Slovní úlohy na lineární funkce

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2.1.15 Slovní úlohy na lineární funkce"

Transkript

1 Slovní úloh na lineární funkce Předpoklad: 2108 Pedagogická poznámka: Obsah hodin přesahuje 45 minut (pokud necháte student pracovat samostatně). Poslední příklad tak zůstává na další hodinu nebo na doma. Př. 1: Petr zálohuje internet a proto potřebuje velké množství zapisovatelných DVD disků. Může je koupit buď v obchodě ve svém městečku za 1 Kč/kus nebo může dojet do okresního města, kde stojí pouze 10 Kč/kus. Cesta do okresního města a zpět stojí 40 Kč. Sestav funkce, které udávají závislost zaplacené cen na množství koupených DVD, v případě že nakupuje doma a v případě, že nakupuje ve městě. Urči pro všechna možná množství kupovaných DVD výhodnější způsob nákupu. Počet koupených DVD Zaplacená cena Nákup doma: = 1 (za každé DVD 1 korun) Nákup ve městě: = (za každé DVD 10 korun a 40 korun za cestu) Nákup doma je výhodnější, kdž zaplatí menší cenu. Kd zaplatí stejně? 1 = = = = 1, Protože DVD se kupují pouze po celých kusech platí, že pro nákup méně než 14 DVD je výhodnější nakupovat doma, pro 14 a více DVD je lepší dojet do města. Poznámka: Minimální počet disků, pro který se vplatí jet do města, můžeme určit i úvahou. Disk je ve městě o Kč levnější, ale dražší o cestovní náklad, které se rozpočítávají na počet nakoupených disků. Musíme spočítat kolik disků musíme koupit, ab na každý připadl Kč cestovních nákladů: 40 = = 1,. Tento výsledek přesně odpovídá poslední fázi výpočtu. Pedagogická poznámka: Studenti mají pro mě až překvapivé problém se sestavením rovnosti obou funkčních předpisů. Bavíme se pak o tom, že pro malé množství disků je určitě výhodnější nakupovat doma, pro obrovská množství disků pak ve městě. Hraničním počtem pak bude situace, kd nám celý nákup vjde stejně draho ve městě i doma. 1

2 Př. 2: V rbníce je m vod. Otevřeme-li stavidla, každou sekundu vteče 10 m vod. Urči funkci, která udává závislost množství vod v rbníce na čase od otevření stavidla, za předpokladu, že rbník má stálý přítok m /s. Za jak dlouho bude rbník vpuštěn? Množství vod Čas od otevření stavidla Za jednu sekundu, odteče 10 m, přiteče m ubude Množství vod v rbníce na začátku m Množství bod v rbníce po 1 s Množství bod v rbníce po 2 s Množství bod v rbníce po 5 s Množství bod v rbníce po s Funkce = Rbník bude vpuštěný až v něm bude 0 m = 0 0 = = s = 5,95 hod Rbník bude zcela vpuštěný za 6 hodin. 7 m. Pedagogická poznámka: Následující příklad je důležitý. Tak tři čtvrtin studentů ho řeší špatně, přesto je dobré nechat je, ab se trochu potrápili a po vřešení příkladu nebo v jeho průběhu diskutovat chb, kterých se při svém řešení dopustili. Upozorňuju je hlavně na fakt, že si skoro nikd odvozený vztah zpětně neozkoušejí, například jestli jim neříká, že student bude mít příjm už při studiu na vsoké škole. Př. : Výše průměrné mzd silně závisí na nejvšším dosaženém vzdělání. V roce 2002 bl průměrný plat středoškoláka s maturitou Kč za měsíc, průměrný plat vsokoškoláka bl už Kč. Na druhou stranu musí vsokoškoláci strávit ve škole pět let, po které již středoškoláci chodí do práce a vdělávají. Napiš funkce, které udávají celkovou částku v tisících vdělanou průměrným středoškolákem a vsokoškolákem v závislosti na počtu let uplnulých od maturit. Po kolika letech od maturit si průměrný vsokoškolák vdělá víc než jeho spolužák, který má pouze maturitu. Částk ročních příjmů zakrouhli na tisíce. Urči rozdíl v celoživotních příjmech vsokoškoláka a středoškoláka, pokud oba odejdou do důchodu v 65 letech a maturovali v devatenácti. roční příjem středoškoláka: = roční příjem vsokoškoláka: = vdělané peníze let od maturit středoškolák 1 rok od maturit rok od maturit = 400 2

3 rok od maturit 200 = 600 let od maturit 200 Funkce = 200, 0; ) vsokoškolák 1 rok od maturit 0 2 rok od maturit 0 6 let od maturit 42 1 = 42 zápis je sice správný, ale nikde se v něm nevsktuje číslice 6, která udává počet let uplnulých od maturit, tuto číslici v zápisu potřebujeme, pak ji naradíme proměnnou zapíšeme 1 = 6 5 (1 rok v práci = 6 let od maturit 5 let studia na VŠ) = 42 6 let od maturit ( ) 7 let od maturit 42( 7 5) = let od maturit 42( 8 5) = 1026 let od maturit ( ) Funkce ( ) 42 5 = = 42 5 = , 5; ) Kde vdělají stejně? 200 = = 142 = 12,04... Po 12 letech od maturit (ted po 7 letech od promoce) budou příjm vsokoškoláka téměř stejné jako příjm středoškoláka s maturitou, po 1 letech pak už budou podstatně všší. Důchod 65 let od maturit = 46 let středoškolák: = 200 = = 9200 vsokoškolák: = = rozdíl: = 4822 Vsokoškolák vdělá za svůj život průměrně o Kč více než středoškolák. Pedagogická poznámka: Někteří studenti argumentují tím, že jednodušší než sestavovat funkční závislosti, je příklad natvrdo spočítat. Bráním se tím, že jakmile se podaří závislosti sestavit, je výpočet čehokoliv strašně jednoduchý. Při přímém počítání začínáme vžd znova od začátku. Př. 4: Vsvětli význam čísla 1710 v roznásobeném tvaru funkce pro vsokoškoláka v předchozím příkladu. ( ) = 42 5 = = číslo 1710 má význam částk, kterou b vsokoškolák vdělal, kdb po maturitě nastoupil do práce a bral mzdu vsokoškoláka Př. 5: Najdi na internetu na další údaje vztahující se k problematice předchozích dvou příkladů a najdi fakta, která podporují názor, že:

4 a) rozdíl v příjmech vsokoškoláků a středoškoláků jsou ve skutečnosti větší než jsme spočítali b) rozdíl v příjmech vsokoškoláků a středoškoláků jsou ve skutečnosti menší než jsme spočítali jen několik z mnoha argumentů: a) argument pro větší rozdíl v příjmech vsokoškoláci si vdělávají už při studiu plat rostou, roste zřejmě i minimální rozdíl v nominálních příjmech b) argument pro menší rozdíl v příjmech studium na vsoké škole přináší i náklad, které musí student hradit u vsokoškoláků jsou rozdíl v příjmech daleko větší než u středoškoláků, rozdíl mezi skutečnou mzdou většin vsokoškoláků a většin středoškoláků není tak velký podíl vsokoškoláků v české populaci se rchle zvšuje. VŠ vzdělání tak přestává být výjimečnou záležitostí a bude se snižovat jeho finanční ohodnocení Pedagogická poznámka: Vzhledem k tomu, že následující příklad nikd nestihneme a doděláváme ho v další hodině, kontrolujeme si příklad 5 také až v další hodině a studenti mají možnost se pokusit o sehnání nějakých informací. Př. 6: Petr jel na výlet na kole. V polovině výletu se mu kolo rozbilo. Domů se může vrátit třemi způsob: a) pěšk rchlostí 5 km/h b) může za hodinu provizorně opravit kolo a vrátit se pak rchlostí 10 km/h. c) může 2 a půl hodin čekat na vlak a vrátit se domů rchlostí 0 km/h. Sestav funkce, které udávají vzdálenost, kterou Petr urazil z AAmísta poruch, v závislosti na čase od poruch v hodinách. Při jaké vzdálenosti od domova se mu jednotlivé postup vplatí? čas od poruch v hodinách vzdálenost od místa poruch v km a) jde pěšk vchází ihned a každou hodinu ujde 5 km vzdálenost po jedné hodině 1 5 vzdálenost po dvou hodinách 2 5 vzdálenost po hodinách 5 funkce = 5 b) opravuje kolo hodinu opravuje a pak každou hodinu ujede 10 km vzdálenost po jedné hodině vzdálenost po dvou hodinách ( ) vzdálenost po třech hodinách ( 1) 10 vzdálenost po hodinách ( 1) 10 funkce = 10( 1) = Funkci je také možné sestavit tímto postupem: každou hodinu ujede 10 km 10 4

5 chbí mu 10 km, které b ujel v první hodině, kterou stál = c) čeká na vlak 2 a půl hodin čeká na vlak a pak každou hodinu ujede vlakem 0 km vzdálenost po jedné hodině 0 vzdálenost po dvou hodinách 0 2,5 0 vzdálenost po třech hodinách ( ) vzdálenost po čtřech hodinách ( 4 2,5) 0 vzdálenost po hodinách ( 2,5) 0 funkce = 0( 2,5) = 0 75 Funkci je také možné sestavit tímto postupem: každou hodinu ujede 0 km 0 chbí mu 75 km, které b ujel během čekání, kdb vlak jel ihned = 0 75 Jaký postup se vplatí při různých vzdálenostech od domova? Nejvhodnější postup mu umožní dosáhnout domova za nejkratší dobu. Nakreslíme graf všech tří lineárních funkcí: vlakem na kole 40 pěšk Z grafu je vidět, že pro krátké vzdálenosti je nejvýhodnější jít pěšk, pro střední vzdálenosti je nevýhodnější jet na kole a největší vzdálenosti je nejrchlejší vracet se vlakem. Kolo je výhodnější než chůze, kdž funkce pro kolo má větší hodnotu než funkce pro chůzi. Kd mají funkce stejnou hodnotu? = 5 5 = 10 = 2 Pokud b cesta trvala na kole alespoň 2 hodin (a její délka b bla alespoň 10 km) je výhodnější než chůze opravit kolo a jet na něm. Vlak je výhodnější než kolo, kdž funkce pro vlak má větší hodnotu než funkce pro kolo. Kd mají funkce stejnou hodnotu? 0 75 = = 65 =,25 5

6 Pokud b cesta vlakem (včetně čekání) trvala alespoň,25 hodin (a její délka b bla alespoň 22,5 km) je výhodnější než opravit kolo a jet na něm počkat na vlak. Nejvýhodnější způsob doprav: 0-10 km chůze 10-22,5 km kolo s opravou 22,5 a více vlak Pedagogická poznámka: Pokud studenti řeší příklad sami, snaží se úvodnímu rozpisu uražených drah po jednotlivých hodinách vhnout a píšou předpis funkcí rovnou. Na tom b neblo nic špatného, kdb si vmšlené předpis zpětně zkontrolovali, výpočtem pro některou z hodin, což nedělají. Snažím se na tomto tpu zkoušk trvat. Odpovídá to logickému postupu (kdž mě něco napadne ozkouším si to), bohužel je to v rozporu z běžnou školskou zkušeností (vědomosti jsou zjevené všší mocí a proto se jim věří a nemusí se ověřovat). Kdb se studenti naučili během této hodin jenom provádění takových jednoduchých kontrol (jako, že se to bohužel nenaučí), bl b to obrovský úspěch. Nezbývá než se o to snažit. Př. 7: Na grafu pohbů z předchozího příkladu: a) vsvětli význam vznačených vzdálenosti b) zjisti, ve kterém okamžiku, b měl při jízdě na kole největší náskok oproti ostatním druhům pohbu c) jaký způsob návratu b měl Petr zvolit, kdb bl od domova 15 km d) jak dlouho b se jednotlivými způsob vracel domů, kdb bl v okamžiku poruch 0 km od domova 60 vlakem na kole pěšk a) význam vznačených vzdáleností Vodorovné vzdálenosti = časové úsek v hodinách (na vodorovnou osu nanášíme čas od poruch) Svislé vzdálenosti = vzdálenosti v km (na svislou osu nanášíme vzdálenosti v km) Modrá vzdálenost = doba, která b uplnula mezi okamžikem, kd se Petr začal vracet pěšk a okamžikem, kd b se začal vracet na provizorně opraveném kole (1 hodina) 6

7 Červená vzdálenost = doba, za kterou b se Petr vrátil domů, kdb jel na kole a od místa poruch b se musel vracet 20 km( hodina) Fialová vzdálenost = rozdíl v dobách návratu vlakem a pěšk, kdb Petr bdlel 25 km od místa poruch (1 hodina a 40 minut) Zelená vzdálenost = vzdálenost, kterou od místa poruch urazí Petr pěšk za 2,5 hodin (12,5 km) Žlutá vzdálenost = vzdálenost, mezi místem, na které b Petr dojel za 4 hodin na kole, a místem, na které b za 4 hodin došel pěšk (10 km). b) zjisti, ve kterém okamžiku, b měl při jízdě na kole největší náskok oproti ostatním druhům pohbu Největší náskok bude mít Petr při jízdě na kole ve chvíli, kd je přímka pro kole ve svislém směru nejvíce vzdálenost od ostatních dvou přesně ve hodině, má jízda na kole 5 km náskok před dopravou vlakem i chůzí c) jaký způsob návratu b měl Petr zvolit, kdb bl od domova 15 km hledáme, která z přímek nejdříve protne vodorovnou čáru pro 15 km nejvýhodnější je návrat na kole (2,5 hodin) návrat pěšk i vlakem vjde bude trvat stejně dlouho hodin d) jak dlouho b se jednotlivými způsob vracel domů, kdb bl v okamžiku poruch 0 km od domova hledáme, kd se jednotlivé přímk protnou s vodorovnou čáru pro 0 km vlak,5 hodin kolo 4 hodin chůze 6 hodin Shrnutí: 7

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

2.5.12 Přímá úměrnost III

2.5.12 Přímá úměrnost III .5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

1.1.6 Rovnoměrný pohyb I

1.1.6 Rovnoměrný pohyb I 1.1.6 Rovnoměrný pohyb I Předpoklady: 1105 Kolem nás se nepohybují jenom šneci. Existuje mnoho různých druhů pohybu. Začneme od nejjednoduššího druhu pohybu rovnoměrného pohybu. Př. 1: Uveď příklady rovnoměrných

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

2.5.1 Kvadratická funkce

2.5.1 Kvadratická funkce .5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY

KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY KAPITOLA 3 KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY Vertikální spread je kombinace koupené a prodané put nebo call opce se stejným expiračním měsícem. Výraz spread se používá proto, že riziko je rozložené

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

2.5.17 Dvojitá trojčlenka

2.5.17 Dvojitá trojčlenka 2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201 6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU Definice laktátového prahu Laktátový práh je definován jako maximální setrvalý stav. Je to bod, od kterého se bude s rostoucí intenzitou laktát nepřetržitě zvyšovat.

Více

7. Slovní úlohy na lineární rovnice

7. Slovní úlohy na lineární rovnice @070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

Zadání projektu Pohyb

Zadání projektu Pohyb Zadání projektu Pohyb Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 22. 9. Vlastní práce 3 vyučovací hodiny + výuka v TV Prezentace projektu 11. 10. Test a odevzdání portfólií

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

2. Svoje řešení pojmenujte podle čísel zadání úloh: uloha1. sgpbprj uloha4. sgpbprj

2. Svoje řešení pojmenujte podle čísel zadání úloh: uloha1. sgpbprj uloha4. sgpbprj Pokyny: 1. Řešení úloh ukládejte do složky, která se nachází na pracovní ploše počítače. Její název je stejný, jako je kód, který váš tým dostal přidělený (C05, C10 apod.). Řešení, uložené v jiné složce,

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Měření vzdáleností a výpočty rychlostí pomocí internetu

Měření vzdáleností a výpočty rychlostí pomocí internetu Jméno: Školní rok: Měření vzdáleností a výpočty rychlostí pomocí internetu Třída: Laboratorní práce číslo: 1) Na webové stránce www.mapy.cz změř vzdálenost z do vzdušnou čarou. Návod: Klikni na Plánování

Více

Základní provize v systému MLM ZetClub

Základní provize v systému MLM ZetClub Základní provize v systému MLM ZetClub Každý prodejce může pod sebou zaregistrovat dalšího prodejce, ten zas dalšího atd. Každý prodejce, tedy může být buď zaregistrován přímo pod firmou, nebo má nad sebou

Více

Specifický cíl: kooperace ve skupině, hledání vhodných argumentů, pochopení toho, že nemusí existovat jen jedno správné řešení

Specifický cíl: kooperace ve skupině, hledání vhodných argumentů, pochopení toho, že nemusí existovat jen jedno správné řešení Název: Výukové materiály Téma: Ochrana přírody, využití lesa Úroveň: 1. stupeň ZŠ Tematický celek: Příroda a její ochrana Předmět (obor): prvouka, přírodověda Doporučený věk žáků: 1. 5. třída Doba trvání:

Více

Ekonomika III. ročník. 008_Zákony trhu_nabídka + Poptávka

Ekonomika III. ročník. 008_Zákony trhu_nabídka + Poptávka Ekonomika III. ročník 008_Zákony trhu_nabídka + Poptávka Hospodářský proces Chování tržních subjektů (firmy, výrobci, nakupující zákazníci, vláda, instituce) je ovlivněno zákony trhu. Chování spotřebitele,

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Projekt Odyssea, www.odyssea.cz

Projekt Odyssea, www.odyssea.cz Projekt Odyssea, www.odyssea.cz Příprava na vyučování s cíli osobnostní a sociální výchovy Název lekce (téma) Časový rozsah lekce Věková skupina (ročník) Vzdělávací obor (dle RVP) Travelling s použitím

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

2.2.13 Slovní úlohy vedoucí na lineární rovnice IV

2.2.13 Slovní úlohy vedoucí na lineární rovnice IV 2.2. Slovní úlohy vedoucí na lineární rovnice IV Předpoklady: 222 Pedagogická poznámka: I příklady na společné splnění úkolu jsou do dvou hodin rozděleny schválně ze stejného důvodu jako příklady na vytváření

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0 Seznámení se zlomky Pro lidi s krví Rh je riskantní cestovat do jiných částí světa, kde jsou zásoby krve Rh jen malé. Vybarvi podle hodnot uvedených v tabulce dané části. Ve kterých oblastech mají málo

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS Kateřina Pojkarová Anotace:Dopravu vužívají lidé za různým účelem, mimo jiné i ke svým cestám

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST 6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku.

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku. 2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Příklady na míchání směsí jsou do dvou hodin rozděleny schválně. Snažím se tak zvýšit šanci, že si hlavní myšlenku

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Pednáška mikro 04: Poptávková a nabídková funkce, cenová elasticita poptávky

Pednáška mikro 04: Poptávková a nabídková funkce, cenová elasticita poptávky Pednáška mikro 04: Potávková a nabídková funkce, cenová elasticita otávk 1. Matematické minimum (dolnit na cviení v íad otávk od student) funkce = edis(druhá odmocnina, dvojnásobek snížený o jednu : =

Více

Zápis z jednání Koordinačního výboru s Komorou daňových poradců ČR ze dne 21. 1. 2015

Zápis z jednání Koordinačního výboru s Komorou daňových poradců ČR ze dne 21. 1. 2015 Zápis z jednání Koordinačního výboru s Komorou daňových poradců ČR ze dne 21. 1. 2015 UZAVŘENÝ PŘÍSPĚVEK ke dni 21. 1. 2015 - seznam - Daň z příjmů 440/17.12.14 Určení výše odpovídajícího pojistného pro

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

OBSAH KAPITOLY PODNIKOVÍ ZÁKAZNÍCI DRUHY PODNIKOVÝCH ZÁKAZNÍKŮ SPOTŘEBITELSKÝ TRH

OBSAH KAPITOLY PODNIKOVÍ ZÁKAZNÍCI DRUHY PODNIKOVÝCH ZÁKAZNÍKŮ SPOTŘEBITELSKÝ TRH OBSAH KAPITOLY PODNIKOVÍ ZÁKAZNÍCI Ing. Lukáš Kučera druhy podnikových zákazníků spotřebitelský trh a jeho chování průmyslový trh a jeho chování nákupní rozhodovací proces spotřebitele životní cyklus produktu

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7.

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Seznam šablon Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Číslo Označení Název Využití Očekávané výstupy Klíčové kompetence 1 CČ1

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

2.9.3 Exponenciální závislosti

2.9.3 Exponenciální závislosti .9.3 Eponenciální závislosti Předpoklady: 9 Pedagogická poznámka: Látka připravená v této hodině zabere tak jeden a půl vyučovací hodiny. Proč probíráme tak eotickou funkci jako je eponenciální? V životě

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Obvyklý tvar produkční funkce v krátkém období

Obvyklý tvar produkční funkce v krátkém období Produkční analýza firmy základní východiska analýzy firmy krátkodobá produkční funkce výroba v dlouhém období, optimum firmy optimum firmy při různých úrovních nákladů a při změnách cen VF výnosy z rozsahu

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Sčítání a odčítání s přechodem přes desítku Žák: ČaPO: sčítá a odčítá v oboru do 20-ti s přechodem přes desítku - sčítání a odčítání v oboru přirozených čísel

Více

Metodika pro vyplnění formuláře: Cestovní příkaz tuzemský

Metodika pro vyplnění formuláře: Cestovní příkaz tuzemský Metodika pro vyplnění formuláře: Cestovní příkaz tuzemský (Pro potřeby CČSH zpracoval kolektiv autorů H. Kurková, K. Kozáková, Z. Sedláčková, H. Zejdová, zaměstnanci ÚÚR a členové CRFV) Obsah 1. Vyplňování

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

Peníze nerostou na stromech

Peníze nerostou na stromech HOSPODAŘENÍ Peníze nerostou na stromech V minulých podkapitolách jsme si řekli, jak výrobky a služby vznikají, k čemu je využíváme, i to, jak vzniká jejich cena. Víme, že k tomu, abychom mohli něco koupit,

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Přihlášení do systému se provádí na stránkách: pes.tdt.cz pomocí přihlašovacích údajů.

Přihlášení do systému se provádí na stránkách: pes.tdt.cz pomocí přihlašovacích údajů. Přihlášení do systému se provádí na stránkách: pes.tdt.cz pomocí přihlašovacích údajů. Po přihlášení se objeví úvodní obrazovka Vozidla/stroje zobrazí seznam všech vozidel a strojů uložených v systému.

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více