Přírodovědecká fakulta

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přírodovědecká fakulta"

Transkript

1 MASARYKOVA UNIVERZITA Přírodovědecká fakulta Studijní program: Aplikovaná matematika Studijní obor: Statistika a analýza dat profesní Metody jednoduché korelace v systémech STATISTICA a MATLAB Bakalářská práce Vedoucí práce: RNDr. Marie Budíková, Dr. Autor: Radim Tomášek 2010

2 Poděkování Rád bych poděkoval vedoucí své bakalářské práce, RNDr. Marii Budíkové, Dr., za její čas, trpělivost a cenné rady na konzultacích v průběhu vypracovávání této práce. Prohlášení Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně s použitím citovaných pramenů. V Brně, dne Radim Tomášek

3 Název práce: Metody jednoduché korelace v systémech STATISTICA a MATLAB Autor: Radim Tomášek Ústav matematiky a statistiky Přírodovědecké fakulty MU Vedoucí bakalářské práce: RNDr. Marie Budíková, Dr. Abstrakt: Tématem bakalářské práce je korelační analýza dvourozměrných náhodných veličin. Tato analýza zahrnuje zejména testování nezávislosti a určení síly závislosti náhodných veličin. Práce je zaměřena na praktické zpracování reálných dat, které je vždy uvozeno základní teorií. Výpočty jsou realizovány pomocí matematických programů STATISTICA 9 a MATLAB 7.8 (R2009a). Součástí práce je taktéž porovnání těchto programů při aplikaci na korelační analýzu. Klíčová slova: korelační analýza, korelace, Statistica, Matlab Title: Methods of simple correlation in MATLAB and STATISTICA systems Author: Radim Tomášek Department od Mathematics and Statistics, Faculty of Science, MU Supervisor: RNDr. Marie Budíková, Dr. Abstract: The topic of this bachelor thesis is correlation analysis of two-dimensional random variables. This includes particularly the testing of independence and determination of random variables's strength dependence. This paper is focused on practical real data processing, always preceded by basic theory. Mathematical software STATISTICA 9 and MATLAB 7.8 (R2009a) were used for calculations. Comparison of these programs used for the correlation analysis is also part of this thesis. Keywords: correlation analysis, correlation, Statistica, Matlab

4 Úvod Bakalářská práce je zaměřena na korelační analýzu dvourozměrných náhodných veličin, přičemž těžiště práce spočívá v provádění této analýzy v programech STATISTICA 9 a MATLAB 7.8 (R2009a). Práce je rozdělena na 5 kapitol, nejpodstatnější jsou prostřední tři, které pojednávají o korelační analýze nominálních, ordinálních a intervalových a poměrových veličin. Část textu také srovnává uvedené programy. Korelační analýza v programech STATISTICA a MATLAB je ukázána na konkrétních příkladech obsahujících reálná data. Ke každému příkladu je vždy na záznamovém médiu přiložen datový soubor, který tato data obsahuje. Při zpracovávání dat v programu MATLAB se často používá více příkazů, proto jsou tyto příkazy shrnuty do funkcí a tyto funkce jsou ve formě m-souborů taktéž přiloženy na záznamovém médiu.

5 Obsah 1. Načtení datového souboru Testování nezávislosti nominálních veličin Základní teorie Zpracování dat v programu STATISTICA Zpracování dat v programu MATLAB Srovnání programů STATISTICA a MATLAB Testování nezávislosti ordinálních veličin Základní teorie Zpracování dat v programu STATISTICA Zpracování dat v programu MATLAB Srovnání programů STATISTICA a MATLAB Testování nezávislosti intervalových a poměrových veličin Základní teorie Zpracování dat v programu STATISTICA Zpracování dat v programu MATLAB Srovnání programů STATISTICA a MATLAB Celkové srovnání programů STATISTICA a MATLAB...29 Přílohy...30 Seznam použité literatury...36

6 Načtení datového souboru 1. Načtení datového souboru Nejprve ukažme, jak načítat textové (*.txt) a excelovské (*.xls) soubory v programech STATISTICA a MATLAB. Pro představu, jak má daný soubor vypadat, je v textu vždy vložena část souboru, který se načítá, a v závorce je uveden název tohoto souboru. Tyto soubory jsou přiloženy na záznamovém médiu. 1.1 Načtení souboru v programu STATISTICA Textový soubor: V programu STATISTICA zvolíme záložku Soubor, položku Otevřít (zkratka Ctrl+O). Vybereme požadovaný soubor, OK. Následně zvolíme možnost Definovat, OK. Nyní můžeme definovat použitý oddělovač proměnných, zda chceme ignorovat více oddělovačů za sebou, vzít jména proměnných z prvního řádku a jiné. Po výběru stiskneme OK a tímto máme data načtená. Vzhled souboru (Rodiny.txt): rodina frekv cetnost delnic casto 22 delnic obcas 33 delnic jak kdy 30 delnic malo 15 delnic vubec 9 zamest casto Excelovský soubor Opět přes Soubor Otevřít vybereme požadovaný soubor. Program se nás nejprve dotáže, který list souboru chceme otevřít, popř. jestli chceme otevřít všechny. Následně si můžeme zvolit, zda první řádek či první sloupec obsahují názvy případů náhodných veličin. Samozřejmě toto vždy zvolíme dle tabulky, kterou máme v souboru uloženou. Kliknutím na OK se již požadovaná tabulka otevře a zobrazí. Vzhled souboru (Korupce.xls): rok 2005 rok 2009 Island 1 6 Finsko 2 4,5 Dansko 3 1 Svedsko 4 2 Svycarsko

7 Načtení datového souboru 1.2 Načtení souboru v programu MATLAB Textový soubor Načtení souboru se provádí příkazem tblread, konkrétně >> [data,prom1,prom2]=tblread('filmy.txt','tab'), kde do prom1 se uloží první řádek souboru (tj. názvy případů první veličiny) a do prom2 první sloupec (tj. názvy případů druhé veličiny) a do data se uloží již konkrétní hodnoty. 'tab' v příkazu značí, že byl jako oddělovač v souboru použit tabulátor. Seznam všech možných oddělovačů nalezneme v nápovědě k příkazu tblread (>> help tblread) Je důležité, aby první řádek vždy označoval názvy proměnných a první sloupec názvy případů jednotlivých veličin, protože program MATLAB s tímto počítá. Pokud tam tento první řádek a sloupec nemáme, je třeba je doplnit. Vzhled souboru (Filmy.txt): CSFD IMDB Kmotr Kolja Shrek Sedm Pelisky Excelovský soubor Pro načtení použijeme příkaz >> [data, tabulka]=xlsread('okres.xls') Do proměnné data se uloží matice obsahující zjištěné četnosti, do proměnné tabulka se uloží matice odpovídající zadané tabulce. Nutno podotknout, že MATLAB sám pochopí první řádek či první sloupec jako názvy případů náhodných veličin, pokud se jedná o text. Pokud by byly názvy případů označeny čísly, je potřeba daný sloupec/řádek z tabulky odstranit jedním z těchto příkazů: >> data(1,:)=[] (odstraní první řádek) >> data(:,1)=[] (odstraní první sloupec) Vzhled souboru (Okres.xls): I. II. III. Blansko Brno-mesto Brno-venkov

8 2. Testování nezávislosti nominálních veličin 2.1 Základní teorie Testování nezávislosti nominálních veličin Popis testu Nechť X,Y jsou dvě nominální náhodné veličiny. Nechť X nabývá variant x [1],...,x [r] a Y nabývá variant y [1],...,y [s]. Získáme dvourozměrný náhodný výběr rozsahu n z rozložení, kterým se řídí dvourozměrný diskrétní náhodný vektor (X,Y). Zjištěné absolutní četnosti n jk dvojice variant (x [j],y [k] ) uspořádáme do kontingenční tabulky: x y y [1]... y [s] n j. n jk x [1]... x [r] n n 1s n r1... n rs n n r. n.k n.1... n.s n Marginální četnosti n j., n.k, j = 1,...,r, k = 1,...,s, jsou vždy součtem absolutních četností v příslušném řádku, resp. sloupci. Testujeme nulovou hypotézu H 0 : X,Y jsou stochasticky nezávislé náhodné veličiny proti hypotéze H 1 : X,Y nejsou stochasticky nezávislé náhodné veličiny. Testová statistika má tvar: r K= j=1 s k=1 n n j. n.k jk n n j. n. k n Platí-li H 0, pak K se asymptoticky řídí rozložením χ 2 ((r-1)(s-1)). Nulovou hypotézu o nezávislosti veličin X,Y zamítáme na asymptotické hladině významnosti α, 2 když K χ 1 α ((r-1)(s-1)) Podmínky dobré aproximace Definujme teoretickou četnost jako n n j.. k. n Rozložení statistiky K lze aproximovat rozložením χ 2 ((r-1)(s-1)), pokud teoretické četnosti aspoň v 80% případů nabývají hodnoty větší nebo rovné 5 a ve zbylých 20% neklesnou pod 2. Pokud tato podmínka není splněna, je vhodné sloučit některé varianty. 2 5

9 Testování nezávislosti nominálních veličin Cramérův koeficient V= K n m 1, kde m = min{r,s}. Používá se pro měření síly závislosti náhodných veličin. Tento koeficient nabývá hodnot od 0 do 1. Čím blíže je jeho hodnota rovna 1, tím je závislost mezi náhodnými veličinami těsnější. Čím blíže je jeho hodnota 0, tím je závislost volnější. 2.2 Zpracování dat v programu STATISTICA Příklad V průzkumu bylo dotázáno 776 lidí na typ jejich domácnosti a jak často se zajímají o dění ve 2. světové válce. Výsledky jsou uloženy v souboru Rodiny.txt a zobrazuje je následující tabulka: často občas jak kdy málo vůbec dělnická zaměstnanecká podnikatelská smíšená zemědělská neúplná (zdroj: [8]) Na asymptotické hladině významnosti 0,05 testujme nulovou hypotézu o nezávislosti zájmu o dění ve 2. sv. válce na typu domácnosti a vypočtěme Cramérův koeficient. 6

10 Testování nezávislosti nominálních veličin Řešení příkladu Podmínky dobré aproximace Načteme soubor Rodiny.txt. Musíme ověřit podmínky dobré aproximace, proto vytvoříme kontingenční tabulku teoretických četností. Zvolíme záložku Statistiky, možnost Základní statistiky/tabulky. Z nabízených možností vybereme Kontingenční tabulky, OK. Kliknutím na Specif. tabulky vybereme proměnné: List1-Rodina, List2-Frekv. OK. Zapneme proměnnou vah Cetnost. OK. Na záložce Možnosti zaškrtneme Zvýraznit četnosti (větší než 5) a Očekávané četnosti. Výsledky zobrazíme kliknutím na Výpočet. Dostaneme tuto tabulku: Můžeme v ní vidět, že očekávané četnosti u zemědělské rodiny jsou velmi nízké a nejsou splněny podmínky dobré aproximace. Proto bude vhodné sloučit podnikatelskou a zemědělskou domácnost. V programu STATISTICA proto v datovém souboru zaměníme zemed za podnik a zobrazíme novou tabulku očekávaných četností. Máme zde již pouze dvě hodnoty nižší než 5, nicméně neklesají pod 2, takže již máme podmínky dobré aproximace splněny a můžeme pokračovat dále ve výpočtu. 7

11 Testování nezávislosti nominálních veličin Testování hypotézy o nezávislosti, Cramérův koeficient Přistupme k samotné hypotéze o nezávislosti. V programu STATISTICA se vrátíme do kontingenčních tabulek na záložku Možnosti, kde zaškrtneme Pearsonův & M-V chíkvadrát a Fí (tabulky 2x2) & Cramérovo V & C. Přejdeme na záložku Detailní výsledky a zvolíme Detailní 2-rozměrné tabulky. Získáme následující tabulku: Z prvního řádku vyčteme, že hodnota testové statistiky je rovna 25,1352, počet stupňů volnosti je 16 a p-hodnota je 0,0675. Poslední uvedené znamená, že nezamítáme nulovou hypotézu o nezávislosti zájmu o dění ve 2. sv. válce na typu domácnosti na asymptotické hladině významnosti 0,05. 2 Rozhodnout o této hypotéze můžeme také z hodnoty kvantilu chí-kvadrátu. Kvantil χ 0,95 (16) je roven 26,296. Protože K < 26,296, tak nezamítáme nulovou hypotézu o nezávislosti na asymptotické hladině významnosti 0,05. Na posledním řádku tabulky je uvedena hodnota Cramérova koeficientu rovna 0, Tzn., že závislost je velmi slabá. Poznámka 1: Pokud chceme četnosti zobrazit graficky, je to v programu STATISTICA velmi jednoduché. Stačí se vrátit do Detailních výsledků kontingenčních tabulek a máme na výběr kategorizované histogramy, grafy interakcí mezi četnostmi a 3D histogramy. Ukažme si posledně jmenovaný: 8

12 Testování nezávislosti nominálních veličin Poznámka 2: Při vytváření datového souboru zapisujeme jednotlivé proměnné do sloupce pod sebe, přičemž jednotlivé hodnoty na řádku oddělujeme zpravidla mezerníkem, čárkou či tabulátorem. Na prvním řádku každého sloupce bývá napsaný název jeho proměnné. Poznámka 3: Data nemusí být zadána pouze kontingenční tabulkou. Může se stát, že máme k dispozici původní statistický soubor, tj. soubor vypadající následovně: Prom1 Prom2 x 1 y 1 x n kde Prom1 a Prom2 jsou názvy proměnných. Potom postupujeme stejným způsobem, jen nezapínáme proměnnou vah. y n 2.3 Zpracování dat v programu MATLAB Příklad K bylo zjištěno, že v Jihomoravském kraji je 4511 km silnic. Jejich rozložení dle příslušnosti k okresu (Blansko, Brno-město, Brno-venkov, Břeclav, Hodonín, Vyškov, Znojmo) a typu silnice (dálnice+i. třída, II. třída, III. třída) je uloženo v souboru Okres.xls a je uvedeno v následující tabulce: Typ silnice Okres dálnice + I.třída II. třída III.třída Blansko Brno - město Brno - venkov Břeclav Hodonín Vyškov Znojmo (zdroj: [9]) Na asymptotické hladině významnosti 0,05 testujme nulovou hypotézu o nezávislosti typu silnice na příslušnosti k okresu a vypočtěme Cramérův koeficient. 9

13 2.3.2 Řešení příkladu Podmínky dobré aproximace Načteme soubor Okres.xls. Nejprve vytvoříme tabulku četností pomocí následujících příkazů >> [m,n]=size(data); >> for i=1:m, soucet1(i)=sum(data(i,:)); end >> data1=[data,soucet1']; >> for i=1:(n+1), soucet2(i)=sum(data1(:,i)); end >> kont_tab=[data1;soucet2] Testování nezávislosti nominálních veličin a následně vytvoříme kontingenční tabulku očekávaných četností dle těchto příkazů >> for i=1:m, for j=1:n, tab_ocekav_cetn(i,j)=kont_tab(i,(n+1))*kont_tab((m+1),j)/kont_tab((m+1),(n+1)); end end Tabulka je bohužel bez popisků, které je v programu MATLAB obtížné přidat. Pro výsledek to však není důležité. V tomto případě můžeme ověřit podmínky dobré aproximace od pohledu; pokud bychom měli tabulku rozměrnější, ověřili bychom podmínky následovně: >> vice_nez_pet=0; >> mene_nez_dva=0; >> for i=1:m, for j=1:n, if tab_ocekav_cetn(i,j)>5 vice_nez_pet=vice_nez_pet+1; end if tab_ocekav_cetn(i,j)<2 mene_nez_dva=mene_nez_dva+1; end end end 10

14 >> if (vice_nez_pet>(4*m*n/5)) && (mene_nez_dva>=0) ans='podminky dobre aproximace jsou splneny.', else ans='podminky dobre aproximace nejsou splneny.', end Testování nezávislosti nominálních veličin Poznámka: Popišme ještě, jak vytvořit kontingenční tabulku, pokud máme k dispozici původní datový soubor, kde varianty náhodné veličiny jsou vždy reprezentovány číslem. První možnou variantu reprezentuje 1, druhou variantu 2 atd. Takovéto označení je pro MATLAB výhodné, protože jinak bychom potřebovali k vytvoření kontingenční tabulky mnohem více příkazů. Načtení provedeme standardně příkazem >> [tabulka]=xlsread('soubor.xls') a pro sestavení kontingenční tabulky postupujeme takto: >> n=length(tabulka(:,1)); >> r=max(tabulka(:,1)); >> s=max(tabulka(:,2)); >> data=zeros(r,s); >> for i=1:r, for j=1:s, for k=1:n, if (tabulka(k,1)==i) && (tabulka(k,2)==j) data(i,j)=data(i,j)+1; end end end end Tímto jsme vytvořili proměnnou s názvem data (právě tu, kterou bychom získali načtením tabulky ze souboru Okres.xls). Dále tedy postupujeme od bodu Podmínky dobré aproximace, pouze vynecháme načtení souboru. Testování hypotézy o nezávislosti, Cramérův koeficient Spočteme hodnotu testové statistiky K: >> K=0; >> for i=1:m, for j=1:n, K=K+((kont_tab(i,j)-tab_ocekav_cetn(i,j))^2)/tab_ocekav_cetn(i,j); end end 11

15 Testování nezávislosti nominálních veličin >> if K>=chi2inv(0.95,(m-1)*(n-1)) ans='zamitame hypotezu o nezavislosti na asymptoticke hladine vyznamnosti 0,05', else ans='nezamitame hypotezu o nezavislosti na asymptoticke hladine vyznamnosti 0,05', end Pokud bychom chtěli rozhodnout pomocí p-hodnoty, dopočítáme ji příkazem >> p_hodnota=1-chi2cdf(k,(m-1)*(n-1)) a dostaneme výsledek P-hodnota je menší než asymptotická hladina významnosti 0,05, takže zamítáme hypotézu o nezávislosti na asymptotické hladině významnosti 0,05. Dopočítejme ještě Cramérův koeficient: >> k=min(m,n); >> V=sqrt(K/(kont_tab((m+1),(n+1))*(k-1))); Shrnut í Zjistili jsme, že podmínky dobré aproximace jsou splněny. Hodnota testové statistiky K je rovna 184, což je větší než hodnota chí-kvadrátu s 12 stupni volnosti pro hladinu významnosti 0,05 (rovno 21). Proto zamítáme nulovou hypotézu o nezávislosti typu silnice na příslušnosti k okresu na asymptotické hladině významnosti 0,05. O zamítnutí hypotézy svědčí též vypočtená p-hodnota rovna 0. Hodnota Cramérova koeficientu je rovna 0,1428, což znamená, že závislost je velmi volná. 12

16 2.4 Srovnání programů STATISTICA a MATLAB Testování nezávislosti nominálních veličin Podívejme se teď na přednosti a nedostatky těchto programů při testování hypotéz o nezávislosti nominálních veličin. STATISTICA Jako první jsme načítali soubory. Načítání neskýtá žádné výhody ani nevýhody oproti MATLABu. Velký rozdíl ale poznáme v případě, kdy chceme zpracovat původní statistický soubor. V programu STATISTICA to pro nás neznamená žádné ztížení, v MATLABu už je to složitější. Největší předností tohoto programu je uživatelská přívětivost. STATISTICA se ovládá způsobem, na který jsme zvyklí z nejrůznějších počítačových programů, tj. nemusíme znát žádné příkazy a stačí se proklikat nabídkou a možnostmi. Uváděné možnosti jsou přehledně rozděleny, takže s menší pomocí nápovědy se velmi rychle dobereme výsledků. Všechny požadované výpočty jsou sdruženy v jednom okně, kde jen zatrhneme vše, co nás zajímá, a necháme si výsledky vypočítat. MATLAB Velmi dobrá vlastnost programu MATLAB umožňuje sloučit napsané příkazy do jedné funkce a nechat si automaticky vypsat pouze požadované konstanty (myšleno hodnotu testové statistiky, p-hodnotu, atd.) anebo rovnou slovní hodnocení výsledků (např., že vypočtená hodnota svědčí o zamítnutí hypotézy). Příklad takovéto funkce je uveden v příloze. Jak lze pochopit z výše napsaného, tuto funkci musíme sami vytvořit, což vyžaduje jisté znalosti. Nevyplatí se zpracovávat např. jen jedna data. Pokud se pro tuto funkci rozhodneme, potom jediný příkaz dokáže vypsat všechny výsledky, což velice urychlí práci. Při kontingenční tabulce o větších rozměrech máme zároveň tu výhodu, že nemusíme nikde bokem na papíře počítat, kolik procent políček v kontingenční tabulce má hodnoty nižší než 5. Opět stačí vytvořit příkaz, který vše zpracuje a vypíše, zda jsou podmínky splněny. 13

17 3. Testování nezávislosti ordinálních veličin 3.1 Základní teorie Testování nezávislosti ordinálních veličin Nechť X,Y jsou dvě ordinální náhodné veličiny. Pořídíme dvourozměrný náhodný výběr (X 1,Y 1 ),...,(X n,y n ) z rozložení, jímž se řídí náhodný vektor (X,Y). Označíme R i pořadí náhodné veličiny X i a Q i pořadí náhodné veličiny Y i, i=1,...,n. Testujeme nulovou hypotézu H 0 : X,Y jsou pořadově nezávislé náhodné veličiny proti oboustranné alternativě H 1 : X,Y jsou pořadově závislé náhodné veličiny (resp. proti levostranné alternativě H 1 : mezi X a Y existuje nepřímá pořadová závislost resp. proti pravostranné alternativě H 1 : mezi X a Y existuje přímá pořadová závislost). Testová statistika se nazývá Spearmanův koeficient pořadové korelace a má tento tvar: 6 r s =1 R n n 2 i Q i 2. 1 i=1 H 0 zamítáme na hladině významnosti α 1. ve prospěch oboustranné alternativy, když r s r s,1-α/2 (n) 2. ve prospěch levostranné alternativy, když r s r s,1-α (n) 3. ve prospěch pravostranné alternativy, když r s r s,1-α (n) Hodnotu r s,1-α (n) najdeme v tabulkách. Poznámka: Spearmanův koeficient současně měří sílu pořadové závislosti náhodných veličin X,Y. Nabývá hodnot v intervalu [-1;1]. Čím je jeho hodnota bližší -1, resp. 1, tím je silnější nepřímá, resp. přímá, pořadová závislost. Čím je jeho hodnota bližší 0, tím je pořadová závislost slabší. Programy STATISTICA a MATLAB používají asymptotickou variantu testu. Pokud n > 20, vypočteme testovou statistiku n T 0 = r s n 2 1 r s 2. Tato statistika se za platnosti nulové hypotézy řídí rozložením t(n-2). Kritický obor pro oboustrannou alternativu je W = (-, -t 1-α/2 (n 2)] [t 1-α/2 (n 2), ), pro levostrannou alternativu W = (-, -t 1-α (n 2)], pro pravostrannou alternativu [t 1-α (n 2), ). Nulovou hypotézu o pořadové nezávislosti náhodných veličin X a Y zamítáme na asymptotické hladině významnosti α, jestliže t 0 W. 14

18 3.2 Zpracování dat v programu STATISTICA Testování nezávislosti ordinálních veličin Příklad V následující tabulce (a taktéž v excelovském souboru Korupce.xls) jsou uvedeny evropské státy a u každého státu je uvedeno jeho pořadí dle míry korupce. Udané hodnoty jsou v letech 2005 a Island Finsko Dánsko Švéds. Švýcar. Norsko Rakous Nizoz. VB Lucem. Němec ,5 8, , , ,5 Francie Belgie Irsko Španěl. Malta. Portug. Estons. Slovin. Kypr Maďar. Itálie ,5 13, ,5 21, , Litva ČR Řecko SR. Lotyš. Polsko ,5 23, (zdroj: [10]) Vypočtěme Spearmanův koeficient pořadové korelace a na hladině významnosti 0,05 testujme nulovou hypotézu, že pořadí států dle korupce v letech 2005 a 2009 je nezávislé Řešení příkladu Načteme soubor Korupce.xls. Nejprve zobrazíme data kvůli orientačnímu posouzení závislosti korupce v daných letech. V záložce Grafy vybereme možnost Bodové grafy. V následujícím okně klikneme vlevo nahoře na prázdný trojúhelník, čímž se zobrazí dostupné listy načteného souboru. Vybereme List1 a dáme OK. Poté vybereme požadované proměnné, vypneme lineární proložení a opět dáme OK. 15

19 Testování nezávislosti ordinálních veličin Výsledkem bude tento graf. Je z něj patrné, že závislost korupce v jednotlivých letech je přímá a docela silná. Tuto domněnku ověříme výpočtem. Testování hypotézy o nezávislosti V záložkách zvolíme položku Statistiky a možnost Neparametrická statistika. Budeme dotázáni na výběr tabulky, přičemž se zobrazí soubor, který jsme načetli. Dvakrát na něj klikneme myší, aby se zobrazily dostupné listy. Vybereme požadovaný list a dáme OK. Z daných možností zvolíme Korelace (Spearman,...) a dáme OK. V následujícím výběru provedeme: jako položku Vytvořit vybereme Detailní report. Nastavíme proměnné na rok 2005 a rok Na záložce Zákl. výsledky klikneme na možnost Spearmanův koef. R. a dostaneme výsledek: V tabulce vidíme, že n = 28, Spearmanův koeficient pořadové korelace je roven 0,9298. To znamená, že pořadová závislost korupce v daných letech je přímá a silná. Jako poslední položka v tabulce je uvedena p-hodnota, která se blíží nule. Proto zamítáme nulovou hypotézu o nezávislosti na asymptotické hladině významnosti 0,05. Tuto úvahu můžeme využít pouze v případě, že n > 20, což je v tomto případě splněno. Poznámka: Korupce bývá často hodnocena na nějaké stupnici a vstupní tabulka tak nemusí obsahovat vždy pořadí, ale právě hodnocení na této stupnici. V programu STATISTICA to však ničemu nevadí. Postupujeme úplně stejně jako když máme daná pořadí. 16

20 3.3 Zpracování dat v programu MATLAB Testování nezávislosti ordinálních veličin Příklad Na filmových databázích ČSFD (Česko-Slovenská filmová databáze) a IMDb (The Internet Movie Database) hodnotí uživatelé zhlédnuté filmy. Výsledné procentuální hodnocení filmů Kmotr, Kolja, Shrek, Sedm, Pelíšky, Pianista, Lví král, Provaz, Příšerky s.r.o. a Rocky je uvedeno v následující tabulce: Film Kmotr Kolja Shrek Sedm Pelíšky Databáze ČSFD IMDb Film Pianista Lví král Provaz Příšerky Rocky Databáze ČSFD IMDb (zdroj: [11]) Hodnoty jsou zároveň uloženy v souboru Filmy.txt. Vypočtěme Spearmanův koeficient pořadové korelace a na hladině významnosti 0,05 testujme nulovou hypotézu, že hodnocení filmů v databázích ČSFD a IMDb jsou pořadově nezávislá Řešení příkladu Načteme soubor Filmy.txt. Stejně jako v předchozím příkladu nejprve zobrazme data. >> plot(data(:,1), data(:,2),'.') >> axis([ ]) >> xlabel('csfd'), ylabel('imdb') >> title('znazorneni dat') 17

21 Testování nezávislosti ordinálních veličin Dostaneme tento graf: Korelace není tak zřejmá jako v předchozím příkladu, zejména kvůli menšímu rozsahu dat. Avšak i tato data vykazují známky korelace, kterou můžeme očekávat střední a přímou. Ověřme tuto domněnku výpočtem. Testování hypotézy o nezávislosti testování nezávislosti v případě ordinálních veličin se na rozdíl od nominálních provede velmi jednoduše pouze jedním příkazem: >> [Spearman,p_hodnota]=corr(data,'type','Spearman') Zde dostaneme tabulku korelací typu 2x2, ve které jsou uvedeny všechny korelace veličin X,Y, tj. X a X, X a Y, Y a X a jako poslední Y a Y. Požadovaná hodnota je tedy uvedena v prvním řádku a druhém sloupci, resp. druhém řádku a prvním sloupci. 18

22 Testování nezávislosti ordinálních veličin Pokud bychom chtěli vypsat pouze dvě hodnoty, které nás zajímají, provedeme příkazy >> Spearman1=Spearman(1,2) >> p_hodnota1=p_hodnota(1,2) Kritická hodnota pro Spearmanův koeficient pořadové korelace pro n = 10 je rovna 0,6364. Vypočtená hodnota Spearmanova koeficientu je 0,5383 < 0,6364, proto nulovou hypotézu, že hodnocení filmů v databázích ČSFD a IMDb jsou pořadově nezávislá, nezamítáme na hladině významnosti 0,05. Protože máme n < 20, nemůžeme pro rozhodnutí o nulové hypotéze použít vypočtenou p-hodnotu. (Pokud by byl datový rozsah dostatečný, svědčila by vypočtená hodnota o nezamítnutí hypotézy na hladině významnosti 0,05, protože 0,1085 > 0,05.) 3.4 Srovnání programů STATISTICA a MATLAB V programu STATISTICA proběhl výpočet podobně jako v případě nominálních veličin, ale v programu MATLAB došlo k výraznému zjednodušení. Jedním příkazem, resp. dvěma, pokud uvažujeme i načtení souboru, se dostaneme ke všem hodnotám, které nás zajímají. MATLAB se tedy co do rychlosti dostává na stejnou úroveň jako STATISTICA. Navíc v programu MATLAB stále převažuje výhoda v možnosti napsání dodatečných příkazů, které přímo vyhodnotí získané hodnoty, a jejich shrnutí do funkce. 19

23 Testování nezávislosti intervalových a poměrových veličin 4. Testování nezávislosti intervalových a poměrových.veličin 4.1 Základní teorie Koeficienty korelace Mějme dvě náhodné veličiny X a Y. Sílu lineárního vztahu mezi X a Y měříme pomocí Pearsonova koeficientu korelace, který definujeme jako C X,Y R X,Y = pro D X, D Y 0, jinak je roven 0. D X D Y Pro jeho výpočet musíme znát simultánní rozložení vektoru (X,Y), v praxi ho však většinou neznáme a jsme odkázáni na náhodný výběr (X 1,Y 1 ),...,(X n,y n ) z dvourozměrného rozložení. U tohoto náhodného výběru můžeme určit následující charakteristiky: 1. výběrové průměry n n 2. výběrové rozptyly S 2 1 = 1 n 1 i=1 3. výběrovou kovarianci M 1 = 1 X n i M 2 = 1 i=1 n i=1 n Y i X i M 1 2 S 2 2 = 1 n Y n 1 i M 2 2 i=1 S 12 = 1 X n 1 i M 1 Y i M 2 i =1 4. výběrový koeficient korelace n R 12 = S 12 S 1 S 2 pro S 1 S 2 0 Výběrový koeficient korelace R 12 slouží jako odhad Pearsonova koeficientu korelace R(X,Y). Označme ρ = R(X,Y). Je-li ρ 0, pak jsou náhodné veličiny X a Y korelované. Je-li ρ > 0, jsou kladně korelované, a je-li ρ < 0, jsou záporně korelované. Poznámka: Stochastická nezávislost složek X,Y normálně rozloženého vektoru je ekvivalentní jejich nekorelovanosti. 20

24 Testování nezávislosti intervalových a poměrových veličin Testování hypotézy o nezávislosti Předpokládejme, že náhodný výběr (X 1,Y 1 ),...,(X n,y n ) pochází z dvourozměrného normálního rozložení. Pak testujeme nulovou hypotézu H 0 : ρ = 0 proti oboustranné alternativě H 1 : ρ 0 (popř. proti levostranné alternativě H 1 : ρ < 0 nebo proti pravostranné alternativě H 1 : ρ > 0). Testová statistika je tvaru T= R 12 n R 12 Platí-li nulová hypotéza, pak T t(n 2). Kritický obor pro test nulové hypotézy proti oboustranné alternativě je proti levostranné alternativě a proti pravostranné alternativě W = (-, -t 1-α/2 (n 2)] [t 1-α/2 (n 2), ), W = (-, -t 1-α (n 2)] W = [t 1-α (n 2), ). Nulovou hypotézu zamítáme na hladině významnosti α, když testová statistika T W Meze intervalu spolehlivosti Mějme dvourozměrný náhodný výběr rozsahu n pocházející z dvourozměrného normálního rozložení. Je-li koeficient korelace ρ v intervalu (-0,5;0,5) a rozsah výběru větší než 100, pak 100(1 α)% interval spolehlivosti pro ρ má meze 2 1 R R 12 ±u 12 1 / 2 n 3. Pokud uvedené podmínky nejsou splněny a rozsah n 10, vypočítáme meze 100(1 α)% asymptotického intervalu spolehlivosti pro ρ jako tgh 1 2 ln 1 R 12 ± u 1 / 2 1 R 12 n 3. 21

25 Testování nezávislosti intervalových a poměrových veličin 4.2 Zpracování dat v programu STATISTICA Příklad Bylo náhodně vybráno 15 potravin běžně používaných v domácnostech a u každého výrobku bylo zjištěno množství tuku a energie na 100g. Výsledky jsou uloženy v souboru Potraviny.txt a jsou zobrazeny v následující tabulce: chipsy hermelín ml. rýže měk. sýr jogurt eidam sušenky tuky/g energie/kcal piškoty sušenky2 polomáč. sýr tvarůžky parenica knedle tuky/g energie/kcal Margot Brumík hor. čokol salko tvaroh mléko tuky/g energie/kcal Vypočtěme hodnotu výběrového korelačního koeficientu, meze 95% asymptotického intervalu spolehlivosti pro tento koeficient a na hladině významnosti 0,05 otestujme nulovou hypotézu o nezávislosti množství tuku a množství energie v potravinách Řešení příkladu Ověření dvourozměrné normality dat Načteme soubor Potraviny.txt. Zvolíme záložku Grafy, možnost Bodové grafy. Vybereme proměnné a přejdeme na záložku Detaily. Zde změníme položku Proložení na Vypnuto a položku Elipsa na Normální. Dáme OK a zobrazí se dvourozměrná data. Abychom viděli celou elipsu, je třeba změnit měřítka. Dvojitým kliknutím levým tlačítkem myši se zobrazí možnosti grafu. V levém sloupci v položce Osa vybereme Měřítko. Vybereme osu X, mód Ručně a nastavíme Minimum a Maximum. Stejně vybereme osu Y a nastavíme ji. OK. 22

26 Testování nezávislosti intervalových a poměrových veličin V grafu vidíme, že všechny hodnoty leží uvnitř elipsy a tudíž můžeme považovat data za dvourozměrně normální. Je zřejmé, že hlavní osa elipsy má kladnou směrnici. Můžeme očekávat přímou závislost, což znamená, že čím více bude v potravině tuku, tím vyšší bude i její energetická hodnota. Sílu závislosti zjistíme následně výpočtem výběrového korelačního koeficientu. V praxi se dvourozměrná normalita často odhaduje pomocí ověření jednorozměrné normality veličin X a Y. Pro ověření použijeme Lillieforsův test. Zvolíme možnost Statistiky Základní statistiky Tabulky četností OK. Vybereme proměnné a na záložce Normalita zaškrtneme Lillieforsův test. Kliknutím na Testy normality se zobrazí následující tabulka: Vidíme, že obě hodnoty Lillieforsova testu jsou p > 0,20. Můžeme tedy předpokládat jednorozměrnou normalitu obou veličin. Původní dvourozměrná data můžeme považovat za dvourozměrně normální. 23

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Stručný manuál k ovládání programu STATISTICA. Mgr. Petra Beranová

Stručný manuál k ovládání programu STATISTICA. Mgr. Petra Beranová Stručný manuál k ovládání programu STATISTICA Mgr. Petra Beranová Copyright StatSoft CR s.r.o. 2008, 1. vydání 2008 StatSoft CR Podbabská 16 CZ-160 00 Praha 6 tel.: +420 233 325 006 fax: +420 233 324 005

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

StatSoft Jak vyzrát na datum

StatSoft Jak vyzrát na datum StatSoft Jak vyzrát na datum Tento článek se věnuje podrobně možnostem práce s proměnnými, které jsou ve formě datumu. A že jich není málo. Pokud potřebujete pracovat s datumem, pak se Vám bude tento článek

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

Kapitola 11: Formuláře 151

Kapitola 11: Formuláře 151 Kapitola 11: Formuláře 151 Formulář DEM-11-01 11. Formuláře Formuláře jsou speciálním typem dokumentu Wordu, který umožňuje zadávat ve Wordu data, která lze snadno načíst například do databázového systému

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Výsledný graf ukazuje následující obrázek.

Výsledný graf ukazuje následující obrázek. Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

FUNKCE PRO ANALYTICKÉ ZPRACOVÁNÍ DAT

FUNKCE PRO ANALYTICKÉ ZPRACOVÁNÍ DAT FUNKCE PRO ANALYTICKÉ ZPRACOVÁNÍ DAT V PRODUKTECH YAMACO SOFTWARE PŘÍRUČKA A NÁVODY PRO ÚČELY: - RUTINNÍ PRÁCE S DATY YAMACO SOFTWARE 2008 1. ÚVODEM Vybrané produkty společnosti YAMACO Software obsahují

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Evidence technických dat

Evidence technických dat 4 Evidence technických dat V té to ka pi to le: Evidence majetku Evidence zakázek Evidence technické dokumentace Kapitola 4 Evidence technických dat Povinnost evidovat různé druhy dat má každý podnikatelský

Více

MS Excel 2007 Kontingenční tabulky

MS Excel 2007 Kontingenční tabulky MS Excel 2007 Kontingenční tabulky Obsah kapitoly V této kapitole se seznámíme s nástrojem, který se používá k analýze dat rozsáhlých seznamů. Studijní cíle Studenti budou umět pro analýzu dat rozsáhlých

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Tabulkový kalkulátor. Tabulkový kalkulátor. LibreOffice Calc 12.část

Tabulkový kalkulátor. Tabulkový kalkulátor. LibreOffice Calc 12.část Tabulkový kalkulátor LibreOffice Calc 12.část Je to interaktivní tabulka, která rychle kombinuje a porovnává velké množství dat. Dokáže usnadnit manipulaci hlavně s delšími tabulkami, které mají charakter

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec

Použijeme-li prostorový typ grafu, můžeme pro každou datovou zvolit jiný tvar. Označíme datovou řadu, zvolíme Formát datové řady - Obrazec Čtvrtek 15. září Grafy v Excelu 2010 U grafů, ve kterých se znázorňují hodnoty řádově rozdílné, je vhodné zobrazit ještě vedlejší osu 1994 1995 1996 1997 1998 1999 2000 hmotná investice 500 550 540 500

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Nápověda ke cvičení 5

Nápověda ke cvičení 5 Nápověda ke cvičení 5 Formát datum: vyznačíme buňky pravé tlačítko myši Formát buněk Číslo Druh Datum Typ: vybereme typ *14. březen 2001 Do tabulky pak zapíšeme datum bez mezer takto: 1.9.2014 Enter OK

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

IMPORT DAT DO DATABÁZE

IMPORT DAT DO DATABÁZE Úvod do problematiky IMPORT DAT DO DATABÁZE Databázové tabulky lze naplňovat i již dříve pořízenými údaji. Můžeme tak snadno načíst do databáze data pořízená v textovém editoru WORD nebo v tabulkovém procesoru

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních.

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních. Protokol č. 7 Jednotné objemové křivky Zadání: Pro zadané dřeviny stanovte zásobu pomocí JOK tabulek. Součástí protokolu bude tabulka obsahující střední Weisseho tloušťku, Weisseho procento, číslo JOK,

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE Obsah JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE...2 Co je to funkce?...2 Existuje snadnější definice funkce?...2 Dobře, pořád se mi to zdá trochu moc komplikonavané. Můžeme se na základní pojmy

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Manuál: Editace textů v textovém editoru SINPRO Úprava tabulek a internetových odkazů, řádkování

Manuál: Editace textů v textovém editoru SINPRO Úprava tabulek a internetových odkazů, řádkování Manuál: Editace textů v textovém editoru SINPRO Úprava tabulek a internetových odkazů, řádkování (nejen pro editaci STI v systému SINPRO, aktualizováno: 25. 6. 2015) v 2.0 Obsah TABULKY Úprava tabulek...

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Typy souborů ve STATISTICA. Tento článek poslouží jako přehled hlavních typů souborů v programu

Typy souborů ve STATISTICA. Tento článek poslouží jako přehled hlavních typů souborů v programu StatSoft Typy souborů ve STATISTICA Tento článek poslouží jako přehled hlavních typů souborů v programu STATISTICA, ukáže Vám jejich možnosti a tím Vám dovolí využívat program efektivněji. Jistě jste již

Více

9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI

9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 1 9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Problematiku třídění podle jednoho spojitého

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem.

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem. 83 14. (Pouze u verze Mathcad Professional) je prostředí pro přehlednou integraci a propojování aplikací a zdrojů dat. Umožní vytvořit složitý výpočtový systém a řídit tok dat mezi komponentami tohoto

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými

Více

Excel 2007 praktická práce

Excel 2007 praktická práce Excel 2007 praktická práce 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange

Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange Hotline Helios Tel.: 800 129 734 E-mail: helios@ikomplet.cz Pokročilé ovládání IS Helios Orange 2013 BüroKomplet, s.r.o. Obsah 1 Kontingenční tabulky... 3 1.1 Vytvoření nové kontingenční tabulky... 3 2

Více

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto:

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto: Úkol: Jednoduchá tabulka v Excelu Obrázky jsou vytvořené v Excelu verze 2003 CZ. Postupy jsou platné pro všechny běžně dostupné české verze Excelu s výjimkou verze roku 2007. Postup: Nejprve musíme vyplnit

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Registrační číslo projektu: Škola adresa: Šablona: Ověření ve výuce Pořadové číslo hodiny: Třída: Předmět: Název: MS Excel I Anotace:

Registrační číslo projektu: Škola adresa: Šablona: Ověření ve výuce Pořadové číslo hodiny: Třída: Předmět: Název: MS Excel I Anotace: Registrační číslo projektu: CZ.1.07/1.4.00/21.3712 Škola adresa: Základní škola T. G. Masaryka Ivančice, Na Brněnce 1, okres Brno-venkov, příspěvková organizace Na Brněnce 1, Ivančice, okres Brno-venkov

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

FFUK Uživatelský manuál pro administraci webu Obsah

FFUK Uživatelský manuál pro administraci webu Obsah FFUK Uživatelský manuál pro administraci webu Obsah FFUK Uživatelský manuál pro administraci webu... 1 1 Úvod... 2 2 Po přihlášení... 2 3 Základní nastavení webu... 2 4 Menu... 2 5 Bloky... 5 6 Správa

Více

Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks. Ing. Richard Němec, 2012

Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks. Ing. Richard Němec, 2012 Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks Ing. Richard Němec, 2012 Zadání úlohy Součást Rohatka_100 byla namodelována v SolidWorks podle skicy (rukou kresleného náčrtku).

Více

PREZENTACE DAT: JEDNODUCHÉ GRAFY

PREZENTACE DAT: JEDNODUCHÉ GRAFY PREZENTACE DAT: JEDNODUCHÉ GRAFY V tabulce 8.1 uvádíme přehled některých ukazatelů fiktivní firmy Alfa Blatná. Tabulka 8.1 je prostá, je v ní navíc časové srovnání hodnot v roce 2011 a v roce 2012. a)

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

MS Excel grafická prezentace dat

MS Excel grafická prezentace dat Název projektu Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast - téma Označení materiálu (přílohy) Pracovní list Inovace ŠVP na OA a JŠ Třebíč CZ.1.07/1.5.00/34.0143 III/2 Inovace

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Excel - pokračování. Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu

Excel - pokračování. Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu Excel - pokračování Př. Porovnání cestovních kanceláří ohraničení tabulky, úprava šířky sloupců, sestrojení grafu Př. Analýza prodeje CD základní jednoduché vzorce karta Domů Př. Skoky do dálky - funkce

Více

Řazení tabulky, dotazu nebo formuláře

Řazení tabulky, dotazu nebo formuláře Řazení tabulky, dotazu nebo formuláře Mají-li být formuláře a sestavy efektivní a snadno použitelné, může hrát seřazení dat důležitou roli. 1) Určíme pole, podle kterých chcete řadit. 2) Klepneme pravým

Více

Scénáře. V té to ka pi to le: Účel Přidání scénářů Správce scénářů Poznámky Příklady

Scénáře. V té to ka pi to le: Účel Přidání scénářů Správce scénářů Poznámky Příklady 9 Scénáře V té to ka pi to le: Účel Přidání scénářů Správce scénářů Poznámky Příklady Kapitola 9 Scénáře V situaci, kdy se v oblasti buněk mění množiny hodnot se stejným uspořádáním, můžeme použít scénáře.

Více

KAPITOLA 4 ZPRACOVÁNÍ TEXTU

KAPITOLA 4 ZPRACOVÁNÍ TEXTU KAPITOLA 4 ZPRACOVÁNÍ TEXTU TABULÁTORY Jsou to značky (zarážky), ke kterým se zarovná text. Můžeme je nastavit kliknutím na pravítku nebo v dialogovém okně, které vyvoláme kliknutím na tlačítko Tabulátory

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 28 Název materiálu: Základní grafy Ročník: 1., 2. ročník Identifikace materiálu: WOH_52_28_grafy

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází Tiskové sestavy Tiskové sestavy se v aplikaci Access používají na finální tisk informací z databáze. Tisknout se dají všechny objekty, které jsme si vytvořili, ale tiskové sestavy slouží k tisku záznamů

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání Čtvrtek 3. listopadu Makra v Excelu Obecná definice makra: Podle definice je makro strukturovanou definicí jedné nebo několika akcí, které chceme, aby MS Excel vykonal jako odezvu na nějakou námi definovanou

Více

Hromadná korespondence

Hromadná korespondence Hromadná korespondence Teoretická část: Typickým příkladem použití hromadné korespondence je přijímací řízení na školách. Uchazeči si podají přihlášku, škola ji zpracuje a připraví zvací dopis k přijímací

Více

Webové stránky. 4. Tvorba základní HTML webové stránky. Datum vytvoření: 25. 9. 2012. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.

Webové stránky. 4. Tvorba základní HTML webové stránky. Datum vytvoření: 25. 9. 2012. str ánk y. Vytvořil: Petr Lerch. www.isspolygr. Webové stránky 4. Tvorba základní HTML Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 25. 9. 2012 Webové Strana: 1/9 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

SCHÉMA aplikace ObčanServer

SCHÉMA aplikace ObčanServer SCHÉMA aplikace ObčanServer záložka prohlížeče pro Občanserver erb a název obce odkaz na stránky fy DIGIS PŘEHLEDKA zobrazení místa na mapě v rámci celého území, tlačítka pro práci s mapou informace, měření,

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

KAPITOLA 12 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 12 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 12 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KONTINGENČNÍ TABULKA FILTROVÁNÍ DAT Kontingenční tabulka nám dává jednoduchý filtr jako čtvrté pole v podokně Pole kontingenční tabulky. Do pole Filtry

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Tisk na Plotter v AutoCADu

Tisk na Plotter v AutoCADu Tisk na Plotter v AutoCADu Důležitá pravidla Vhodné je mít kolem výkresů rámečky, aby se tím zjednodušila práce při výběru okna. Tyto rámečky by měly být ve vlastní hladině, která bude netisknutelná Pokud

Více

Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC

Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC Modul FADN BASIC je určen pro odbornou zemědělskou veřejnost bez větších zkušeností s internetovými aplikacemi a bez hlubších

Více

GOODWILL vyššší odborná škola, s. r. o. P. Holého 400, Frýdek-Místek

GOODWILL vyššší odborná škola, s. r. o. P. Holého 400, Frýdek-Místek GOODWILL vyššší odborná škola, s. r. o. P. Holého 400, Frýdek-Místek Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 MS Word Metodický materiál pro základní

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

tj. veličina kurzívou a jednotka obyčejným písmem umístěná v oblých resp. hranatých závorkách *).

tj. veličina kurzívou a jednotka obyčejným písmem umístěná v oblých resp. hranatých závorkách *). MS OFFICE Může se zdát, že užití kancelářského balíku MS Office při výuce fyziky nepřesahuje běžné aplikace a standardní funkce, jak jsou popsány v mnoha příručkách ke všem jednotlivým částem tohoto balíku.

Více

ZSF web a intranet manuál

ZSF web a intranet manuál ZSF web a intranet manuál Verze pro školení 11.7.2013. Návody - Jak udělat...? WYSIWYG editor TinyMCE Takto vypadá prostředí WYSIWYG editoru TinyMCE Jak formátovat strukturu stránky? Nadpis, podnadpis,

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Nápověda k části Generování sestav

Nápověda k části Generování sestav Nápověda k části Generování sestav Jedná se o grafické rozhraní, které umožňuje návrh a generování vlastních sestav ze struktury OLAP databáze. ( OLAP - Online Analytical Processing, jedná se technologii

Více