Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,"

Transkript

1 E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková

2 Obsah 1 Úpravy výrazů Zlomky Mocniny a odmocniny Mnohočleny Lomené algebraické výrazy Úprava výrazů Řešení rovnic Algebraické rovnice o jedné neznámé Jednoduché exponenciální a logaritmické rovnice Jednoduché goniometrické rovnice Rovnice s absolutní hodnotou Soustavy rovnic Řešení nerovnic Lineární nerovnice a jejich soustavy Nerovnice s absolutní hodnotou Nerovnice součinového a podílového typu Kvadratické nerovnice Nerovnice s neznámou pod odmocninou Jednoduché exponenciální nerovnice Jednoduché logaritmické nerovnice Jednoduché goniometrické nerovnice Komplexní čísla Operace s komplexními čísly Goniometrický tvar komplexního čísla

3 Řešení: R1 Úpravy výrazů - řešení R1.1 Zlomky - řešení R1. Mocniny a odmocniny - řešení R1.3 Mnohočleny - řešení R1.4 Lomené algebraické výrazy - řešení R1.5 Úprava výrazů - řešení R Řešení rovnic - řešení R.1 Algebraické rovnice o jedné neznámé - řešení R. Jednoduché exponenciální a logaritmické rovnice - řešení R.3 Jednoduché goniometrické rovnice - řešení R.4 Rovnice s absolutní hodnotou - řešení R.5 Soustavy rovnic - řešení R3 Řešení nerovnic - řešení R3.1 Lineární nerovnice a jejich soustavy - řešení R3. Nerovnice s absolutní hodnotou - řešení R3.3 Nerovnice součinového a podílového typu - řešení R3.4 Kvadratické nerovnice - řešení R3.5 Nerovnice s neznámou pod odmocninou - řešení R3.6 Jednoduché exponenciální nerovnice - řešení R3.7 Jednoduché logaritmické nerovnice - řešení R3.8 Jednoduché goniometrické nerovnice - řešení R4 Komplexní čísla - řešení R4.1 Operace s komplexními čísly - řešení R4. Goniometrický tvar komplexního čísla

4 1. Úpravy výrazů 1.1. Zlomky V následujících příkladech upravte zlomky: Příklad 1.1: Příklad 1.: Příklad 1.3: Příklad 1.4: ( ). Řešení ( 10 : 3 5 ). Řešení 6 3 ( a ) 3 a ( a + a a ) a ; a 0. Řešení 4 ( a b + b ) ( 1 : a 3 a b ) ( b 3 3 b ) ; a, b 0, a b 1. Řešení 1.. Mocniny a odmocniny V následujících příkladech zjednodušte výraz: Příklad 1.5: x y 3 8 y 5 x 43 ; x, y 0. Řešení

5 Příklad 1.6: a 3 b 15 9 ; a, b > 0. Řešení a 1 6 b 3 ( ) u 5 v Příklad 1.7: w (v 6 u 3 w 3 v ) 3 ; u, v, w 0. Řešení 1.3. Mnohočleny V následujících příkladech vydělte polynomy P (x) a Q(x) a proved te zkoušku: Příklad 1.8: P (x) x 3 5x + 8x 4, Q(x) x, Řešení Příklad 1.9: P (x) x 4 + x 3 4x 6x + 3, Q(x) x 3, Řešení Příklad 1.10: P (x) x 4 + 6x 3 + 7x + 9x 7, Q(x) x + 5, Řešení Příklad 1.11: P (x) x 5 x 4 5x x 13x + 3, Q(x) x 3x + 4, Řešení Příklad 1.1: Umocněte dvojčleny: a) (3 x ) 4, b) (a b ) 3, c) Příklad 1.13: Rozložte mnohočleny na součin: ( z 1 ) 5 ( u, d) z v + v ) 3. Řešení u a) x 5 5 y, b) a 4 16, c) x 3 3 3, d) 8 u 3 + v3 7. Řešení

6 Příklad 1.14: Rozložte trojčleny na součin: a) x 5 x 4, b) 3 x + 1 x + 30, c) x 4 5 x + 4, d) x 4 8 x 9. Řešení Příklad 1.15: Doplňte na čtverec. a) x + x 4, b) x 8 x + 9, c) x 4 x + 1, d) 3 x4 6 x + 1. Řešení 1.4. Lomené algebraické výrazy Příklad 1.16: Příklad 1.17: Příklad 1.18: Sečtěte lomené výrazy: Sečtěte lomené výrazy: Zjednodušte lomený výraz: 1 b(a + b) + 1 a(b a) + a b. 1 x 1 + ( 1) x ( ) x + 1. x y y x 1 x 1 y. Řešení Řešení Řešení

7 Příklad 1.19: Zjednodušte lomený výraz: 4 u u 1 1 u(u 1) 4 u 1 u u Řešení 1.5. Úprava výrazů V následujících příkladech upravte výraz a stanovte podmínky, za kterých má výraz smysl: Příklad 1.0: ( ) ( ) x 1 x 1 x x 1 x 1 x 1. x 1 + x Řešení Příklad 1.1: x y y x 1 1. x y Řešení

8 Příklad 1.: y + 1 x 1 y 1 x + 1 y x 1 y x + 1. Řešení

9 . Řešení rovnic.1. Algebraické rovnice o jedné neznámé Příklad.1: Řešme v reálném oboru rovnici 4x (1 x) 3(x + ) 6x 8. Řešení Příklad.: Řešme v reálném oboru rovnici 4x (1 x) 3(x + ) 6x 9. Řešení Příklad.3: Řešme v reálném oboru rovnici 4x (1 + x) 3(x + ) 8 x. Řešení Příklad.4: Řešme v reálném oboru rovnici 4x (1 x) 3(x + ) + 8 3x 0. Řešení Příklad.5: Řešme v reálném oboru rovnici 3x x 5 (4 x) 1 (x + 4). Řešení Příklad.6: Provedeme diskusi řešitelnosti rovnice (s neznámou x) vzhledem k reálnému parametru t. t 1 x t 1 Řešení Příklad.7: Řešme kvadratické rovnice: a) x x 15 0, b) x + 5x 8 0, c) x + 14x Řešení Příklad.8: Řešme v reálném oboru rovnici x 3 9x + 4x Řešení Příklad.9: Řešme v oboru komplexních čísel rovnici x 3 7x + x 7 0. Řešení

10 Příklad.10: Řešme v reálném oboru rovnici 4 + x 16 x. Řešení Příklad.11: Řešme v reálném oboru rovnici 1 + x x + 3. Řešení Příklad.1: Řešme v reálném oboru rovnici x + 8 x. Řešení.. Jednoduché exponenciální a logaritmické rovnice Příklad.13: Řešme v reálném oboru rovnici 4 x 1 5 x. Řešení Příklad.14: Řešme v reálném oboru rovnici 5 x x 5 5 x 1. Řešení Příklad.15: Řešme v reálném oboru rovnici x 3 x 1 5 x 4 x+1 +. Řešení Příklad.16: Řešme v reálném oboru rovnici ln x + ln(x + 9) 4 ln + ln 7. Řešení.3. Jednoduché goniometrické rovnice Příklad.17: Řešme v reálném oboru rovnici cotg x 3. Řešení Příklad.18: Řešme v reálném oboru rovnici cos(x π ) 1. Řešení Příklad.19: Řešme v reálném oboru rovnici sin x 5 cos x + 5. Řešení.4. Rovnice s absolutní hodnotou Příklad.0: Řešme v reálném oboru rovnici 4x 1 + 3x. Řešení Příklad.1: Řešme v reálném oboru rovnici 4x x x + 1. Řešení Příklad.: Řešme v reálném oboru rovnici 4x 8 3 x x + 1. Řešení

11 .5. Soustavy rovnic Příklad.3: Řešme v reálném oboru soustavu rovnic: 5x + y 3 x 6y 39. Řešení Příklad.4: Řešme v reálném oboru soustavu rovnic: 7x + 3y 5 x + y 6. Řešení

12 3. Řešení nerovnic 3.1. Lineární nerovnice a jejich soustavy Příklad 3.1: Řešme v R nerovnici 4( x) 3(x 1) + x 9 5x 8. Řešení Příklad 3.: Řešme v R nerovnici (4x 1) + (1 x) (x + 1) < 4(x + 3). Řešení Příklad 3.3: Řešme v R soustavu nerovnic 3x < 0 4x Řešení 3.. Nerovnice s absolutní hodnotou Příklad 3.4: Řešme v reálném oboru nerovnici x 4 8. Řešení Příklad 3.5: Řešme v reálném oboru nerovnici 1 4x 5. Řešení Příklad 3.6: Řešme v reálném oboru nerovnici x + x x Řešení Příklad 3.7: Řešme v reálném oboru soustavu nerovnic x x 3. Řešení 3.3. Nerovnice součinového a podílového typu Příklad 3.8: Řešme v reálném oboru nerovnici (8 x)(x + 1) 0. Řešení Příklad 3.9: Řešme v reálném oboru nerovnici (3x 4)(x + 7) < 0. Řešení

13 Příklad 3.10: Příklad 3.11: Řešme v reálném oboru nerovnici Řešme v reálném oboru nerovnici x x Řešení x x + 1 x 10x Řešení 3.4. Kvadratické nerovnice Příklad 3.1: Řešme v reálném oboru nerovnici 6x + 7x 0. Řešení Příklad 3.13: Řešme v reálném oboru nerovnici 3x + 15x 1 > 0. Řešení 3.5. Nerovnice s neznámou pod odmocninou Příklad 3.14: Řešme v reálném oboru nerovnici x 3x Řešení Příklad 3.15: Řešme v reálném oboru soustavu nerovnic 1 1 x 1. Řešení 3.6. Jednoduché exponenciální nerovnice Příklad 3.16: Řešme v reálném oboru nerovnici 4 x. Řešení Příklad 3.17: Řešme v reálném oboru nerovnici 3 1 x < 4. Řešení 3.7. Jednoduché logaritmické nerovnice Příklad 3.18: Řešme v reálném oboru nerovnici ln( x) 1. Řešení Příklad 3.19: Řešme v reálném oboru nerovnici log 1 (x 1) < 0. Řešení 5

14 3.8. Jednoduché goniometrické nerovnice Příklad 3.0: Řešme v reálném oboru nerovnici cos x < 1. Řešení

15 4. Komplexní čísla 4.1. Operace s komplexními čísly Příklad 4.1: Vyjádřete v algebraickém tvaru: a) (5 + 4 i ) + ( 3 i ), b) ( + 5 i )( i ), c) ( 5 i ), d) ( + 3 i ) (4 + 9 i ), e) 4(5 + 3 i )( i ), f) (1 i )(1 + i )(3 + 4 i ). Řešení Příklad 4.: Vyjádřete v algebraickém tvaru: 3 i a), b) i, c) i 1 i (5 + 3 i )(3 + 4 i ) d), e) 1 + i 4.. Goniometrický tvar komplexního čísla Příklad 4.3: 4 + i 1 + i ( + 3 i ), (7 + 3 i )(6 + i ) ( + 5 i )( 6 i ), f) (4 6 i )(9 6 i ) (6 7 i ). Řešení ( i )( i ) Komplexní číslo (cos 7 π + i sin 7 π ) vyjádřete v algebraickém tvaru. Řešení 1 1 Příklad 4.4: Komplexní číslo z i vyjádřete v goniometrickém tvaru. Řešení Příklad 4.5: Komplexní číslo z 3 3 i vyjádřete v goniometrickém tvaru. Řešení Příklad 4.6: Komplexní číslo z + i vyjádřete v goniometrickém tvaru. Řešení Příklad 4.7: Vyjádřete komplexní číslo (cos 3 7 π + i sin 3 7 π)(cos 4 7 π + i sin 4 7 π) v algebraickém tvaru. Řešení

16 Příklad 4.8: Vyjádřete komplexní číslo (cos π 1 + i sin π 1 )(cos π 6 + i sin π 6 ) v algebraickém tvaru. Řešení Příklad 4.9: Vyjádřete komplexní číslo (cos π 15 + i sin π 15 )35 v algebraickém tvaru. Řešení Příklad 4.10: Vyjádřete komplexní číslo ( 3 + i ) 7 v algebraickém tvaru. Řešení Příklad 4.11: Najděte všechny odmocniny i. Řešení

17 R1. Úpravy výrazů - řešení R1.1. Příklad 1.1: Příklad 1.: Příklad 1.3: Příklad 1.4: Zlomky - řešení ( ) ( 10 : 3 5 ) : 5 ( 16 5 ) ( a ) 3 a ( a + a a ) ( ) a + 3 a 3 a ( ) 8 a 4 3 a + a 4 a ( ) ( ) a a ( a b + b ) ( 1 : a 3 a b ) ( b 3 3 b ) a + b : 1 a b b 3 b a b 3 a 6 a + b a b 3 a 1 a b b 6 a + b (a b 1).

18 R1.. Příklad 1.5: Příklad 1.6: Příklad 1.7: R1.3. Mocniny a odmocniny - řešení x y 3 8 y 5 x 43 x y 3 8 y 5 x 6 x 1 y x y x 4 y. a 3 b 15 9 a 3 b 5 3 a 1 6 b 3 a 1 6 b 3 ( ) u 5 v w ( ) u v w 3 v a b a 3 6 b 1 6 a 1 b 1 6. u 10 v 5 w 10 v 6 u 9 w 9 v 3 Mnohočleny - řešení u10 v 5 w9 v 3 w 10 v 6 u 9 u v w. Příklad 1.8: (x 3 5 x +8 x 4) : (x ) x 3 x + (x 3 x ) 3 x +8 x 4 (3 x +6 x) x 4 ( x 4) 0 Výsledek: P (x) : Q(x) x 3 x +, pro x. Zkouška: (x 3 x+) (x ) x 3 3 x + x x +6 x 4 x 3 5 x +8 x 4.

19 Příklad 1.9: (x 4 + x 3 4 x x +3) : (x 3) x + x 1 (x 4 3 x ) x 3 x 6 x +3 ( x 3 6 x) x +3 ( x +3) 0 Výsledek: P (x) : Q(x) x + x 1, pro x ± 3. Zkouška: (x + x 1) (x 3) x 4 + x 3 x 3 x 6 x + 3 x 4 + x 3 4 x 6 x + 3.

20 Příklad 1.10: (x 4 +6 x 3 +7 x +9 x 7) : (x +5) x 3 +x + x 1 (x 4 +5 x 3 ) x 3 +7 x +9 x 7 (x 3 +5 x ) x +9 x 7 ( x +10 x) x 7 ( x 7) Zbytek po dělení je. Výsledek: P (x) : Q(x) x 3 + x + x 1, pro x 5. x + 5 Zkouška: ( x 3 + x + x 1 ) (x + 5) x + 5 (x 3 + x + x 1) (x + 5) (x + 5) x + 5 x 4 + x 3 + x x + 5 x x + 10 x 5 x x x + 9 x 7.

21 Příklad 1.11: (x 5 x 4 5 x x 13 x +3 ) : (x 3 x +4) x 3 + x 3 x +1 (x 5 3 x 4 +4 x 3 ) x 4 9 x x 13 x +3 ( x 4 6 x 3 +8 x ) 3 x x 13 x +3 ( 3 x 3 +9 x 1 x) x x +3 (x 3 x +4) x 1 Zbytek po dělení je 6 x. Výsledek: P (x) : Q(x) x 3 + x 3 x x 1 x 3 x + 4. Zkouška: ( x 3 + x 3 x x 1 ) (x 3 x + 4) x 3 x + 4 (x 3 + x 3 x + 1) (x 3 x + 4) + x 1 x 3 x + 4 (x 3 x + 4) x 5 3 x x 3 + x 4 6 x x 3 x x 1 x + x 3 x x 1 x 5 x 4 5 x x 13 x + 3.

22 ( ) 4 Příklad 1.1: a) (3 x ) 4 81 x x 3 ( )+ ( ) 4 9 x ( ) ( ) x( ) 3 +( ) x 4 16 x x 96 x b) (a b ) 3 a 3 b 3 + c) a 3 b 3 6 a b + 1 a b 8. ( z 1 z ) 5 3 z 5 + ( 1 ) ( 3 5 ( + z z 4) 1 z ( ) 3 a b ( ) + 1 ( ) 5 ( 16 z 4 1 ) + 1 z ) 4 ( + 1 z ) 5 ( ) 3 a b ( ) + ( ) 3 ( ) 5 ( 8 z 3 1 ) ( z z 3) d) 3 z 5 80 z z 40 1 z z 3 1 z 5. ( u v + v ) 3 u 3 u v + 3 u3 v u v + 1 v u + 8 v3 u 3. ( ) 3 u 1 v v u + ( ) 3 u v 4 v u + 8 v3 u 3

23 Příklad 1.13: a) x 5 5 y x 5 5 y ( x 5 5 y )( x y ). b) a 4 16 (a 4 4 ) (a )(a + ) (a )(a + )(a + 4). c) x (x 3 ( 3) 3 ) (x 3)(x + 3 x + ( 3) ) (x 3)(x + 3 x + 3). ( ) d) 8 u 3 + v3 7 3 u 3 + v3 3 3 ( u + v 3 )(4 u 3 u v + v 9 ( u + v )( u u v v ). 3 )

24 Příklad 1.14: a) Najdeme kořeny kvadratické rovnice x 5 x 4 0. x 1, 5 ± ± 11 x 5 x 4 (x 8)(x + 3). 5 ± 11 b) 3 x + 1 x (x + 7 x + 10). Najdeme kořeny kvadratické rovnice x + 7 x x 1, 7 ± ± 9 7 ± 3 3 x + 1 x (x + 7 x + 10) 3(x + )(x + 5). x 1 8 x 3. x 1 5 x. c) Provedeme substituci y x, x 4 5 x + 4 y 5 y + 4. Najdeme kořeny kvadratické rovnice y 5 y y 1, 5 ± ± 9 5 ± 3 y 1 4 y 1. x 4 5 x + 4 y 5 y + 4 (y 4)(y 1) (x 4)(x 1) (x 1)(x + )(x 1)(x + 1). d) Provedeme substituci y x, x 4 8 x 9 y 8 y 9. Najdeme kořeny kvadratické rovnice y 8 y 9 0. y 1, 8 ± ± ± 10 y 1 9 y 1.

25 x 4 8 x 9 y 8 y 9 (y 9)(y + 1) (x 9)(x + 1) (x 3)(x + 3)(x + 1). Příklad 1.15: a) x + x 4 (x + x + 1) 1 4 (x + 1) 5, R1.4. Příklad 1.16: b) x 8 x + 9 (x 4 x) + 9 (x 4 x + 4 4) + 9 (x 4 x + 4) (x ) + 1, c) x 4 ( 3 x + 1 x 4 3 x + 4 ) 49 ( x ) , d) x 4 6 x + 1 (x 4 6 x + 9) (x 3) 8. Lomené algebraické výrazy - řešení Lomené výrazy mají smysl pro a, b 0 a a ±b. 1 b(a + b) + 1 a(b a) + a b a(b a) + b(b + a) + ( 1) a b a b (b a ) a b a + b + a b a b a b (b a ) b a a b (b a ) 1 a b.

26 Příklad 1.17: Lomené výrazy mají smysl pro x ±1. 1 x 1 + ( 1) x ( ) x + 1 (x + 1)(x + 1) (x 1)(x + 1) (x 1)(x + 1) x 4 1 x3 + x + x + 1 (x 3 x + x 1) (x 1) x x 4 1. Příklad 1.18: Lomený výraz má smysl pro x, y 0 a 1 x 1 y t.j. x y. x y y x 1 x 1 y x y x y y x x y (x y)(x + y) x y x y y x ( 1)(x + y) 1 (x + y). Příklad 1.19: Lomený výraz má smysl pro u 0, u 1 a 4 u 1 t.j. u ± 1. 4 u u 1 1 u(u 1) 4 u 1 u u 4 u 1 u(u 1) 4 u u + u 1 u(u 1) 4 u 1 u(u 1) u(u 1) 4 u 1 1.

27 R1.5. Příklad 1.0: Úprava výrazů - řešení Výraz má smysl, jestliže x > 1, x 0, x 1 ±x. První nerovnost je splněna, když x (, 1) (1, ), poslední nerovnost je splněna vždy. Výraz má tedy smysl pro x (, 1) (1, ). ( ) ( ) x 1 x 1 x x 1 x 1 x 1 x 1 + x ( ) ( x 1 x x x 1 + x ) x 1 + x ( 1) x 1 x 1 x x x 1 x ( 1) x 1. Příklad 1.1: Výraz má smysl, jestliže x > 0, y > 0, x y. x y y x 1 1 x y x y y x y x x y x y (x y)( y + x) y x ( y x)( y + x) (x y)( y + x) (y x) ( y + x).

28 Příklad 1.: Výraz má smysl, jestliže x ±1 a y 0. y + 1 x 1 y 1 x + 1 y x 1 y x + 1 (y + 1)(x + 1) (y 1)(x 1) x 1 y(x + 1) y(x 1) x 1 (x y + x + y + 1 x y + x + y 1 x 1 x y + y x y + y x 1 (x + y) x 1 y x 1 x + y y.

29 R. Řešení rovnic - řešení R.1. Algebraické rovnice o jedné neznámé - řešení Příklad.1: Rovnici řešíme pomocí ekvivalentních úprav: 4x (1 x) 3(x + ) 6x 8 4x + x 3x 6 6x 8 / 6x + 8 3x 0 / : ( 3) x 0. Daná rovnice má jediné reálné řešení: K {0}. Příklad.: Rovnici řešíme pomocí ekvivalentních úprav: 4x (1 x) 3(x + ) 6x 9 4x + x 3x 6 6x 9 / 6x + 8 3x 1 / : ( 3) x 1 3. Daná rovnice má jediné reálné řešení: K { 1 3}.

30 Příklad.3: Rovnici řešíme pomocí ekvivalentních úprav: 4x (1 + x) 3(x + ) 8 x 4x x 3x 6 8 x x 8 8 x / + x 8 8. Poslední rovnost nikdy nenastane, rovnice proto nemá žádné reálné řešení, K. Příklad.4: Rovnici řešíme pomocí ekvivalentních úprav: 4x (1 x) 3(x + ) + 8 3x 0 4x + x 3x x Poslední rovnost je vždy pravdivá, proto K R.

31 Příklad.5: Daná rovnice má smysl, jsou-li splněny podmínky 16 x 0, 4 x 0, 4+x 0, tedy pro všechna x R \ {±4}. Postupnými úpravami dostáváme: 3x x 5 (4 x) 1 / (4 x)(4 + x) (x + 4) (3x + 8) 5(x + 4) (4 x) 6x x x / 6x Poslední rovnost je vždy pravdivá. Řešením dané rovnice jsou tedy všechny hodnoty x, pro něž má rovnice smysl, tj. K R \ {±4}.

32 Příklad.6: Rovnice má smysl pro x 0. Postupnými úpravami dostaneme: Dále rozlišíme tři případy: t 1 x t 1 / x (t 1)(t + 1) (t 1)x pro t 1 odtud plyne 0x 0, tedy K R \ {0}, pro t 1 dostaneme rovnici 0 x, které nevyhovuje žádné přípustné reálné číslo (vzhledem k definičnímu oboru rovnice), K, pro t ±1 lze rovnici dělit výrazem (t 1), odtud plyne x t + 1, tedy K {t + 1}. Závěr můžeme zapsat pomocí přehledné tabulky: t K(t) t 1 R \ {0} t 1 t ±1 {t + 1}

33 Příklad.7: a) V této rovnici je a 1, b, c 15, pro její diskriminant platí D b 4ac ( ) 4 1 ( 15) 64 > 0. Rovnice má proto dva reálné kořeny x 1, ± 64 x 1 5 x 3 K { 3, 5}. b) Pro a 1, b 5, c 8 platí b 4ac < 0, takže rovnice má komplexně sdružené kořeny: x 1, 5 ± 7 5 { } 7 ± i K 5 7 ± i. V případě, kdybychom v zadání požadovali řešení pouze v reálném oboru, rovnice by neměla žádné řešení. c) D b 4ac , rovnice má jediný (dvojnásobný) reálný kořen: x 1, 14 ± 0 7 K { 7}.

34 Příklad.8: Zkusme do rovnice postupně dosazovat čísla ±1, ± atd. Snadno ověříme, že x 1 1 danou rovnici splňuje. To znamená, že mnohočlen x 3 9x + 4x + 15 má kořenový činitel x + 1. Provedeme dělení: (x 3 9x + 4x + 15) : (x + 1) x 11x + 15 (x 3 + x ) 11x + 4x + 15 (11x 11x) 15x + 15 (15x + 15) 0 Nyní již můžeme zadanou rovnici přepsat v součinovém tvaru: x 3 9x + 4x + 15 (x + 1)(x 11x + 15) 0. Tedy bud x+1 0 nebo x 11x Kvadratická rovnice x 11x+15 0 má dva kořeny x 1, 11 ± Pro množinu kořenů platí K { 1, 5, 3}. x 1 3 x 5.

35 Příklad.9: Mnohočlen na levé straně rovnice pomocí postupného vytýkání zapíšeme v součinovém tvaru: Příklad.10: x (x 7) + (x 7) 0 (x 7)(x + 1) 0. Odtud dostáváme dvě možnosti: x 7 0 nebo x +1 0, tedy x 1 7, x,3 ±i. Daná rovnice má tři kořeny, K { 7, ±i }. 4 + x 16 x / 4 x 16 x 4 / x 16 x 8x + 16 / + 8x x 3 x 4 Zk.: L(4) , P (4) 4, L(4) P (4), K {4}

36 Příklad.11: 1 + x x + 3 / 1 + x + x x + 3 / 1 x x x 1 / x 1 Zk.: L(1) 1 + 1, P (1) 1 + 3, L(1) P (1), K {1} Příklad.1: x + 8 x / x + 8 x 4 x + 8 / x x 0 x Zk.: L(0) 0 + 8, P (0) 0, L(0) P (0), K.

37 R.. Jednoduché exponenciální a logaritmické rovnice - řešení Příklad.13: Použitím pravidel pro počítání s mocninami rovnici upravíme do podoby ( ) x 1 5 x x 5 ( ) x x 1 5 ( ) x ( ) x 0 x 1. Pokud bychom nejprve obě strany rovnice logaritmovali a až poté upravovali, vypadal by výpočet takto: log 4 x 1 log 5 x (x 1) log 4 ( x) log 5 x(log 4 + log 5) log 5 + log 4 x Daná rovnice má jediné reálné řešení: K {1}. log 5 + log 4 log 5 + log 4 1.

38 Příklad.14: Použitím pravidel pro počítání s mocninami dostaneme 5 5 x 4 5 x x (5 4) 5 x 5 x 5 x 5 x. Této rovnici vyhovuje každé reálné číslo, tj. K R. Příklad.15: Pomocí pravidel pro práci s mocninami dostaneme: x 3 1 x 5 x + 4 x 0 x + 3 x 0. Nyní zvolíme substituci y x, tj. x ( ) x ( x ) y, čímž danou rovnici převedeme na rovnici kvadratickou y + 3 y 0, pro kterou platí y 1, 3 ± ± y 1 4 y 11. Vrátíme-li se k původní substituci, dostáváme dvě rovnice x 4 a x 11. První z těchto rovnic má kořen x, druhá rovnice nemá žádné reálné řešení ( x je vždy číslo kladné). Celkem K {}.

39 Příklad.16: S využitím pravidel pro počítání s logaritmy lze psát ln x(x + 9) ln( 4 7). Odtud plyne x(x + 9) 11. Danou logaritmickou rovnici se nám podařilo převést na rovnici kvadratickou: x + 9x 11 0 x 1, 9 ± ± 3 x 1 7 x 16. Pro oba kořeny nyní provedeme zkoušku: L(7) ln 7 + ln 16 ln(7 16) ln 11 P (7) 4 ln + ln 7 ln( 4 7) ln 11, tedy L(7) P (7) L( 16) ln( 16) +... tato hodnota není definována, druhý kořen nevyhovuje Daná logaritmická rovnice má jediné řešení, K {7}.

40 R.3. Příklad.17: Jednoduché goniometrické rovnice - řešení Nejprve najdeme ostrý úhel x 0, pro který platí cotg x 0 3, tedy x 0 π 6. Kotangens je funkce záporná ve II. kvadrantu, základní orientovaný úhel v tomto případě tedy bude x π π π. Vzhledem ke skutečnosti, že kotangens je π-periodická funkce, plyne odtud množina všech řešení K { } 5 6 π + kπ. k Z Příklad.18: Substitucí y x π získáme základní goniometrickou rovnici cos y 1, která je splněna pro y π + kπ, k Z. Vrátíme se zpět k substituci y x π a dostáváme x π π + kπ x 3π + kπ x 3π + kπ 4 K { } 3 4 π + kπ. k Z

41 Příklad.19: S využitím identity sin x 1 cos x rovnici upravíme do tvaru (1 cos x) 5 cos x 5 0 / : ( 1) cos x + 5 cos x Nyní zvolíme substituci y cos x a řešíme příslušnou kvadratickou rovnici y + 5y + 3 0: y 1, 5 ± { y1 1 4 y 3. Vrátíme se zpět k substituci y cos x a dostáváme cos x 1 nebo cos x 3. První možnost nastává pro x π + kπ, druhá možnost nenastává, protože cos x 1. Celkem platí K k Z {π + kπ}.

42 R.4. Rovnice s absolutní hodnotou - řešení Příklad.0: Nulovým bodem absolutní hodnoty v této rovnici je x 1 4. Příklad.1: Za předpokladu 4x 1 < 0 platí 4x 1 (4x 1) a danou rovnici lze přepsat do podoby (4x 1) +3x, odkud plyne x 1. Tato hodnota splňuje podmínku 7 4x 1 < 0, jde tedy o kořen dané rovnice. Dále vyřešíme případ 4x 1 0, pro který platí 4x 1 4x 1 a rovnice má podobu 4x 1 + 3x, odkud vychází x 3, přičemž 3 1, ). Celkem 4 dostáváme K { 1; 3}. 7 Nulovými body jsou hodnoty 0,. Pro lepší přehlednost si můžeme vše zapsat formou tabulky: 4x 8 x 4x x x + 1 x ( ; 0) 8 4x x 8 4x 3x x + 1 x 0; ) 8 4x x 8 4x + 3x x + 1 x ; ) 4x 8 x 4x 8 + 3x x + 1 V případě x ( ; 0) řešíme rovnici přepsanou bez absolutních hodnot 8 4x 3x x + 1, odkud dostáváme x 7. Protože 7 ( ; 0), nejde o kořen dané 8 8 rovnice. Pro x 0; ) má rovnice tvar 8 4x + 3x x + 1, odkud x 7, ale 7 0; ). Konečně pro x ; ) řešíme rovnici 4x 8 + 3x x + 1, jíž vyhovuje x 3, přičemž 3 ; ). Celkově nemá zadaná rovnice žádné řešení: K.

43 Příklad.: Nulovými body jsou hodnoty 0,. Pro lepší přehlednost si můžeme vše zapsat formou tabulky: 4x 8 x 4x 8 3 x x + 1 x ( ; 0) 8 4x x 8 4x + 3x x + 1 x 0; ) 8 4x x 8 4x 3x x + 1 x ; ) 4x 8 x 4x 8 3x x + 1 V případě x ( ; 0) řešíme rovnici přepsanou bez absolutních hodnot 8 4x + 3x x + 1, odkud dostáváme x 7. Protože 7 ( ; 0), nejde o kořen dané rovnice. Pro x 0; ) má rovnice tvar 8 4x 3x x+1, odkud x 7, přičemž 7 0; ). 8 8 Konečně pro x ; ) řešíme rovnici 4x 8 3x x + 1, jíž nevyhovuje žádné reálné číslo. Celkově má zadaná rovnice jediné řešení: K { 7 8 }.

44 R.5. Soustavy rovnic - řešení Příklad.3: Soustavu vyřešíme dosazovací metodou z druhé rovnice vyjádříme neznámou x 6y 39, dosazením do první rovnice odtud dostaneme rovnici 5(6y 39) + y 3 30y y 3 3y 19 y 6. Jestliže tuto hodnotu nyní dosadíme do vyjádření x, dostaneme x Daná soustava má tedy jediné řešení x 3 a y 6, neboli její řešení je jediná uspořádaná dvojice čísel (x, y) ( 3, 6), tedy K {( 3, 6)}. Příklad.4: Soustavu vyřešíme sčítací metodou. Po vynásobení první rovnice dvěma a druhé rovnice sedmi dostaneme soustavu 14x + 6y 10 14x + 7y 4. Sečtením levých a pravých stran těchto rovnic získáme rovnici o jedné neznámé 13y 5, odkud snadno vypočteme y 4. Po odsazení např. do první rovnice soustavy platí 7x 1 5, tj. x 1. Řešením dané soustavy je jediná uspořádaná dvojice (x, y) (1, 4), tj. K {(1, 4)}.

45 R3. Řešení nerovnic - řešení R3.1. Lineární nerovnice a jejich soustavy - řešení Příklad 3.1: Postupnými úpravami dostaneme: 4( x) 3(x 1) + x 9 5x 8 8 4x 3x x 9 5x 8 5x + 5x 8 10x 10 / : ( 10) x 1. Příklad 3.: Množinou všech řešení je interval K 1; ). Pomocí elementárních úprav dostaneme: 16x 8x x x < 4(4x + 1x + 9) / 16x 8x + 1 4x < 48x + 36 / + 1x < 60x / : < x. Příklad 3.3: Množina kořenů K ( 7 1 ; ). První nerovnice je splněna pro x > 3, druhá platí pro x. Množina všech řešení dané soustavy je průnikem intervalů ( 3; ) a ; ), tedy K ( 3; ).

46 R3.. Příklad 3.4: Příklad 3.5: Nerovnice s absolutní hodnotou - řešení Vydělíme-li danou nerovnici dvěma, dostaneme nerovnici x 4, kterou můžeme řešit geometricky. Jejím řešením jsou všechna čísla x, jejichž obrazy na číselné ose mají od obrazu čísla vzdálenost ne větší než 4, tj. čísla z množiny ; 6, K ; 6. Provedeme diskusi různých možností znamének výrazu v absolutní hodnotě a vyřešíme vzniklé nerovnice bez absolutní hodnoty. Pro x ( ; 1 platí 1 4x 1 4x; v tomto případě tedy řešíme nerovnici 4 1 4x 5, odkud dostáváme x 1, tj. K 1 ( ; 1 1; ) 1; Pro x ( 1 ; ) je 1 4x (1 4x) 4x 1 a my řešíme nerovnici 4x 1 5, 4 jíž vyhovují hodnoty x 3, odkud K ( 1; ) ( ; 3 ( 1; 3. Celkem 4 4 dostáváme množinu kořenů K K 1 K 1; 3.

47 Příklad 3.6: Nerovnici vyřešíme metodou nulových bodů, které jsou v tomto případě tři (0, a 1): x x x + 1 x + x x x ( ; 1 x x x 1 x + x + x + 5 x ( 1; 0 x x x + 1 x + x x 5 x (0; x x x + 1 x + x x 5 x (; ) x x x + 1 x + x x 5 Příklad 3.7: Pro x 1 řešíme lineární nerovnici x + x + x + 5, tedy 4 5, která však nemá žádné řešení. Pro x ( 1; 0 řešíme nerovnici x + x x 5, která platí pro x 5. 4 Protože ( 1; 0 ( ; 5, v daném intervalu opět nedostáváme žádné řešení. 4 V případě x (0; má daná nerovnice podobu x + x x 5, odkud plyne x 5. Tuto podmínku nesplňuje žádné x (0;. Konečně pro x (; ) řešíme lineární nerovnici x + x x 5, která rovněž nemá žádné řešení. Celkem dostáváme závěr K. První nerovnici vyhovují x ( ; 4 ; ), druhá nerovnice platí pro x 4;. Ověřte podrobně sami! Množina řešení dané soustavy je průnikem těchto množin, tedy K { 4} ;.

48 R3.3. Příklad 3.8: Nerovnice součinového a podílového typu - řešení Rovnici vyřešíme metodou nulových bodů. Výrazy v závorkách jsou rovny nule pro x 8 a x 1. Tyto nulové body rozdělí reálnou osu na tři intervaly, pro které platí ( ; 1) 1 ( 1 ; 8) 8 (8; ) 8 x x (8 x)(x + 1) Příklad 3.9: Danou nerovnici splňují všechna x 1 ; 8. Nerovnici vyřešíme rozborem možností. Součin dvou výrazů je záporný, jestliže je záporný právě jeden z těchto výrazů. Hledáme ty hodnoty x, pro které platí [3x 4 < 0 x + 7 > 0] [3x 4 > 0 x + 7 < 0] První dvě podmínky lze upravit do podoby x < 4 a současně x > 7, což platí 3 pro x ( 7; 4). Podobně zbylé dvě podmínky x > 4 a zároveň x < 7 neplatí 3 3 pro žádné reálné číslo. Řešením dané nerovnice je množina K ( 7; 4). 3

49 Příklad 3.10: Prováděním ekvivalentních úprav dostaneme x 4 (3 + x) 3 + x x x / x x x x / : ( 1) Nulový bod čitatele je x 10, nulový bod jmenovatele je x 3. Platí tedy ( ; 10) ( 10; 3) ( 3; ) x x x + 10 x To, zda nulové body vyhovují dané nerovnici, snadno zjistíme i bez tabulky. Z posledního řádku tabulky je patrné, že K ( ; 10 ( 3; ).

50 Příklad 3.11: Nerovnice má smysl pro x 10x + 1 0, tedy pro x 3 a x 7. Kvadratické trojčleny v čitateli a ve jmenovateli rozložíme na součin kořenových činitelů: x x + 1 x 10x + 1 (x 1) (x 3)(x 7). Výraz (x 1) je pro x R\{3; 7} nezáporný. Nulové body čitatele a jmenovatele (3 a 7) rozdělí reálnou osu na tři intervaly, na nichž budeme vyšetřovat znamení jednotlivých činitelů: x 3 x 7 (x 1) (x 3)(x 7) x ( ; 3) + x (3; 7) + x (7; ) Z tabulky je zřejmé, že daná nerovnice je splněna pro K ( ; 3) (7; ).

51 R3.4. Kvadratické nerovnice - řešení Příklad 3.1: Danou nerovnici vyřešíme doplněním na čtverec: 6x + 7x 0 / : ( 6) x 7 6 x ( x 7 ) ( x 7 ) / x Řešením získané nerovnice s absolutní hodnotou jsou všechna čísla x, jejichž obraz na reálné ose je od obrazu čísla 7 1 vzdálen nejvýše o, tedy K 1 ;

52 Příklad 3.13: Nerovnici vyřešíme převedením na nerovnici v součinovém tvaru a následnou diskusí možností. Kvadratická rovnice 3x + 15x 1 0 má dva reálné kořeny x 1, 15 ± ± 81 6 { x1 1 x 4, lze ji proto psát ve tvaru součinu kořenových činitelů 3(x 1)(x 4) 0; danou nerovnici lze přepsat do podoby 3(x 1)(x 4) > 0 / : ( 3) (x 1)(x 4) < 0. Součin dvou výrazů je záporný, je-li právě jeden z těchto výrazů záporný; tím dostaneme soustavu podmínek: [x 1 < 0 x 4 > 0] [x 1 > 0 x 4 < 0] První dvě podmínky lze přepsat do podoby x < 1 a současně x > 4, což nelze splnit současně pro žádné reálné číslo x. Podobně zbylé dvě podmínky x > 1 a x < 4 platí pro x (1; 4). Množina všech řešení dané nerovnice je K (1; 4).

53 R3.5. Příklad 3.14: Nerovnice s neznámou pod odmocninou - řešení Daná nerovnice má smysl, pokud platí podmínka x 3x Platí-li tato podmínka, je daná nerovnice automaticky splněna (funkční hodnoty druhé odmocniny jsou nezáporné). Řešením kvadratické nerovnice x 3x najdeme její kořeny: D ( 3) 4 ( ) Dále lze tedy psát x 1, 3 ± ± 11 4 x 1 3, 5 x. odkud plynou možnosti x 3x + 14 (x )(x + 3, 5) 0, [x 0 x + 3, 5 0] [x 0 x + 3, 5 0] První dvě podmínky x a současně x 3, 5 platí pro x 3, 5;, zbývajícím dvěma podmínkám x a x 3, 5 nevyhovuje žádné reálné číslo. Řešením dané nerovnice je tedy množina K 3, 5;.

54 Příklad 3.15: Daná soustava má smysl pro x 0. Řešme dále nejprve nerovnici 1 1 x / x x 3 / x 9 4. Druhá nerovnice 1 x 1 dává po úpravě podmínku x 1, která je triviálně splněna pro všechna x, pro něž má soustava smysl. Celkem dostáváme množinu kořenů K 0; 9. 4

55 R3.6. Příklad 3.16: Jednoduché exponenciální nerovnice - řešení Při řešení této nerovnice využíváme základní vlastnosti exponenciální funkce, a sice faktu, že a b a b. Postupnými úpravami dostáváme: ( ) x 1 x 4 1 x 4 1 x 5, tedy K 5 ; ). Příklad 3.17: Využijeme-li toho, že 4 3 log 3 4 a platí podmínka 3 a < 3 b a < b, dostáváme postupně 3 1 x < 3 log x < log 3 4 / + x log log 3 4 < x. Ověřte si sami, že pro množinu řešení platí K (log ; ).

56 R3.7. Příklad 3.18: Jednoduché logaritmické nerovnice - řešení Nerovnice má smysl za podmínky x > 0, tj. x <. Pro x ( ; ) dostáváme: ln( x) 1 ln( x) ln e. Odtud plyne (nebot pro a, b > 0 platí ln a ln b a b) x e, tj. x e. Obě podmínky x < a současně x e splňují všechna x ( ; e ; K ( ; e. Příklad 3.19: Nerovnice má smysl za podmínky x 1 > 0, tj. x > 1. Pro x ( 1 ; ) dostáváme: Pro a, b > 0 dále platí log 1 (x 1) < 0 log 1 (x 1) < log log 1 a < log 1 b a > b, 5 5 takže obdržíme nerovnici x 1 > 1, tedy x > 1. Množina všech řešení ( ) 1 K ; (1; ) (1; ).

57 R3.8. Jednoduché goniometrické nerovnice - řešení Příklad 3.0: Příslušná rovnice cos x 1 má v intervalu 0; π dvě řešení x 1 π a x 3 5π. 3 Nakreslíme-li si vhodný obrázek, snadno zjistíme, že množina všech řešení dané nerovnice je K ( π 3 + kπ; 5 ) 3 π + kπ. k Z

58 R4. Komplexní čísla - řešení R4.1. Operace s komplexními čísly - řešení Příklad 4.1: a) (5 + 4 i ) + ( 3 i ) (4 3)i 7 + i, Příklad 4.: b) ( + 5 i ) ( i ) i 15 i + 40 i 6 + i + 40( 1) 46 + i, c) ( 5 i ) 4 0 i + 5 i 4 0 i i, d) ( + 3 i ) (4 + 9 i ) i + 9 i 4 9 i i, e) 4 (5 + 3 i ) ( i ) (5 + 3 i ) (8 i ) 40 i + 4 i 40 i i, f) (1 i ) (1 + i ) (3 + 4 i ) (1 i ) (3 + 4 i ) (3 + 4 i ) i. a) 3 i i b) i 1 i ( 3 i )( i ) i ( i ) (3 + 5 i )(1 + i ) (1 i )(1 + i ) i + 3 i i 3 i 1 3 i, i + 5 i + 5 i + 8 i 1 i i, c) 4 + i (4 + i )(1 i ) ( + 3 i ) 1 + i (1 + i )(1 i ) ( + 3 i ) 4 8 i + i i ( + 3 i ) 1 4 i 6 7 i i, ( + 3 i ) i 14 i 1 i i 5

59 d) e) f) (5 + 3 i )(3 + 4 i ) 1 + i (7 + 3 i )(6 + i ) ( + 5 i )( 6 i ) i + 9 i + 1 i 1 + i 3 3 i + 9 i 9 i 1 i ( i + 18 i + 6 i ) (4 1 i + 10 i 30 i ) ( i )(17 + i ) (17 i )(17 + i ) i i, (3 + 9 i )(1 i ) (1 + i )(1 i ) 3 6 i i 34 i i, i + 7 i + 16 i 89 i (4 6 i )(9 6 i ) 36 4 i 54 i + 36 i (6 7 i ) ( i )( i ) 45 7 i 15 i + 9 i (6 7 i ) 78 i 13 i (6 7 i ) (6 7 i ) 13 i i 6 7 i

60 R4.. Příklad 4.3: Příklad 4.4: Goniometrický tvar komplexního čísla Využijte vzorce: Platí 7 π 1 π 4 + π 3 cos 7 π 1 cos ( π 4 + π 3 sin 7 π 1 sin ( π 4 + π 3 Platí tedy: ( cos 7 π + i sin 7 π 1 1 sin(α + β) sin α cos β + cos α sin β cos(α + β) cos α cos β sin α sin β.. Využijeme nyní vzorečky pro kosínus a sínus součtu. ) cos π cos π sin π sin π ) sin π cos π + cos π sin π ) (( ) ( + ) ) + 6 i (1 3)+(1+ 3) i. 4 Komplexní číslo z i vyjádřeme v goniometrickém tvaru. z ( 8) cos α 8 8 α 3π nebo 5π 4 4 sin α 8 8 α π nebo 3π 4 4 z 8 ( cos 3π 4 + i sin 3π ). 4 α 3π 4

61 Příklad 4.5: Komplexní číslo z 3 3 i vyjádřeme v goniometrickém tvaru. z ( 3) + ( 3) cos α 3 1 α π nebo 4π 3 3 sin α α 4π nebo 5π α 4π z ( 3 cos 4π 3 + i sin 4π ). 3

62 Příklad 4.6: Komplexní číslo z + i vyjádřeme v goniometrickém tvaru. z ( 3 1 ) + ( 3+1 ) cos α sin α 3 cos α + sin α cos α sin α 3 sin(α + π) + sin α sin(α + π) sin α sin(α + π 4 ) cos π 4 3 cos(α + π 4 ) sin π 4 sin(α + π 4 ) 3 cos(α + π) sin(α + π) 4 π 3 π 4 5π 1 z ( cos 5π 5π + i sin 1 1 α + π 4 π 3 α + π 4 π 3 ). cos(α + π 4 ) 1 nebo 4π 3 nebo π 3 α + π 4 π 3 α

63 Příklad 4.7: Použijeme vzorec pro součin komplexních čísel v goniometrickém tvaru: (cos 37 π + i sin 37 ) (cos π 47 π + i sin 47 ) ( π cos π + i sin ) 7 π (cos π + i sin π) 1 + i 0 1. Příklad 4.8: Použijeme vzorec pro součin komplexních čísel v goniometrickém tvaru: ( cos π 1 + i sin π ) ( cos π i sin π ) ( cos π + i sin π ( cos π 4 + i sin π ) 4 + i + i. ) Příklad 4.9: Použijeme Moivreovu větu: ( cos π 15 + i sin π ) ( 35 cos 35 ) 35 π + i sin π (cos 73 π + i sin 73 ) π (cos ( π ) ( 3 + π) + i sin (π 3 + π) cos π 3 + i sin π ) i i.

64 Příklad 4.10: Nejprve vyjádříme komplexní číslo z 3 + i v goniometrickém tvaru. z ( 3) + (1) cos α α π nebo 11π 6 6 sin α 1 α π nebo 5π α π ( z cos π 6 + i sin π ). 6 Použijeme Moivreovu větu: ( ( 3 + i ) 7 7 cos π 6 + i sin π ) 7 18 (cos π + i sin 7 ) 6 π 18 ( ) 3 i 1 64( 3 + i ).

65 Příklad 4.11: Nejprve převedeme komplexní číslo i do goniometrického tvaru: z ( 5) + ( 5 3) cos α sin α ( z 10 cos 4π 3 + i sin 4π 3 α π 3 α 4π 3 ). nebo 4π 3 nebo 5π 3 α 4π 3 Nyní komplexní číslo odmocníme - získáme dvě různé hodnoty pro k 0, 1: 10 (cos( 4π 6 + k π ) + i sin(4π 6 + k π ) ) z 0 ( 10 cos π 3 + i sin π ) 10 3 z 1 10 (cos( π3 ) + π) + i sin(π3 + π) ( i ), 10 ( cos 5π 3 + i sin 5π 3 ) 10 (1 3 i ).

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

ZÁKLADY MATEMATIKY PRO BAKALÁØE

ZÁKLADY MATEMATIKY PRO BAKALÁØE ZÁKLADY MATEMATIKY PRO BAKALÁØE Doc. RNDr. Daniel Turzík, CSc. RNDr. Miroslava Dubcová, Ph.D. RNDr. Pavla Pavlíková, Ph.D. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ZÁKLADY MATEMATIKY

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Pracovní materiál pro

Pracovní materiál pro Pracovní materiál pro Úvodní kurz pro FELÁKY Temešvár u Písku, září 01 Úvodem Tento text má sloužit jako přehled středoškolských znalostí a dovedností, které jsou nezbytné při studiu matematiky na vysoké

Více

Rozklad na součin vytýkáním

Rozklad na součin vytýkáním Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

KOMPENDIUM ZNALOSTÍ Z MATEMATIKY PRO VŠ EKONOMICKÉHO SMĚRU souhrny, řešené úlohy a pracovní listy

KOMPENDIUM ZNALOSTÍ Z MATEMATIKY PRO VŠ EKONOMICKÉHO SMĚRU souhrny, řešené úlohy a pracovní listy KOMPENDIUM ZNALOSTÍ Z MATEMATIKY PRO VŠ EKONOMICKÉHO SMĚRU souhrny, řešené úlohy a pracovní listy Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace STUDIJNÍ OPORA DISTANČNÍHO VZDĚLÁVÁNÍ ZÁKLADNÍ PRAVIDLA VÝPOČTU MATEMATICKÝCH ÚLOH ROVNICE A NEROVNICE MICHAL VAVROŠ Ostrava 006 Zpracoval:

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno:

Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno: Autoevaluační karta Škola: Obchodní akademie Pelhřimov, Jirsíkova 875 Obor: obchodní akademie Zaměření: ekonomika, účetnictví, daně Školní rok: Předmět: matematika Třída: 1. A Jméno: TEMATICKÝ CELEK: Znalosti

Více

Matematika - rovnice a nerovnice

Matematika - rovnice a nerovnice Operační program: Vzdělávání pro konkurenceschopnost Projekt: CZ.1.07/1.5.00/34.0906 EU peníze SŠPřZe Nový Jičín Číslo a název šablony klíčové aktivity: SADA DIGITÁLNÍCH UČEBNÍCH MATERIÁLŮ Šablona_číslo

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

EXPONENCIÁLNÍ ROVNICE

EXPONENCIÁLNÍ ROVNICE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

ROZKLAD MNOHOČLENU NA SOUČIN

ROZKLAD MNOHOČLENU NA SOUČIN ROZKLAD MNOHOČLENU NA SOUČIN Rozkladedem mnohočlenu na součin rozumíme rozklad mnohočlenu na součin jednodušších mnohočlenů, které z pravidla již nejsou dále rozložitelné. Pro rozklad mnohočlenu na součin

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Rovnice v oboru komplexních čísel

Rovnice v oboru komplexních čísel Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Rovnice a nerovnice v podílovém tvaru

Rovnice a nerovnice v podílovém tvaru Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu

Více

Dělení celku na části v poměru

Dělení celku na části v poměru Dělení celku na části v poměru Příklad : Rozděl číslo 12 v poměru 2 : 3. Řešení : Celek musíme rozdělit na 2 + 3 = 5 dílů. Jeden díl má velikost 12 : 5 = 2,4 První člen poměru představuje dva díly a proto

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Operace s mnohočleny. Text a příklady.

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Anotace: Digitální učební materiály slouží k zopakování a k testování získaných znalostí a dovedností.

Anotace: Digitální učební materiály slouží k zopakování a k testování získaných znalostí a dovedností. Tematická oblast: (VY_32_INOVACE_04 1 M1) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Pokyny k hodnocení MATEMATIKA

Pokyny k hodnocení MATEMATIKA ILUSTRAČNÍ TEST MAIZD4C0T0 Pokyny k hodnocení MATEMATIKA Pokyny k hodnocení úlohy Vyznačte na číselné ose obraz čísla 0,6. 0,6 3 apod. NEDOSTATEČNÉ ŘEŠENÍ Chybně vyznačený obraz, resp. není zřejmé, kde

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více