Horner's Method using Excel (výpočet hodnoty polynomu v Excel s využitím historické Hornerovy metody) RNDr. Miroslav Kružík UPOL Olomouc

Rozměr: px
Začít zobrazení ze stránky:

Download "Horner's Method using Excel (výpočet hodnoty polynomu v Excel s využitím historické Hornerovy metody) RNDr. Miroslav Kružík UPOL Olomouc"

Transkript

1 Horner's Method using Excel (výpočet hodnoty polynomu v Excel s využitím historické Hornerovy metody) RNDr. Miroslav Kružík UPOL Olomouc

2 Proč historická metoda v dnešní počítačové době? Dnes údajně počítače zvládnou vše (hrubou silou) Zapomíná se na kvalitu myšlenek předpočítačové doby V historii matematiky najdeme mnoho příkladů složitých výpočtů realizovaných ručním způsobem Absence techniky byla nahrazována kvalitou metod Pokusit se využít dnešní techniku na odstranění výpočetní dřiny ale vyučovat metody, jde o matematické myšlenky

3 Hornerovo schéma výpočtu hodnoty polynomu Historická metoda, žádná technika, ruční práce Čína středověk 1669 Isaac Newton 1819 William Georg Horner Zápis polynomu z klasického tvaru na tvar vhodný k výpočtům Příklad: P(x) = 1+3x-6x 2 +2x 3 = 1+x[3+x(-6+2x)]

4 Zápis Hornerovy metody do tabulky Excel P(x) = 1 +3x -6x 2 +2x 3 = 1 + x[3+x(-6+2x)] Jak se bude počítat např. hodnota polynomu pro zadané x? (takto možná počítal Newton a Horner ručním způsobem) Princip: x (zde x=5) se dosazuje do nejvnitřnější závorky a po vyčíslení se pokračuje hiearchicky k vnější závorce. (kroky v pořadí výsledek ve žluté buňce) Každá buňka v řádku č.4 znamená jednu závorku v Hornerově zápisu polynomu; buňka D4 je nejvnitřnější závorka, buňka B4 je výsledek

5 Zápis Hornerovy metody do tabulky Excel - vzorce P(x) = 1 +3x -6x 2 +2x 3 = 1 + x[3+x(-6+2x)], x=5; (kroky v pořadí výsledek ve žluté buňce) VZORCE:

6 Hornerova metoda v tabulce Excel dlouhý polynom EXCEL: kopírování vzorce tažením buňky za kostičku 1) Do řádku č.3 zapíšeme koeficienty polynomu vzestupně 2) Do buňky B4 sestavíme prvotní vzorec vhodně zafixovaný 3) Buňku B4 zkopírujeme za kostičku až po nejvyšší mocninu polynomu 4) V buňce B4 ihned vyskočí výsledek, tedy hodnota polynomu pro x zadané v buňce B1

7 Hornerova metoda v tabulce Excel dlouhý polynom Polynom může být vysokého stupně, jeho výpočet je umožněn pouze tažením za kostičku doprava. Uvedený polynom P(x) = 1 +3x -6x 2 +2x 3-3x 5 +x 6 +x 8, x=5 by se přímým výpočtem také mohl vyčíslovat následovně: P(5) = 1 + 3*5-6*5*5 + 2*5*5*5-3*5*5*5*5*5 + 5*5*5*5*5* *5*5*5*5*5*5*5

8 Hornerova metoda v tabulce Excel závěr - Ručně se sestaví malá tabulka (defacto nejvnitřnější závorka Hornerova zápisu) - Poté se řádky tabulky rozkopírují vpravo až do potřebného stupně polynomu - Doplní se zadané koeficienty polynomu - V levé spodní buňce je ihned vypočtena hodnota polynomu pro zadané x - Maximální stupeň polynomu není omezen

9 Hornerova metoda v tabulce Excel problémy - Není omezen stupeň polynomu - Vypočtené hodnoty jednotlivých Hornerových závorek (tedy buněk v Excelu) mohou být veliké - Každý software je omezen na počet platných číslic, takže i zde dochází ke ztrátám a zaokrouhlování (což se patrně při ruční výpočetní dřině v minulosti nestávalo)

10 Hledání kořene polynomické rovnice Hornerovým schematem - Algebra vysvětluje pojem kořene poly. rovnice - Kořen je definován vztahem P(x) = 0 (náhodným způsobem můžeme zkoušet dosazovat do buňky x a sledovat výsledek (hodnotu polynomu); pokud vyjde nula, máme kořen) - Existuje algebraické věta o souvislosti kořenů a dělitelů absolutního členu polynomu - Při využití této věty nejprve zkoušíme dosazovat za x dělitele, zda náhodou nebude P(dělitel) = 0; úspěch není zaručen!!!

11 Hledání kořene polynomické rovnice Hornerovým schematem - příklad - Hledejme kořeny polynomu P(x) = 5 + 3x + 2x 3. - Absolutní člen je a 0 = 5 a množina jeho dělitelů je { 1, 1, 5, 5}. - Postupně dosazujeme do Hornerovy tabulky polynomu a hledáme jeho hodnotu Po dosazení za x vyjde v této tabulce: x=-1 hodnota polynomu = 10 x=+1 hodnota polynomu = 0 x=-5 hodnota polynomu = -270 x=+5 hodnota polynomu = Ukázalo se, že číslo x=+1 je kořenem polynomu P(x) - Ostatní dělitele absolutního členu kořenem nejsou.

12 Dělení polynomů Hornerovým schematem - Touto metodou lze dělit pouze lineárním dvojčlenem - Použijeme stejnou Hornerovu tabulku jako pro výpočet hodnoty - Čísla vypočtená v posledním řádku vypočtené hodnoty jsou koeficienty podílu, tedy výsledného polynomu (o jeden stupeň nižšího) - Příklad: (Dělení beze zbytku) Vydělte polynom P(x) = 5 + 3x + 2x 3 polynomem Q(x) = x x x 1 2x 3 5 2x 2x 2

13 Dělení polynomů Hornerovým schematem - Příklad: (Dělení se zbytkem) Vydělte polynom P(x) = 5 + 3x + 2x 3 polynomem Q(x) = x x 2x x x 2x 17 x 2

14 Horner's Method using Excel? nic jednoduššího: - sestavit Hornerovu tabulku - sestavit první ze vzorců a správně zafixovat adresy - naplnit tabulku koeficienty zadaného polynomu a zadané x - za kostičku zkopírovat první vzorec do ostatních mocnin - odečíst vypočtenou hodnotu polynomu nebo koeficienty podílu - ALE: ve vypočtených buňkách musí student vidět matematické závorky v Hornerově zápisu polynomu; musí vidět, jak to tehdy Horner počítal a (snad) ocenit hloubku jeho myšlenky

15 Děkuji za pozornost.

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu. Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b = ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin

Více

Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek.

Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. Algebraické výrazy Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. 1. Upravte výrazy: a) 6a + 3b + 2a + c b b) 3m + s

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost . cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/01 Strojírenství Zaměření: Předmět: Matematika Ročník: 1. Počet hodin 4 Počet hodin celkem: 136 týdně: Tento plán vychází z Rámcového vzdělávacího programu

Více

Základní vzorce a funkce v tabulkovém procesoru

Základní vzorce a funkce v tabulkovém procesoru Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Komplexní

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Operace s mnohočleny. Text a příklady.

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy

4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy 4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce: STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš METODICKÝ LIST DA10 Název tématu: Autor: Předmět: Dělitelnost Rozklad na součin prvočísel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti:

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

Soustavy lineárních a kvadratických rovnic o dvou neznámých

Soustavy lineárních a kvadratických rovnic o dvou neznámých Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

9.3. Úplná lineární rovnice s konstantními koeficienty

9.3. Úplná lineární rovnice s konstantními koeficienty Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme

Více

František Hudek. květen 2012

František Hudek. květen 2012 VY_32_INOVACE_FH06 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek květen 2012 8. ročník

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. VÝPOČET VÝMĚR Z PRAVOÚHLÝCH SOUŘADNIC Ing. Jana Marešová, Ph.D. rok 2018-2019 Výpočet ze souřadnic se používá pro určení

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá. Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Microsoft Excel kopírování vzorců, adresování, podmíněný formát Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Kopírování vzorců v mnoha případech je třeba provést stejný výpočet

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

( ) ( ) ( ) ( ) Kvadratické rovnice (dosazení do vzorce) II. Předpoklady: 1101

( ) ( ) ( ) ( ) Kvadratické rovnice (dosazení do vzorce) II. Předpoklady: 1101 Kvadratické rovnice (dosazení do vzorce) II Předpoklady: 0 Př : Vyřeš s pomocí kalkulačky na tři desetinná místa kvadratické rovnice: 3 3 = 0 5 + 4 40 = 0 a b c 3 3 = 0 = ; = 3; = 3 ( ) ( ) ( ) 3 ± 3 4

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná

Více

Abstrakt. Bairstowovy iterační metody. V práci je odvozena Bairstowova metoda

Abstrakt. Bairstowovy iterační metody. V práci je odvozena Bairstowova metoda Hledání kořenů algebraické rovnice Michaela Kožuchová 1,MichaelaSládková 2,Vojtěch Pék 3 Abstrakt Práce se zabývá hledáním kořenů algebraické rovnice za pomoci Bairstowovy iterační metody. V práci je odvozena

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

2.7.6 Rovnice vyšších řádů (separace kořenů)

2.7.6 Rovnice vyšších řádů (separace kořenů) 76 Rovnice vyšších řádů (separace kořenů) Předpoklady: 00507, 00705 Přehled rovnic: Řád rovnice Tvar Název způsob řešení (vzorec) ax + b = 0 lineární b a 0, x = a ax + bx + c = 0 kvadratická ± a 0, x,

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

Kapitola 1. Hlavním cílem této kapitoly je naučit se rychle a bezchybně upravovat složité algebraické výrazy. To ovšem

Kapitola 1. Hlavním cílem této kapitoly je naučit se rychle a bezchybně upravovat složité algebraické výrazy. To ovšem Kapitola Algebraické výrazy Hlavním cílem této kapitoly je naučit se rychle a bezchybně upravovat složité algebraické výrazy. To ovšem předpokládá bezproblémové zvládnutí základních úprav jednoduchých

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

Polynomy a racionální lomené funkce

Polynomy a racionální lomené funkce Polnom a racionální lomené funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Polnom Definice a základní pojm Násobnost kořene Počet kořenů Kvadratický polnom Rozklad na součin kořenových

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Lineární funkce, graf lineární funkce

Více

7.5.1 Středová a obecná rovnice kružnice

7.5.1 Středová a obecná rovnice kružnice 7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli

Více

CZ.1.07/1.5.00/34.0632

CZ.1.07/1.5.00/34.0632 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Excel Formát buňky Ing. Silvana Žárská

Více

Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí

Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí Polynomy Vlasnosti reálných čísel: 1 (komutativitaoperace+)provšechnačísla a, b Rplatí, a+b=b+a 2 (asociativitaoperace+)provšechnačísla a, b, c Rplatí a+(b+c)=(a+b)+c, 3 (existencenulovéhoprvku)provšechnačísla

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu.

Univerzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu. Univerzitní licence MATLABu Pište mail na: operator@service.zcu.cz se žádostí o nejnovější licenci MATLABu. * násobení maticové K = L = 1 2 5 6 3 4 7 8 Příklad: M = K * L N = L * K (2,2) = (2,2) * (2,2)

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Excel 2007 praktická práce

Excel 2007 praktická práce Excel 2007 praktická práce 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Relativní a absolutní adresa buňky, pojmenování buňky/rozsahu

Relativní a absolutní adresa buňky, pojmenování buňky/rozsahu Relativní a absolutní adresa buňky, pojmenování buňky/rozsahu EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.12 Předmět: IVT Tematická oblast: Microsoft Office

Více

Informatika a výpočetní technika 1. Ing. Ladislav Nagy Technická univerzita v Liberci FT / KOD / 2011

Informatika a výpočetní technika 1. Ing. Ladislav Nagy Technická univerzita v Liberci FT / KOD / 2011 Informatika a výpočetní technika 1 Ing. Ladislav Nagy Technická univerzita v Liberci FT / KOD / 2011 Úvod Základní informace Podmínky zápočtu, docházka Pravidla chovaní v PC učebně Náplň cvičení EXCEL

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚVOD ZÁKLADNÍ POČETNÍ ÚKONY A ZKOUŠKY ZÁKLADNÍ POČETNÍ ÚKONY A ZKOUŠKY ZÁPIS, DIKTOVÁNÍ A KONTROLA ZAOKROUHLOVÁNÍ ČÍSEL

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

Tematická oblast: Rovnice (VY_32_INOVACE_05_1)

Tematická oblast: Rovnice (VY_32_INOVACE_05_1) Tematická oblast: (VY_32_INOVACE_05_1) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží k

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Algebraické výrazy-ii

Algebraické výrazy-ii Algebraické výrazy-ii Jednou ze základních úprav mnohočlenů je jejich rozklad na součin mnohočlenů nižšího stupně. Ne všechny mnohočleny lze na součin rozložit. Pro provedení rozkladu můžeme použít: 1.

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Tematická oblast: Tabulkové procesory (VY_32_INOVACE_10_3_AP) Anotace: Využití ve výuce: Autor: Ing. Jan Roubíček Vytvořeno: únor až květen 2013

Tematická oblast: Tabulkové procesory (VY_32_INOVACE_10_3_AP) Anotace: Využití ve výuce: Autor: Ing. Jan Roubíček Vytvořeno: únor až květen 2013 Tematická oblast: Tabulkové procesory (VY_32_INOVACE_10_3_AP) Autor: Ing. Jan Roubíček Vytvořeno: únor až květen 2013 Anotace: Digitální učební materiály slouží k seznámení s možnostmi a s prací v tabulkových

Více

CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel. Michaela Ševečková

CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel. Michaela Ševečková CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel Michaela Ševečková Rozvoj technického myšlení nejmenších dětí práce s předměty charakteristika, diferenciace (hledání rozdílů),

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi Rejstřík In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp.

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Variace. Lineární rovnice

Variace. Lineární rovnice Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: Anotace: Vzdělávací oblast: VY_32_INOVACE_ARITMETIKA+ALGEBRA17 Rovnice

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYBRANÉ KAPITOLY Z ELEMENTÁRNÍ ALGEBRY DIPLOMOVÁ PRÁCE Bc. Jiří KRYČ Učitelství pro 2. stupeň ZŠ, obor

Více