno: 9. Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Kovariance, 76. Kritická hodnota. souboru, 65 Kritický obor, 121 Kvantil. souboru, 64 Kvartil. souboru, 68. Median

Kovariance, 76. Kritická hodnota. souboru, 65 Kritický obor, 121 Kvantil. souboru, 64 Kvartil. souboru, 68. Median Index χ 2 -test, 133 dobré shody, 134 nezávislosti, 135 Úplná pravděpodobnost, 50 Alternativní hypotéza, 118 ANOVA, 157 nevysvětlený rozptyl, 159 příklad, 160 vysvětlený rozptyl, 158 ANOVA 2, 161 příklad,

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Přehled pravděpodobnostních rozdělení

Přehled pravděpodobnostních rozdělení NSTP097Statistika Zima009 Přehled pravděpodobnostních rozdělení Diskrétní rozdělení. Alternativní(Bernoulliovo, nula-jedničkové) rozdělení X Alt(p) p (0, ) X {0,} Hustota: P[X= j]=p j ( p) j, j {0,} Středníhodnota:

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot Rozdělení Náhodná veličina Náhodná veličina je vyjádření výsledku náhodného pokusu číselnou hodnotou. Jde o reálnou funkci definovanou na množině. Rozdělení náhodné veličiny udává jakých hodnot a s jakou

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více