Definice měřítka. Měřítka mapy, velikostní stupnice. Typy měřítka. Grafické měřítko Tvorba tematických map podzim 2010
|
|
- Iva Beranová
- před 8 lety
- Počet zobrazení:
Transkript
1 Definice měřítka Měřítka mapy, velikostní stupnice Tvorba tematických map podzim 2010 Lauermann 1975: Měřítko mapy udává poměr zmenšení délky měřené na mapě k délce ve skutečnosti (na elipsoidu). d : D = M = 1 : m d... délka na mapě D... délka ve skutečnosti M... měřítko mapy m... měřítkové číslo Map scale is the ratio between a distance on the map and the corresponding distance on the earth, with the distance on the map always expressed as one. (Robinson 1995) Typy měřítka číselné Representative Fraction (RF) grafické Graphic or Bar Scale slovní Verbal Statement plošné Area Scale odpovídá 10 ha Grafické měřítko nemělo by chybět mělo by být jemné, nepřitahovat pozornost jeho účelem je informovat zvědavé linie měřítka by měly být co nejtenčí a popis by měl patřit k nejmenším fontům na mapě délka grafického měřítka by měla být přiměřená k velikosti mapovaného území 1
2 Měřítko mapy souvisí úzce s kartografickým zobrazením a charakterem jeho délkového zkreslení měřítko v mapě se mění místo od místa při zobrazení rozsáhlých oblastí vcelku je třeba uvažovat vliv zkreslení a tudíž rozdílného měřítka na běžných obecně geografických mapách se nejčastěji používá tzv. střední měřítko, platící pro střed mapového listu grafické měřítko v tomto případě ztrácí částečně svoji použitelnost proměnlivé měřítko (lokální) bývá spojeno s konkrétním kartografickým zobrazením V přesných mapách jsou uváděny ekvideformáty s hodnotami zkreslení (nebo někdy jsou místo hodnot zkreslení popsány konkrétní hodnoty měřítek v daném místě mapy.) (Obr. 2 Lauermann 1975). další členění měřítek: hlavní, vedlejší velká, malá, střední měřítka (jiné členění geodetické a jiné geografické) mapové měřítko, hodnotové měřítko (u tematických map) proměnlivé měřítko anamorfních map Měřítko mapy ovlivňuje přesnost a podrobnost zobrazených prvků, má vliv na grafické zaplnění mapy. Určuje současně i plošný rozměr zobrazovaného území a je těsně spjato s formátem mapy a kladem mapových listů. Je tedy výrazným limitujícím faktorem zobrazení ostatních prvků obsahu mapy. Hodnotové měřítko slouží k určení velikosti jevu a má obvykle charakter srovnávacího obrazce, diagramu, stupnice atd. existuje několik různých členění hodnotových měřítek 2
3 1.1. plynule navazující (plynulá) členění velikostních stupnic (hodnotových měřítek): (Kaňok 1999) stupnice 1. intervalová 2. funkční 1.2. skoková 2.1. spojitá 2.2. skoková konstantní s hiátem s hiátem pravidelně rostoucí (klesající) nepravidelná v důsledku změny vzorce VELIKOSTNÍ STUPNICE INTERVALOVÁ FUNKČNÍ spojitá (plynule navazující) nespojitá (skoková) spojitá nespojitá (skoková) s hiátem lineární nelineární s hiátem konstantní pravidelně rostoucí (klesající) nepravidelná změna vzorce Intervalová vs. funkční Intervalová, spojitá Nejpropracovanější a současně nejužívanější Podmínka: ke každému intervalu ve stupnici uvedené v legendě mapy existuje aspoň jedna hodnota ve znázorněné oblasti mapy Intervalová, spojitá, konstantní Všechny intervaly mají stejnou velikost (aritmetická stupnice) Používá se především pro první přiblížení celého souboru dat, pro zjištění rozdělení četností Intervalová, spojitá, pravidelně rostoucí / klesající Geometrická stupnice (každý následující interval je dvakrát širší než předcházející) Logaritmická stupnice (intervaly rostou logaritmiky - moc se nepoužívá) Všechny teoretické řady, které mají matematicky definovanou posloupnost (např. exponenciální) 3
4 Intervalová, spojitá, nepravidelná Všechny ostatní intervalové spojité stupnice Hranice intervalů jsou odvozeny několika způsoby: Stupnice s rovnoměrným rozdělením úseku velkých četností jevu, malé četnosti (minima) jevu se zahrnují do jednoho až dvou intervalů Pro data s normálním rozdělení, jednostranně asymetrickým, tvaru U a Pearsonovy křivky III. typu Intervalová, spojitá, nepravidelná (pokr.) Úsek velkých četností rozdělen exponenciálně, oblast minimálního výskytu - 1 až 2 intervaly Sedlová stupnice (hranice intervalů minima průběhu četností) (též se nazývá nested means ) Stupnice odvozené od průměru (opět normální rozdělení) šíři intervalu tvoří např. násobek směrodatné odchylky (viz. ukázka dále) Stupnice odvozené od mediánu (viz. ukázka dále) Medián, kvartily, pentily, decily Intervalová, spojitá, nepravidelná (pokr.) Stejně plošná klasifikace (Equal Area) (nevyužívá obor hodnot, ale hodnotu plochy, kterou daný interval pokrývá) Natural breaks přirozené zlomy (Jenks) (viz. ukázka dále) Téměř vždy nutná analýzy histogramu Přednastavené funkce v ArcMapu Hodnotové měřítko angloamerické pojetí 6 základních metod (ne/berou v úvahu statistickou distribuci dat) Základní úvaha: data bipolární, vyrovnaná & unipolární (takřka libovolná klasifikační metoda) Vyrovnaná data se v tem. Kartografii často převádí na bipolární (průměr) EQUAL INTERVALS rozsah hodnot pravidelně rozdělen na požadovaný počet intervalů (rovnoměrné rozdělení frekvenční křivky) max-min (tj. rozmezí)/počet tříd = = velikost 1 intervalu Výpočetně jednoduchá, tj. dříve nejvíce užívaná metoda V praxi na mapě často používáme zaokrouhlené hranice Výhody: - výpočetní jednoduchost - někdy jednoduše interpretovatelné - obsahuje plynule všechny intervaly - přesnost dat snadno vyjádřitelná hranicí jedné třídy (max min) Nevýhody: - nerespektuje rozdělení - určité intervaly mohou být prázdné - uživateli není vždy jasné, proč daná hodnota spadá do určitého intervalu 4
5 QUANTILES v každém intervalu je stejný počet pozorování počet poz./počet tříd = = počet pozorování v jedné třídě 4Q = kvartilové mapy 5Q = kvintilové mapy 10Q = decilové mapy Výhody: - výpočetní jednoduchost (i manuálně) - výborné pro ordinální data (jako např. 27 států Evropy a kategorie životní úrovně) - stejný počet pozorování, tj. obdobná území na mapě Nevýhody: - nerespektuje rozdělení - počet pozorování nemusí být celé číslo - identická data nesmí být umístěna do 2 intervalů nutný přepočet INTERVALY ODVOZENÉ OD PRŮMĚRU A SMĚR. ODCH. hranice intervalů tvoří násobky směr. odchylky od průměru bere v úvahu rozložení frekvenční křivky efektivní rozdělení do intervalů úprava, aby identické hodnoty nespadly do dvou intervalů legenda mapy nevytváří mezery Hlavní nevýhody: -spolehlivě funguje pouze na souborech s normálním rozdělením - elementární znalost statistiky MAXIMUM BREAKS bere v úvahu distribuci hodnot maximální mezery mezi četnostmi pozorování (pojem používal George JENKS) nevýhoda: vždy neuvažuje přirozené shluky (třída 4 a 5 v obrázku níže) 5
6 NATURAL BREAKS kromě mezer mezi hodnotami četností uvažuje i přirozené shlukování dat snaha aby byl co nejmenší rozdíl mezi daty v rámci třídy a co největší mezi třídami subjektivní (každý uživatel to rozdělí jinak) OPTIMAL stejně jako u Natural Breaks snaha aby byl co nejmenší rozdíl mezi daty v rámci třídy a co největší mezi třídami řešení subjektivity podrobení dat statistické analýze (např. absolutní odchylky od mediánu (kvantilů) - ADCM další sofistikované algoritmy (Jenks-Caspall, Fisher-Jenks) Více v přednáškách Mgr. Karla Staňka, Ph.D. 6
7 Natural Breaks (Jenks) Možnosti v aplikaci ArcMap 9.2 Equal Interval (nastavuji počet tříd) Equal interval (nastavuji velikost intervalu) Kvantily (v tomto případě kvartily) Geometrical interval (nastudujte z helpu ArcMapu za DÚ ) 7
8 Směrodatná odchylka Intervalové, skokové Jeden, někdy i více intervalů je vypuštěno Dojde tak k přerušení navazující intervalové stupnice a vznikne mezera hiát. Důvodem vypuštění intervalu však může být pouze neexistence jevu v mapě pro daný interval Varianty stupnic jsou shodné se spojitými Funkční, spojitá Intervaly jsou vždy určitým kompromisem, je nutné je zaokrouhlovat na hezká čísla, aby uživatel mohl mapu interpretovat tj. najdu nejlepší metodu a upravím intervaly na slušné hodnoty Číselná hodnota konkrétního geografického jevu je pro každý diagram individuálně vypočtena a je funkčně jednoznačná. Funkční vztah může být lineární nebo nelineární Lineární (sloupec) v = H/h (jiné chápání slova lineární) Kvadratický (čtverec) a = H/h Kruh r = [H/π. h] Kubický (krychle) a = 3 (H/h) H.. Skutečná číselní hodnota jevu h.. Jednotková míra užitá v diagramu 8
9 Funkční, skokové, s hiátem Grafická legenda není zpracována spojitě pro všechny hodnoty jevu ve znázorňované oblasti Korektní zpracování funkčních stupnic do legendy v ArcMapu je nutné ručně! Jestliže jde o nelineární vztah, je to problematické Funkční, skokové, se změnou vzorce Funkční vztah je přerušen a nahrazen jiným funkčním vztahem Obyčejně se od jisté hranice hodnot změní koeficient funkčního vztahu dvakrát, nebo třikrát Někdy se vzorec vymění za vzorec jiné kategorie (kvadratický za kubický). V každém případě je dobré upozornit na změnu vzorce např. v doprovodném textu mapy. Pokud je to aspoň trochu možné, této variantě se vyhneme Na závěr: Autor kartogramů a kartodiagramů (na které se především vztahují velikostní stupnice) by měl mít na mysli, že tyto kart. vyj. prostředky mají sloužit k jakési geografické regionalizaci Vymezení větších či menších území v dané oblasti, které mají něco společného (utváření určitého prostorového vzoru) Hledá se homogenita jevu v prostoru Pokud je stupnice vytvořena špatně, homogenita určitých území nemusí být nalezena Literatura: Kaňok 1999 Hojovec 1987 Lauermann 1975 Robinson 1995 Slocum
Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice
7. Tematická kartografie
7. Tematická kartografie Zabývá se tvorbou tematických map, které na topografickém podkladě přebíraném z vhodné podkladové mapy podrobně zobrazují zájmové přírodní, socioekonomické a technické objekty
Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
TVORBA MAPY 4. přednáška z GIS1
TVORBA MAPY 4. přednáška z GIS1 převzato z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Cesta ke správné mapě Náhlé osvícení Mapa Kartograf Cesta ke správné mapě Design
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
PRŮZKUM VÝŽIVY LESA NA ÚZEMÍ ČESKÉ REPUBLIKY
PRŮZKUM VÝŽIVY LESA NA ÚZEMÍ ČESKÉ REPUBLIKY Aplikované metodické postupy Tomáš Samek počet odběrných míst/vzorků volba odběrných míst pokyny k odběru vzorků, jejich označování a skladování předávání
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických
UJEP FŽP KIG / 1KART. měřítko map. Ing. Tomáš BABICKÝ
UJEP FŽP KIG / 1KART Základy kartografie cvičení_021 měřítko map Ing. Tomáš BABICKÝ babickyt@gmail.com 1 Měřítko plánů a map: je podřízeno účelu a tematickému zaměření mapy ovlivňuje přehlednost, čitelnost,
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Kartodiagramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartodiagramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vztvoření dokumentu: 29. 10. 2007 Poslední aktualizace: 24. 10. 2011 Obsah přednášky Úvodní
Hodnocení map. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Hodnocení map Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita poslední aktualizace: 9.10.2007 Cíle a způsoby hodnocení Zjištění vlastností, kvality a vhodnosti
A Konstrukce mapy 15,00. 1. Mapová osnova ODPO CÍL OTÁZKA VÁHA SKÓRE VĚĎ
A Konstrukce mapy P CÍL 1. Mapová osnova OTÁZKA VÁHA SKÓRE 15,00 1 G: Variabilnost tvorby mapové osnovy (max. 10 %) Q: Lze nastavit mapovou osnovu? 1 0,10 0,10 2 G: Kartografická mapová osnova (max. 80
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
Kartografické výstupy z GIS
1. Zásada jednoty Kartografické výstupy z GIS obsah celé mapy musí být zpracován se stejnou pozorností. OBECNÉ ZÁSADY Mapa má tří stránky: odbornou (obsah mapy podle účelu a tematického zaměření) technickou
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
GIS v regionální analýze a jejich využití na příkladu Moravskoslezského kraje a města Ostravy
GIS v regionální analýze a jejich využití na příkladu Moravskoslezského kraje a města Ostravy Mgr. Luděk Krtička Ostravská univerzita v Ostravě Katedra sociální geografie a regionálního rozvoje Inovace
Kartografické vyjadřovací
KARTOGRAFICKÁ VIZUALIZACE Kartografické vyjadřovací prostředky - Kvantitativní údaje 2 Dr. Lucie Friedmannová 2012 Obrázky s popisy typu: Obr. 6.2. Viz Kaňok (1999): Tématická kartografie Znázorňování
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí KARTOGRAFIE V GIS PROJEKT -KARTOGRAM
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí KARTOGRAFIE V GIS PROJEKT -KARTOGRAM KARTOGRAFICKÉ VYJADŘOVACÍ PROSTŘEDKY KARTOGRAMY Kvantitativní rozlišení KARTOGRAMY Základem je kartografický areál
Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2
Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.
3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Význam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP
Digitální technologie v geoinformatice, kartografii a DPZ PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP Katedra geomatiky Fakulta stavební České vysoké učení technické v Praze Jakub Havlíček, 22.10.2013,
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita