Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví"

Transkript

1 Genetické algoritmy Informační a komunikační technologie ve zdravotnictví

2 Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém obchodního cestujícího Příklad umělý život Dotazy Zdroje

3 Úvod Aplikace Darwinovy evoluční teorie na informatiku Hlavní myšlenka vyhovující organismus lze získat přirozenou selekcí, křížením a mutacemi

4 Přírodní motivace Metafora Darwinovy evoluční teorie o vývoji druhu Pravděpodobnostní metody přiblížení technického základu k ideálu podle přírodních genetických a vývojových principů Nejčastěji používané ze skupiny evolučních optimalizačních algoritmů jsou Genetické algoritmy

5 Historie I. Rechenberg "Evolution strategies John Holland "Adaption in Natural and Artificial Systems 992 John Koza - Genetic programming"

6 Vlastnosti GA Robustnost Efektivní způsob vyhledávání mnohonásobným opakování jednoduchých operací Paralelní prohledávání celého prostoru ve více směrech současně Schopnost vyváznout z lokálního extrému GA hledá celou skupinu přípustných řešení výběr nejlepšího

7 Základní pojmy Jedinec nositel genetické informace Genom genetický materiál určitého druhu Gen řetězec nukleotidů kódující jednu vlastnost Genotyp x fenotyp genetická informace o řešení vs. Konkrétní hodnoty parametrů řešení Chromozom řetězec genů

8 Reprezentace chromozomu Volba závisí na charakteru problému Binárně Permutace přirozených čísel Sekvence hodnot Stromová struktura

9 Binární reprezetace chromozomu Chromozom je reprezentován řadou a 0 Velké množství možností s malým počtem genů Jednoduchá realizace Příklad použití problém plného batohu

10 Reprezetace permutací čísel Každý gen reprezentuje pořadí v sekvenci Ideální pro úlohy řešící řazení Příklad problém obchodního cestujícího

11 Posloupnost hodnot Gen reprezentuje nějakou složitější hodnotu Přirozená reprezentace mnoha problémů Pro křížení jsou nutné speciální operátory A A B A F E D E A C E B C G G (back) (left) (left) (forward)

12 Stromová struktura Chromozom je stromová struktura obsahující ve svých uzlech a větvích nějaké objekty Příklady použití: list + 0 list 3 a * 2 3 x Genetické programování Regresní analýza

13 Algoritmus - schéma

14 Algoritmus Vytvoř první populaci jedinců Ohodnoť jedince v populaci Vytvoř novou populaci Vyber rodiče některou metodou selekce Vytvoř nové jedince křížením a mutací Ohodnoť nové jedince Přidej potomky do populace Nahraď starou populaci novou Opakuj dokud nejsou splněny podmínky zadání

15 Inicializace počáteční populace Náhodná inicializace Náhodný výběr zvoleného počtu chromozomů (náhodný generátor 0 a s p-stí 0,5) Žádná apriorní znalost o podobě hledaného řešení Spoléhá pouze na šťastné navzorkování celého prohledávaného prostoru omezeným počtem příkladů Informovaná inicializace Využívá apriorní znalost Může vést jednak k nalezení lepších řešení Může zkrátit celkový výpočet Může způsobit nevratné nasměrování GA k suboptimálnímu řešení

16 Inicializace počáteční populace Předzpracování jedinců pro počáteční populaci

17 Algoritmus Vytvoř první populaci jedinců Ohodnoť jedince v populaci Vytvoř novou populaci Vyber rodiče některou metodou selekce Vytvoř nové jedince křížením a mutací Ohodnoť nové jedince Přidej potomky do populace Nahraď starou populaci novou Opakuj dokud nejsou splněny podmínky zadání

18 Fitness funkce Určuje úspěšnost jedince Na výsledku závisí jakou měrou se jedinec projeví v následující generaci Příklad: hledání největší Euklidovské vzdálenosti vzdálenosti a,b rozsah hodnot 0-3, binární kódování 2 2 fitness: f(a,b)=a +b

19 Algoritmus Vytvoř první populaci jedinců Ohodnoť jedince v populaci Vytvoř novou populaci Vyber rodiče některou metodou selekce Vytvoř nové jedince křížením a mutací Ohodnoť nové jedince Přidej potomky do populace Nahraď starou populaci novou Opakuj dokud nejsou splněny podmínky zadání

20 Selekce a metody selekce Uplatnění Darwinovy teorie Nejlepší přežijí a stvoří potomky Ruletové kolo Rank Selection Turnaj

21 Ruletové kolo Pravděpodobnost výběru jedince x 0 x k f( x) - suma fitness funkcí všech - fitness jedinců funkce pro - fitness i-tého funkce jedince pro i-tého jedince p i f x 0 x k i f ( x) f i f i Algoritmus: Spočti celkovou sumu všech v fitness funkcí = S Generuj náhodnn hodné číslo z intervalu < 0, S > = r Procházej populaci a sčítej s fitness fci. Když r < aktuáln lní součet zastav a vrať daný chromozóm

22 Pořadová selekce (rank selection) Obdoba ruletového kola nepracujeme s hodnotami fitness funkcí ale s pořadovým číslem jedince: N je počet jedinců v populaci, funkce rank(i) vrací pořadí i-tého jedince v populaci shift udává hodnotu f' nejhoršího jedince v populaci Nejhoršímu jedinci přiřadíme, dalšímu 2, atd. Pro problémy, kde je velký rozdíl hodnot fitness funkcí Pomalejší konvergence

23 Turnaj Náhodně vybraní jedinci z populace podstupují souboj o přežití Vybrán je jedinec s lepším ohodnocením Výhody - jednoduchá implementace, zajišťuje rozmanitost i selekční tlak

24 Algoritmus Vytvoř první populaci jedinců Ohodnoť jedince v populaci Vytvoř novou populaci Vyber rodiče některou metodou selekce Vytvoř nové jedince křížením a mutací Ohodnoť nové jedince Přidej potomky do populace Nahraď starou populaci novou Opakuj dokud nejsou splněny podmínky zadání

25 Křížení Metoda, jejímž použitím získáme nové jedince, kteří nebyli součástí předchozí populace Dle typu úlohy existuje několik typů operátorů křížení Crossover Edge recombination crossover A mnoho dalších

26 Způsoby křížení Jednobodové maska Dvoubodové maska Rovnoměrné (uniform) maska 00000

27 Mutace Náhodná změna vybraných genů jedince Rozšiřuje prohledávaný prostor o řešení, které nelze dosáhnou křížením Zabraňuje uváznutí v lokální maximu / minimu

28 Nahrazovací strategie Určuje jak velká část populace (a kteří jedinci konkrétně) bude nahrazena v jednom generačním kroku Generační strategie Stará populace je kompletně nahrazena novou populací Steady-state Pouze část populace je nahrazena, ostatní jedinci zůstávání

29 Elitářství Do další generace je zachováno beze změny několik nejlepších jedinců Zajišťuje zachování dosud nejlepších jedinců Může znatelně urychlit řešení

30 Parametry genetických algoritmů Počet jedinců v generaci Pravděpodobnost křížení Pravděpodobnost mutace

31 Pravděpodobnost křížení a mutace: 2 nejzákladnější parametry GA. Pravděpodobnost křížení: Udává četnost křížení 0% nová populace je kopií původní. 00% každý potomek je stvořen pomocí křížení Pravděpodobnost mutace: Udává četnost mutace nových potomků. 00% Každý chromozóm je pozměněn 0 % Ani jeden není pozměněn.

32 Předčasná konvergence

33 Stagnace

34 Škálování Škálování - úprava ohodnocení jedinců, aby bylo dosaženo požadovaného selekčního tlaku: f max σ f Lineární škálování: ' i avg f a f b Parametry a, b jsou spočítány tak, aby platilo: průměrná hodnota fitness se nezmění (takže f'avg = favg) a maximální hodnota f'max bude nejvýše c f'avg. c je parametrem metody (,5 2,0) i

35 Efekt lineárního škálování

36 Teorie schémat Teorie schémat Založena na protěžování dominantních vzorů, zastoupených v aktuální populaci Propagovány s velkou frekvencí do dalších generací. Z těchto vzorů je poskládáno výsledné optimální řešení. Nutný předpoklad: problém musí být dekomponovatelný na menší podproblémy

37 Teorie schémat Schéma Řetězec obsahující 0,, * ( cokoliv ) Schéma zahrnuje právě 2r řetězců, kde r je počet * ve schématu Příklad schématu: 0**0* Jedinci odpovídající výše uvedenému schématu: 00000, 0000, 0000, 000, 0000, 000, 000, 00

38 Teorie schémat Řád schématu O(S) je počet specifikovaných pozic ve schématu S pro S = (0,,*,*,0,,*)» o(s) = 4 schéma řádu o(s) pokrývá 2L-o(S) řetězců Definiční délka schématu (kompaktnost) d(s) je největší vzájemná vzdálenost dvou specifických symbolů Schéma S = (0,,*,*,0,,*) má d(s) = 5 Schémata řádu 0 a mají definiční délku 0 Fitness schématu f(s) je průměrná fitness všech řetězců v populaci, pokrytých daným schématem Četnost výskytu schématu v populaci v čase t: m(s,t)

39 Vlastnosti genetických algoritmů (+) Dají se použít pro řešení problémů jinak těžko řešitelných (například, když interakce mezi jednotlivými částmi jsou těžko popsatelné). (+) Většinou neuváznou v lokálním extrému. (+) Vždy poskytnou nějaké řešení. (+) Jsou snadno implementovatelné a paralerizovatelné. ( ) Nemáme žádnou záruku, že nalezené řešení je optimální. ( ) Někdy mohou být velmi pomalé (obzvlášt pokud nejsou dobře navrženy reprezentace jedinců a operátory křížení a mutace). ( ) Vyžadují vhodné nastavení většího množství parametrů algoritmu (naprˇ. PC, PM, p).

40 Využití Optimalizační úlohy Úlohy, kde neznáme algoritmus řešení, nebo je tento algoritmus výpočetně příliš náročný Rozvrhování Automatické navrhování elmech. systémů Optimalizace rozmístění telekomunikačních zařízení Učení neuronových sítí Učení robotů Zkoumání a vývoj léků

41 Příklady aplikací GA Optimalizace nákládání kontejnerů Učení chování robotů. Optimalizace infrastruktury pro mobilní komunikaci. Optimalizace struktury molekul. Návrh uspořádání výrobních hal. Různé plánovací problémy (např. když jednotlivé úlohy jsou navzájem závislé). Predikce akciových trhů

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní

Více

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

5.5 Evoluční algoritmy

5.5 Evoluční algoritmy 5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

Univerzita Pardubice Fakulta ekonomicko-správní. Návrh a realizace systému pro genetické programování Bc. Petr Sotona

Univerzita Pardubice Fakulta ekonomicko-správní. Návrh a realizace systému pro genetické programování Bc. Petr Sotona Univerzita Pardubice Fakulta ekonomicko-správní Návrh a realizace systému pro genetické programování Bc. Petr Sotona Diplomová práce 2009 Prohlašuji: Tuto práci jsem vypracoval samostatně. Veškeré literární

Více

Genetické programování

Genetické programování Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace

Více

Gramatická evoluce a softwarový projekt AGE

Gramatická evoluce a softwarový projekt AGE Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

11. Tabu prohledávání

11. Tabu prohledávání Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS EVOLUČNÍ ŘEŠENÍ

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

Aproximativní algoritmy UIN009 Efektivní algoritmy 1

Aproximativní algoritmy UIN009 Efektivní algoritmy 1 Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data

Více

Základy genetiky populací

Základy genetiky populací Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS GENEROVÁNÍ MATEMATICKÝCH

Více

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze

Více

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání

Více

Obsah. Obsah. Předmluva Úvod Část I: Genetické algoritmy Genetický algoritmus krok za krokem...19

Obsah. Obsah. Předmluva Úvod Část I: Genetické algoritmy Genetický algoritmus krok za krokem...19 GENETICKÉ ALGORITMY A GENETICKÉ PROGRAMOV N 5 Obsah Předmluva...9 1. Úvod...13 Část I: Genetické algoritmy...17 2. Genetický algoritmus krok za krokem...19 3. Proč genetické algoritmy fungují?...27 4.

Více

Selekce v populaci a její důsledky

Selekce v populaci a její důsledky Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

PARALELNÍ GENETICKÉ ALGORITMY

PARALELNÍ GENETICKÉ ALGORITMY PARALELNÍ GENETICKÉ ALGORITMY PETR POŠÍK DIPLOMOVÁ PRÁCE České vysoké učení technické Praha, 2001 Abstrakt Genetické algoritmy (GA) se osvědčily při řešení různých optimalizačních problémů v mnoha oblastech

Více

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2

Více

Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek

Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací KBI/GENE: Mgr. Zbyněk Houdek Kvantitativní znak Tyto znaky vykazují plynulou proměnlivost (variabilitu) svého fenotypového projevu. Jsou

Více

Geneticky vyvíjené strategie Egyptská hra SENET

Geneticky vyvíjené strategie Egyptská hra SENET Geneticky vyvíjené strategie Egyptská hra SENET Lukáš Rypáček, lukor@atrey.karlin.mff.cuni.cz Abstrakt V tomto dokumentu popíši jeden příklad použití genetických algoritmů pro počítačové hraní her. V tomto

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Obsah. Obsah. Předmluva...9. 1. Úvod...13. Část I: Genetické algoritmy...17. 2. Genetický algoritmus krok za krokem...19

Obsah. Obsah. Předmluva...9. 1. Úvod...13. Část I: Genetické algoritmy...17. 2. Genetický algoritmus krok za krokem...19 GENETICKÉ ALGORITMY A GENETICKÉ PROGRAMOV N 5 Obsah Předmluva...9 1. Úvod...13 Část I: Genetické algoritmy...17 2. Genetický algoritmus krok za krokem...19 3. Proč genetické algoritmy fungují?...27 4.

Více

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním 1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,

Více

Genetické programování v prostředí Mathematica

Genetické programování v prostředí Mathematica Genetické programování v prostředí Mathematica Genetic programming in Mathematica Bc.Martin Macháček Diplomová práce 2010 UTB ve Zlíně, Fakulta aplikované informatiky, 2010 2 UTB ve Zlíně, Fakulta aplikované

Více

Fakulta dopravní OPTIMALIZACE

Fakulta dopravní OPTIMALIZACE České vysoké učení technické v Praze Fakulta dopravní DIPLOMOVÁ PRÁCE VYUŽITÍ GENETICKÝCH ALGORITMŮ V ÚLOHÁCH DISKRÉTNÍ OPTIMALIZACE Alena Rybičková 2012 Prohlášení Nemám závažný důvod proti užívání tohoto

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Zajímavé aplikace teorie grafů

Zajímavé aplikace teorie grafů Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Zajímavé aplikace teorie grafů Nejkratší cesta Problém: Jak nalézt nejkratší cestu

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze. Fakulta elektrotechnická Katedra měření

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze. Fakulta elektrotechnická Katedra měření ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ v Praze Fakulta elektrotechnická Katedra měření Separace signálů vibrací točivých strojů s využitím genetických algoritmů Diplomová práce 2010 Pavel KRPATA ČVUT Praha Abstrakt

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 7 8 4 U k á z k a k n i h

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií DIPLOMOVÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií DIPLOMOVÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií DIPLOMOVÁ PRÁCE Brno, 2016 Bc. Jan Němec VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY

Více

České vysoké učení technické v Praze Fakulta elektrotechnická. Diplomová práce Přepínání metaheuristik. Aleš Kučík

České vysoké učení technické v Praze Fakulta elektrotechnická. Diplomová práce Přepínání metaheuristik. Aleš Kučík České vysoké učení technické v Praze Fakulta elektrotechnická Diplomová práce Přepínání metaheuristik Aleš Kučík Vedoucí práce: Ing. Jan Koutník, Ph.D. Studijní program: Elektrotechnika a informatika,

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS SOUBĚŽNÉ UČENÍ V

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS EVOLUČNÍ OPTIMALIZACE

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání

Více

Softwarový nástroj CESim pro grafický návrh, simulaci a analýzu C-E Petriho sítí

Softwarový nástroj CESim pro grafický návrh, simulaci a analýzu C-E Petriho sítí Softwarový nástroj CESim pro grafický návrh, simulaci a analýzu C-E Petriho sítí Ing. Petr NOVOSAD FIT VUT Brno, Božetěchova 2, 612 00 Brno novosad@fit.vutbr.cz Vedoucí práce: Prof. RNDr. Milan Češka,

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Antonín Wimberský. Katedra softwarového inženýrství

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Antonín Wimberský. Katedra softwarového inženýrství Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Antonín Wimberský Využití umělých neuronových sítí k urychlení evolučních algoritmů Katedra softwarového inženýrství Vedoucí diplomové

Více

GENETICKÉ ALGORITMY A ROZVRHOVÁNÍ GENETIC ALGORITHMS AND SCHEDULING

GENETICKÉ ALGORITMY A ROZVRHOVÁNÍ GENETIC ALGORITHMS AND SCHEDULING VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

Genetická diverzita masného skotu v ČR

Genetická diverzita masného skotu v ČR Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická

Více

OBSAH 1 Pøedmluva 19 2 Evoluèní algoritmy: nástin 25 2.1 Centrální dogma evoluèních výpoèetních technik... 26 2.2 Chcete vìdìt víc?... 29 3 Historická fakta trochu jinak 31 3.1 Pár zajímavých faktù...

Více

Konzervační genetika INBREEDING. Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28.

Konzervační genetika INBREEDING. Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28. Konzervační genetika INBREEDING Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28.0032) Hardy-Weinbergova rovnováha Hardy-Weinbergův zákon praví, že

Více

Základní komunikační řetězec

Základní komunikační řetězec STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Základní komunikační řetězec PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Genotypy absolutní frekvence relativní frekvence

Genotypy absolutní frekvence relativní frekvence Genetika populací vychází z: Genetická data populace mohou být vyjádřena jako rekvence (četnosti) alel a genotypů. Každý gen má nejméně dvě alely (diploidní organizmy). Součet všech rekvencí alel v populaci

Více

Struktury a vazebné energie iontových klastrů helia

Struktury a vazebné energie iontových klastrů helia Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 25. října 2007 1 2 Zadání úlohy Náhodná procházka Tchibot 3 SPA Subsumption architecture 3T architektura Robotika matematický přístup úloha hledání

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS EVOLUČNÍ ŘEŠENÍ

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla) Evoluční algoritmy Hollandovy genetické algoritmy (binární řetězce) Fogelovo evoluční programování (automaty) Kozovo genetické programování (stromy) Schwefelovy evoluční strategie (parametry funkcí) Rayův

Více

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly

Více

Deoxyribonukleová kyselina (DNA)

Deoxyribonukleová kyselina (DNA) Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649 Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005

Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005 Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Úloha ve stavovém prostoru SP je , kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů

Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

FAKULTA PODNIKATELSKÁ ÚSTAV MANAGEMENTU FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF MANAGEMENT

FAKULTA PODNIKATELSKÁ ÚSTAV MANAGEMENTU FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF MANAGEMENT VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV MANAGEMENTU FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF MANAGEMENT VYUŽITÍ PROSTŘEDKŮ UMĚLÉ INTELIGENCE PRO PODPORU

Více

Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr

Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Evoluční teorie Základy evoluce, adaptace na životní podmínky - poskytuje řadu unifikujících principů

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Přírodou inspirované metody umělé inteligence

Přírodou inspirované metody umělé inteligence Přírodou inspirované metody umělé inteligence Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Nové Hrady, červenec 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělá inteligence 2 přístupy

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

GLOBÁLNÍ OPTIMALIZACE S VYUŽITÍM SOFTWARU MATHEMATICA

GLOBÁLNÍ OPTIMALIZACE S VYUŽITÍM SOFTWARU MATHEMATICA GLOBÁLNÍ OPTIMALIZACE S VYUŽITÍM SOFTWARU MATHEMATICA Barbora Tesařová Univerzita Hradec Králové, Fakulta informatiky a managementu Abstrakt: Mnoho úloh reálné praxe může být definována jako optimalizační

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

Michal Wiglasz* 1. Úvod

Michal Wiglasz* 1. Úvod http:excel.fit.vutbr.cz Souběžné učení v koevolučních algoritmech Michal Wiglasz* Abstrakt Kartézské genetické programování (CGP) se využívá zejména pro automatizovaný návrh číslicových obvodů, ale ukázalo

Více

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího: OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Genetický polymorfismus

Genetický polymorfismus Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci

Více

http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele

http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Biologie - Oktáva, 4. ročník (přírodovědná větev)

Biologie - Oktáva, 4. ročník (přírodovědná větev) - Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k

Více

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Teorie (ještě teoretičtější)

Teorie (ještě teoretičtější) EVA II. Teorie (ještě teoretičtější) 'Přesné' modely GA 90.léta: Vose, Lepins, Nix, Whitley,... Snaha zachytit: jak přesně vypadají populace zobrazení přechodu k další populaci vlastnosti tohoto zobrazení

Více

7. Heuristické metody

7. Heuristické metody Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více