Copyright c R.Fučík FJFI ČVUT Praha, 2008
|
|
- Karel Kadlec
- před 10 lety
- Počet zobrazení:
Transkript
1 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008
2 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 funkce
3 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 0 (x) = 24 funkce
4 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 1 (x) = 24 50x funkce
5 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 2 (x) = 24 50x+35x 2 funkce
6 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 3 (x) = 24 50x+35x 2 10x 3 funkce
7 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 4 (x) = 24 50x+35x 2 10x 3 + x 4 = p(x) funkce
8 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 funkce
9 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 0 (x) = 0 funkce
10 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 1 (x) = 6(x 1) funkce
11 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 2 (x) = 6(x 1) + 11(x 1) 2 funkce
12 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 3 (x) = 6(x 1) + 11(x 1) 2 6(x 1) 3 funkce
13 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 4 (x) = 6(x 1) + 11(x 1) 2 6(x 1) 3 + (x 1) 4 = p(x) funkce
14 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 funkce
15 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 0 (x) = 0 funkce
16 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 1 (x) = 2(x 2) funkce
17 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 2 (x) = 2(x 2) (x 2) 2 funkce
18 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 3 (x) = 2(x 2) (x 2) 2 2(x 2) 3 funkce
19 funkcí Polynom p(x) = x 4 10x x 2 50x + 24 T 4 (x) = 2(x 2) (x 2) 2 2(x 2) 3 + (x 2) 4 = p(x) funkce
20 funkcí f (x) = e x funkce
21 funkcí f (x) = e x T 0 (x) = 1 funkce
22 funkcí f (x) = e x T 1 (x) = 1 + x funkce
23 funkcí f (x) = e x T 2 (x) = 1 + x + 1 2! x 2 funkce
24 funkcí f (x) = e x T 3 (x) = 1 + x + 1 2! x ! x 3 funkce
25 funkcí f (x) = e x T 4 (x) = 1 + x + 1 2! x ! x ! x 4 funkce
26 funkcí f (x) = e x T 5 (x) = 1 + x + 1 2! x ! x ! x ! x 5 funkce
27 funkcí f (x) = e x T 6 (x) = 1 + x + 1 2! x ! x ! x ! x ! x 6 funkce
28 funkcí f (x) = e x T 7 (x) = 1 + x + 1 2! x ! x ! x ! x ! x ! x 7 funkce
29 funkce funkcí f (x) = sin x funkce
30 funkce funkcí f (x) = sin x T 0 (x) = 0 funkce
31 funkce funkcí f (x) = sin x T 1 (x) = T 2 (x) = x funkce
32 funkce funkcí f (x) = sin x T 3 (x) = T 4 (x) = x 1 3! x 3 funkce
33 funkce funkcí f (x) = sin x T 5 (x) = T 6 (x) = x 1 3! x ! x 5 funkce
34 funkce funkcí f (x) = sin x T 7 (x) = T 8 (x) = x 1 3! x ! x 5 1 7! x 7 funkce
35 funkce funkcí f (x) = sin x T 9 (x) = T 12 (x) = x 1 3! x ! x 5 1 7! x ! x 9 funkce
36 funkce funkcí f (x) = sin x T 11 (x) = T 12 (x) = x 1 3! x ! x 5 1 7! x ! x ! x 11 funkce
37 funkce funkcí f (x) = sin x T 13 (x) = T 14 (x) = 6 k=0 ( 1) k x 2k+1 (2k+1)! funkce
38 funkce funkcí f (x) = sin x T 15 (x) = T 16 (x) = 7 k=0 ( 1) k x 2k+1 (2k+1)! funkce
39 funkce funkcí f (x) = sin x T 17 (x) = T 18 (x) = 8 k=0 ( 1) k x 2k+1 (2k+1)! funkce
40 funkce funkcí f (x) = sin x T 19 (x) = T 20 (x) = 9 k=0 ( 1) k x 2k+1 (2k+1)! funkce
41 funkce funkcí f (x) = sin x T 21 (x) = T 22 (x) = 10 ( 1) k x 2k+1 k=0 (2k+1)! funkce
42 funkce funkcí f (x) = sin x funkce
43 funkce funkcí f (x) = sin x T 0 (x) = 1 = sin π 2 = T 1(x) funkce
44 funkce funkcí f (x) = sin x T 2 (x) = T 3 (x) = 1 (x π 2 ) 2 2! funkce
45 funkce funkcí f (x) = sin x T 4 (x) = T 5 (x) = 1 (x π 2 ) 2 2! + (x π 2 ) 4 4! funkce
46 funkce funkcí f (x) = sin x T 6 (x) = T 7 (x) = 1 (x π 2 ) 2 2! + (x π 2 ) 4 4! (x π 2 ) 6 6! funkce
47 funkce funkcí f (x) = sin x T 8 (x) = T 9 (x) = 1 (x π 2 ) 2 2! + (x π 2 ) 4 4! (x π 2 ) 6 6! + (x π 2 ) 8 8! funkce
48 funkce funkcí f (x) = sin x T 10 (x) = T 11 (x) = 5 k=0 ( 1) k (x π 2 ) 2k (2k)! funkce
49 funkce funkcí f (x) = sin x T 12 (x) = T 13 (x) = 6 k=0 ( 1) k (x π 2 ) 2k (2k)! funkce
50 funkce funkcí f (x) = sin x T 14 (x) = T 15 (x) = 7 k=0 ( 1) k (x π 2 ) 2k (2k)! funkce
51 funkce funkcí f (x) = sin x T 16 (x) = T 17 (x) = 8 k=0 ( 1) k (x π 2 ) 2k (2k)! funkce
52 funkce funkcí f (x) = sin x T 18 (x) = T 19 (x) = 9 k=0 ( 1) k (x π 2 ) 2k (2k)! funkce
53 funkce funkcí f (x) = sin x T 20 (x) = T 21 (x) = 10 ( 1) k (x π 2 ) 2k k=0 (2k)! funkce
54 funkce funkcí f (x) = sin x T 22 (x) = T 23 (x) = 11 ( 1) k (x π 2 ) 2k k=0 (2k)! funkce
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Rost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský. Cesta k vědě 19.6.2011
Studium dynamických jevů v termickém plazmatu Rost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský Cesta k vědě 19.6.2011 M. Rost, L. Záruba (CkV) Studium jevů v plazmatu 19.6.2011 1 / 28 Obsah
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
LEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
17. Posloupnosti a řady funkcí
17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.
Zimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A
Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4
a a
1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)
urtotemp JEDNOTKA PRO PŘEVODY ODPORU ČIDLA NA TEPLOTU Příručka uživatele a programátora
urtotemp JEDNOTKA PRO PŘEVODY ODPORU ČIDLA NA TEPLOTU Příručka uživatele a programátora SofCon spol. s r.o. Střešovická 49 162 00 Praha 6 tel/fax: +420 220 180 454 E-mail: sofcon@sofcon.cz www: http://www.sofcon.cz
Matematická analýza 1b. 9. Primitivní funkce
Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.
.8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité
2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce,
. Určete vlastnosti funkcí: (i) f : y = x (ii) f : y = x 4 (iii) f : y = cotgx (iv) f 4 : y = arccosx (v) f 5 : y = 4 x (vi) f 6 : y = ( 4 )x (vii) f 7 : y = lnx (viii) f 8 : y = x. Uveďte příklad: (i)
Rovnice s parametrem (17. - 18. lekce)
Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
Cyklické redundantní součty a generátory
Cyklické redundantní součty a generátory pseudonáhodných čísel Rostislav Horčík: Y01DMA 20. dubna 2010: CRC a pseudonáhodná čísla 1/17 Definice Řekneme, že polynomy a(x), b(x) jsou kongruentní modulo m(x),
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Kapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
Česká republika - ŽENY
2012 Česká republika - ŽENY věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002338 0.997662 100000 234 99804 8088058 80.88 100 000.00 229.43 4 164 194.04 22 355.11 130 483 842.84 1 731 180.86 1 0.000144
2016 Česká republika ŽENY (aktuální k )
2016 Česká republika ŽENY (aktuální k 27. 11. 2017) věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002462 0.997538 100 000.00 246.23 99787 8205207 82.05 100 000.00 243.07 5 066 877.57 34 975.90 176 922
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
Balanční vlastnosti pevného bodu substituce
Úvod Karel Břinda Edita Pelantová Theoretical Informatics Group FJFI ČVUT v Praze 14. prosince 2010 Schéma postupu Úvod Abelovská komplexita Balanční funkce Diskrepanční funkce Funkce S f u (N) Matice
Brusné kotouče NORTON
Brusné kotouče NORTON Ceník výrobků NORTON ploché s průměrem do 50mm Tvar T1 69936676033 36120-1010.NO Kotouč T1 10x10x4 5SG60LVS 1 ks 52,93 69936676038 36120-1609.NO Kotouč T1 16x16x6 5SG60LVS 1 ks 69,20
Polynomy. Matice a determinanty. 1. Rozložte na součin kořenových činitelů polynom. P(x) = x 4 6x Řešení: x 4 6x 2 +8 = (x+2)(x 2)(x+ 2)(x 2)
Polynomy 1 Rozložte na součin kořenových činitelů polynom P(x = x 4 6x 2 +8 x 4 6x 2 +8 = (x+2(x 2(x+ 2(x 2 2 Rozložte na součin ireducibilních reálných polynomů polynom P(x = x 6 64 x 6 64 = (x 2(x 2
Co byste měl/a zvládnout po 6. týdnu
Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
Integrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme
A 9. Počítejte v radiánech, ne ve stupních!
A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00
Vliv přesnosti kalibrační křivky na výsledek verifikace plánů EBT3 filmem
Vliv přesnosti kalibrační křivky na výsledek verifikace plánů EBT3 filmem TEREZA HANUŠOVÁ, FJFI ČVUT A T HOMAYEROVA NEMOCNICE SIMONA BURYŠKOVÁ, GYMNÁZIUM MATYÁŠE L ERCHA BRNO 14.04.2016 KONFERENCE RADIOLOGICKÉ
Horner's Method using Excel (výpočet hodnoty polynomu v Excel s využitím historické Hornerovy metody) RNDr. Miroslav Kružík UPOL Olomouc
Horner's Method using Excel (výpočet hodnoty polynomu v Excel s využitím historické Hornerovy metody) RNDr. Miroslav Kružík UPOL Olomouc Proč historická metoda v dnešní počítačové době? Dnes údajně počítače
(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27
(1) Limity Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Limity 1 / 27 Proč studovat matematiku Zdroje: http://www.karlin.mff.cuni.cz/ pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6ec3ndnr86s
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Lineární algebra : Změna báze
Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,
Výpočet ukazatele dluhové služby za rok 2011
-jsou zahrnuty veškeré splátky úvěrů v roce 2011 UKAZATEL DLUHOVÉ SLUŽBY 25,61% finance (90.05.2,6 Kč) UKAZATEL DLUHOVÉ SLUŽBY 15,9% finance (90.05.2,6 Kč), úvěrového rámce UKAZATEL DLUHOVÉ SLUŽBY 6,8%
Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
Kapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 206 Kód uchazeče ID:.................. Varianta: 2 Příklad. (3b) Binární operace je definovaná jako a b = a+b a b. Určete hodnotu
Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a
Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
Cyklometrické funkce
Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),
x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.
1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
Analýza sálavé charakteristiky elektrických topných
České vysoké učení technické v Praze Univerzitní centrum energeticky efektivních budov Třinecká 1024 273 43 Buštěhrad www.uceeb.cz Analýza sálavé charakteristiky elektrických topných panelů FENIX závěrečná
NÁBYTKOVÉ KOVÁNÍ, PLAST. VÝROBKY aj. - NÁBYTKOVÉ PŘÍSLUŠENSTVÍ SIRO - Hliníkové rámečky na dvířka
10.3.2 Hliníkové rámečky na dvířka KOV--SAS001 Rámeček SAS001 1058x395 xx 8590842096214 0,00 0,00 ks Ne Ne KOV--SAS001100/340 Rámeček SAS001 958x337 xx 8590842111320 0,00 0,00 ks Ne Ne KOV--SAS0011050/600
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
Funkce více proměnných - úvod
Funkce více proměnných - úvod Helena Říhová FBMI 14. července 2014 Helena Říhová (ČVUT) Funkce více proměnných - úvod 14. července 2014 1 / 16 Obsah 1 Úvod Grafy funkcí dvou proměnných Eukleidovská vzdálenost
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
UFO Infrazářič s manuálním ovládáním+termostat
vč UFO L/12 1200 9x19x74 12 m² ---- 3299 3959 Khaki vč UFO S/18 1800 18 m² ---- 4199 5039 vč UFO S/23 2300 23 m² 4 m² 4399 5279 vč UFO L/23 2300 23 m² 4 m² 4399 5279 Khaki vč UFO S/30 3000 30 m² 8 m² 5199
Nelineární rovnice. Numerické metody 6. května FJFI ČVUT v Praze
Nelineární rovnice Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Ohraničení kořene Hledání kořene Soustava Programy 1 Úvod Úvod - Úloha Hledáme bod x, ve kterém je splněno pro zadanou funkci
Vojtěch Svoboda, katedra fyziky FJFI October 5, Komunikace
Fyzikální seminář - XX. ročník Fyzikální seminář Vojtěch Svoboda, katedra fyziky FJFI svoboda@fjfi.cvut.cz October 5, 2016 Komunikace http://fyzsem.fjfi.cvut.cz Očekávání a obavy Studenti SOBĚ Dnešní agenda
Maloobchodní ceník pískovcového materiálu Strana 1
Maloobchodní ceník pískovcového materiálu Strana 1 K497891 Břidlicové plátky, grafit-černá 30-60mm kg 8,51 21% 10,30 K497853 Břidlicové plátky, grafit-černá 30-60mm, 20kg bal 207,44 21% 251,00 K457895
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Lineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty
H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #12 Stirlingův stroj Jméno: Ondřej Finke Datum měření: 1.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě diskutujte rozdíl
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 2. cvičení Teorie Věta (Aritmetika derivací). Necht a R a necht f a g jsou funkce definované na nějakém okolí bodu a. Necht existují f (a) R a g (a) R.
öje F2 = F2r = G. cos ö F1=Ft=G.sinö G. sin ö = G. cos ö. f f= G. sin sypného úhlu G. cos sypného úhlu f = tg sypného úhlu ö (stupe (tg ö) V P= (100 %) W W-V K= (100 %) W aw = P w Pw o ö ö m.x=m
2. V Q[x] dělte se zbytkem polynomy:
Sbírka příkladů z polynomů pro předmět Cvičení z algebry I Dělení v okruzích polynomů 1. V Q[x] dělte se zbytkem polynomy a) (x 5 + x 3 2x + 1) : ( x 3 + x + 1), b) (3x 3 + 10x 2 + 2x 3) : (5x 2 + 25x
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
Kapitola 7: Integrál. 1/14
Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k
FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
diferenciální rovnice verze 1.1
Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování
František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt
Automatický výpočet chyby nepřímého měření František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009 Abstrakt Pro správné vyhodnocení naměřených dat je třeba také vypočítat chybu měření. Pokud je neznámá
Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.
A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin
WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 1. října 2019
Matematika II - Sbírka příkladů WikiSkriptum Ig. Radek Fučík, Ph.D. verze:. říja 9 Obsah Pokročilé techiky itegrace a zobecěý Riemaův itegrál. Racioálí fukce.................................... Pokročilé
ŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
ŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České
Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM
Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM Ondřej Grover Gymnázium Jana Nerudy 7. konference projektu Cesta k Vědě 26.5.2011 Osnova prezentace 1 Vlnovodný systém 2 Analogový vyhodnocovací
Použití. Výhody. Technické parametry. Certifikace. Servomotor elektrický pákový do 35 Nm ZEPAROT
Použití Servomotor elektrický pákový do 35 Nm Servomotory jsou určeny k přestavování ovládacích orgánů (např. směšovacích ventilů s otočným pohybem, kulových ventilů, bezpřírubových uzavíracích klapek,
Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011
MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +
(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.
Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y
Interpolace a aproximace dat.
Numerické metody Interpolace a aproximace dat. Interpolace dat křivkou (funkcí) - křivka (graf funkce) prochází daty (body) přesně. Aproximace dat křivkou (funkcí) - křivka (graf funkce) prochází daty
Použití. Výhody. Technické parametry. Certifikace. Servomotor elektrický pákový do 35 Nm ZEPAROT
Použití je určen k přestavování ovládacích orgánů (např. směšovacích ventilů s otočným pohybem, kulových ventilů, bezpřírubových uzavíracích klapek, klapek vzduchotechnických zařízení a pod.) Výhody Servomotor
Asymptoty grafu funkce
Asymptoty grafu funkce Lenka Přibylová 8. července 006 Obsah Najděteasymptotygrafufunkce y = 1 x.... 3 Asymptotybezsměrnicekegrafufunkce y = 1 x : D(f) = R {} x + = 0 + = x = 0 = Funkcemáasymptotubezsměrniceajejípřímka
Technické ůdaje GP 55 T7
ůdaje GP 55 T7 30 C/35 C 6600 4,5 1466 2,7 16,5 40 C/45 C 6336 3,6 1760 3 21 50 C/55 C 6160 3 2052 3,5 26 Monoblok Kondenzátor split Monoblok sondy - split Kondenzátor split a Průměr připojení PEX 25-20
13. Kvadratické rovnice 2 body
13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Fabryův-Perotův rezonátor
Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně
II. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
dx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ
VÝPOČET PECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Pro různé situace se hodí různé metody (výpočtu!). Jak již bylo několikrát zdůrazněno,
Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní
Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou
Co byste měl/a zvládnout po 4. týdnu
Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů
Biomedicínské inženýrství a informatika: výuka, výzkum a praxe
České vysoké učení technické v Praze Fakulta elektrotechnická Biomedicínské inženýrství a informatika: výuka, výzkum a praxe Lenka Lhotská, Olga Štěpánková Katedra kybernetiky lhotska@fel.cvut.cz http://cyber.felk.cvut.cz
Substituční a důchodový efekt Jan Čadil FNH VŠE
Substituční a důchodový efekt Jan Čadil FNH VŠE Footer Text 3/24/2014 1 Podstata problému Co stojí za změnou spotřeby statku při změně jeho relativní ceny celkový efekt je složen ze substitučního a důchodového
Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená