STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)
|
|
- Milena Matoušková
- před 6 lety
- Počet zobrazení:
Transkript
1 STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)
2 STATISTIKA Činnost vedoucí k získávání dat Instituce zajišťující tuto činnost Jakákoli shromažďovaná data Údaje získané výpočtem z dat Matematická teorie o chování dat
3 STATISTIKA DESKRIPCE (popis) ANALÝZA (modely, odhady, testy)
4 Základní pojmy STATISTICKÁ JEDNOTKA = = na kom (čem) zjišťujeme STATISTICKÉ ŠETŘENÍ = = jak zjišťujeme STATISTICKÁ VELIČINA = = co zjišťujeme
5 STATISTICKÁ JEDNOTKA s.j. = např. každý(á/é) ptačí vejce (hmotnost v g?); snůška (počet vajec?); územní celek - obec; region; ; záměrně selektovaný čtverec (% zalesnění?); respondent (dotazníkové šetření)
6 STATISTICKÉ ŠETŘENÍ ÚPLNÉ informace od všech stat.jednotek (od celé populace) VÝBĚROVÉ informace od vybraných stat. jednotek (od výběru ) nevýhody versus výhody výběru? * neúplnost informace * rychlejší a levnější informace
7 VÝBĚROVÉ ŠETŘENÍ NE/REPREZENTATIVNOST?
8 VÝBĚROVÉ ŠETŘENÍ!!! NEREPREZENTATIVNOST!!!
9 VÝBĚROVÉ ŠETŘENÍ!!! REPREZENTATIVNOST!!! (zajištěna např. NÁHODNÝM výběrem)
10 VÝBĚROVÉ ŠETŘENÍ - výběr zcela náhodný systematický stratifikovaný
11 VÝBĚROVÉ ŠETŘENÍ - průběh vlastní měření s.j. je objekt anketa s.j. je subjekt (i dále): řízený rozhovor vyplnění dotazníku
12 Jak jinak získat data (např. k BP)? JIŽ HOTOVÁ (tj. sebraná), NAPŘ OD: ČSÚ (www stránky) Eurostatu (www stránky) úřadů státní (samo)správy firem (?)
13 Zpracování dat a) ručně b) pomocí SW MS Excel STATISTICA, SPSS, freeware (R-project)
14 DOTAZNÍK pro zaměstnance firmy JMÉNO DOBA ÚKOL POHLAVÍ VZDĚLÁNÍ VĚK POBOČKA POČET DĚTÍ
15 DOTAZNÍK pro zaměstnance firmy JMÉNO identifikátor DOBA veličina (značena např. X) ÚKOL veličina (značena např. Q) POHLAVÍ VZDĚLÁNÍ VĚK POBOČKA POČET DĚTÍ veličina (značena např. Y)
16 DOTAZNÍK pro zaměstnance firmy možné hodnoty : JMÉNO textový řetězec DOBA 1,2, (počet dní proškolení) ÚKOL ano / ne (splněn nový úkol?) POHLAVÍ m / z VZDĚLÁNÍ z, s, v (nejvyšší dosažené) VĚK v rocích POBOČKA a,b,c (1 ze 3 poboček firmy) POČET DĚTÍ 0,1,2,
17 DOTAZNÍK - příklad vyplnění (1. statistická jednotka) JMÉNO Frank DOBA 14 ÚKOL ne POHLAVÍ m VZDĚLÁNÍ z VĚK 30 POBOČKA a POČET DĚTÍ 1
18 DOTAZNÍK data (začátek)
19 DOTAZNÍK data (dokončení)
20 Značení dat (pozorování) Např. veličina X DOBA: 1. pozorování: x 1 =14 2. pozorování: x 2 =29 n. (poslední) pozorování: x n = x 25 = 8 n značí počet pozorování (rozsah souboru), zde n=25
21 DOTAZNÍKY - značení a data
22 TYPY VELIČIN (X, Y, ) (proměnných; znaků; angl.variable) KATEGORIÁLNÍ alternativní (2 možnosti: 0-1) např. POHL (m/z), UKOL (splněn: ano/ne) slovní neuspořádané (nominální) např. POBOCKA (a, b, c) slovní uspořádané (ordinální) např. VZDEL (z < s < v) číselné (diskrétní) např. DETI (počet dětí)
23 TYPY VELIČIN (X, Y, ) (proměnných; znaků) NEKATEGORIÁLNÍ číselné (spojité) např. DOBA (počet dní výcviku), VĚK (v rocích), HMOTNOST (kg), PLAT (tis.kč) v příkladech je údaj vlastně zaokrouhlen, záleží na zvolené přesnosti; lze převést na kategoriální typ (jak, jaký?)
24 DOTAZNÍKY příklad zpracování (Y)
25 DOTAZNÍKY příklad zpracování (Y) POZOR NA PODOBNÉ ZNAČENÍ: a) pro jednotlivá pozorování veličiny Y bylo y 1 =1, y 2 =3,, y 25 =0 (n =25) b) pro kategorie veličiny Y bylo y 1 =0, y 2 =1,, y 6 =5 (K=6) V praxi je rozdíl v použití jasný z kontextu.
26 ČETNOSTI ABSOLUTNÍ n i počet výskytů i-té kategorie, i=1 K Σ n i = n RELATIVNÍ p i rel. výskyt i-té kategorie, i=1 K p i = n i /n Σ p i =1 p i = (n i /n) 100% Σ p i =100 (%) Oba typy lze určit u každé kategoriální veličiny (K=počet kategorií).
27 ČETNOSTI Příklad 1. Y - známky žáka. Popořadě: 3, 4, 2, 3, 2, 3, 3, 3. Tabulka četností: i suma y i xxx n i p i 0,250 0,625 0,125 1,000
28 ČETNOSTI KUMULOVANÉ ABSOLUTNÍ n i* počet výskytů do i-té kategorie včetně, n i* = n 1 + +n i KUMULOVANÉ RELATIVNÍ p i* rel. výskyt do i-té kategorie včetně, p i* = p 1 + +p i p i* = n i* /n Oba typy mají smysl jen u veličin ordinálních či diskrétních.
29 ČETNOSTI Příklad 1 - pokračování. i suma y i xxx n i p i 0,250 0,625 0,125 1,000 n * i xxx p * i 0,250 0,875 1,000 xxx
30 ČETNOSTI MODUS (skloňujeme: bez modu,,s modem) Je (jsou) kategorie s největší četností (samozřejmě nikoli kumulovanou). Značen ŷ (se stříškou). Lze určit u každé kategoriální veličiny. Příklad 1 pokračování: ŷ=3 (druhá kategorie se vyskytla nejčastěji, a to pětkrát; nejčastější známkou byla trojka)
31 Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat _ y Druhý obecný moment: (Σy i2 )/n, i=1 n _ y 2
32 Obecné momenty prosté tvary Příklad 1 pokračování: _ y = ( )/8 = 23/8 = 2,875 _ y 2 = ( )/8 = = ( )/8 = 69/8= 8,625
33 Obecné momenty prosté tvary Příklad 1 Poznámka: Hodnota SOUČTU všech pozorování ( ) = 23 je tzv. ÚHRN (úhrnná hodnota). Platí: aneb: aneb: průměr = úhrn / počet úhrn = průměr počet počet = úhrn / průměr
34 Obecné momenty vážené tvary Při výpočtu lze využít četností _ absolutních: y = (Σy i n i )/n, i=1 K _ y 2 = (Σy i 2 n i )/n, i=1 K
35 Obecné momenty vážené tvary Příklad 1 - pokračování: _ y = ( )/8 = 23/8 = 2,875 _ y 2 = ( )/8 = ( )/8 = = 69/8= 8,625
36 Obecné momenty vážené tvary Při výpočtu lze využít také četností _ relativních: y = Σy i p i, i=1 K _ y 2 = Σy i 2 p i, i=1 K
37 Obecné momenty vážené tvary Příklad 1 - pokračování: _ y = 2 0, , ,125 = 2,875 _ y 2 = 2 2 0, , ,125 = = 4 0, , ,125 = 8,625
38 Centrované momenty prosté tvary Druhý centrovaný moment: _ M 2 (y) = Σ(y i y ) 2 / n, i=1 n = ROZPTYL aneb průměrná čtvercová odchylka od aritmetického průměru M 2 (y) = směrodatná odchylka
39 Centrované momenty prosté tvary Příklad 1 - pokračování: M 2 (y)=[(3 2,875) 2 +(4 2,875) 2 +(2 2,875) 2 + +(3 2,875) 2 +(2 2,875) 2 +(3 2,875) 2 + +(3 2,875) 2 +(3 2,875) 2 ] / 8 = 0,359 M 2 (y) = 0,359 = 0,599 Známky byly zhruba v rozmezí 2,875±0,599 aneb v rozmezí 2,276 až 3,474.
40 Centrované momenty vážené tvary K výpočtu lze užít četností absolutních: _ M 2 (y) = Σ(y i y ) 2 n i / n, i=1 K nebo relativních: _ M 2 (y) = Σ(y i y ) 2 p i, i=1 K
41 Centrované momenty vážené tvary Příklad 1 - pokračování: M 2 (y) =[(2 2,875) (3 2,875) (4 2,875) 2 1] / 8 = 0,359 M 2 (y) =(2 2,875) 2 0,250+ +(3 2,875) 2 0,625+ +(4 2,875) 2 0,125 = 0,359
42 MOMENTY Mají smysl jen u číselných veličin (diskrétních či spojitých) Vážené tvary má smysl používat jen tehdy, jsou-li k dispozici četnosti (tj. u diskrétních veličin) Použití prostého i váženého tvaru musí dát stejný výsledek (jde o totéž, jen jinak počítáno)
43 MOMENTY Chování při aditivní lineární transformaci: Známe průměr a rozptyl. Každé pozorování změníme o stejnou konstantu c. Průměr se tak změní o tutéž konstantu c, rozptyl se nezmění.
44 MOMENTY Příklad 1 - pokračování: Pokud bychom žákovi všechny udělené známky o jeden stupeň zlepšili (c= -1), průměrná známka se změní z hodnoty 2,875 na hodnotu 1,875, ale rozptyl zůstane 0,359 (ověřte výpočtem).
45 MOMENTY Chování při multiplikativní lineární transformaci: Známe průměr a rozptyl. Každé pozorování vynásobíme stejnou konstantou c. Průměr se také musí vynásobit konstantou c, rozptyl se musí vynásobit její druhou mocninou c 2.
46 MOMENTY Příklad 2: Byly měřeny délky vyrobených trubek v centimetrech. Průměrná délka činí 49 cm a rozptyl 144 (cm 2 ). Nyní je nutno všechna měření převést na decimetry. Jak se změní hodnoty momentů? Jelikož c=0,1, průměr bude činit 4,90 dm a rozptyl 1,44 (dm 2 ).
47 MOMENTY ROZPTYL rychlý výpočetní tvar M 2 (y) = y 2 (y) 2 Příklad 1 - pokračování: M 2 (y) = 8,625 2,875 2 = 0,359 Poznámka: Vždy musí vyjít M 2 (y) 0!
48 MOMENTY Rozptyl čtvercová míra variability (proměnlivosti) dat Relativní mírou variability je variační koeficient _ Vy = M2(y) / y může porovnávat variabilitu souborů, v nichž je veličina zaznamenána v různých měrných jednotkách např. platy u nás v Kč versus platy v Německu v Euro), či je na jiné úrovni (poloze)
49 DISTRIBUČNÍ FUNKCE Slouží k popisu rozdělení (distribuce) číselných dat; jakési zobecnění kumul.relat.četností: F(y) udává podíl pozorování s hodnotou nejvýše y, viz graf pro data z příkladu 1:
50 KVANTILY Udávají pro číselnou veličinu Y hodnotu y, pod níž leží požadovaný podíl pozorování Značíme ỹ 100p, kde p je onen podíl (údaj mezi 0 1) p=0,5 50% kvantil medián (odděluje polovinu nižších od zbytku vyšších pozorování; značen obvykle jen ỹ ) p=0,25 25% kvantil dolní kvartil ỹ 25 p=0,75 75% kvantil horní kvartil ỹ 75
51 KVANTILY 1. Určení pomocí distribuční funkce Najdeme bod y, v němž poprvé F(y) dosáhne úroveň p. Příklad 1 pokračování: Nalezněte medián známek žáka. Medián tj. p=0,5. Kde poprvé příslušná F(y) dosáhla úroveň 0,5? Podle grafu je mediánem hodnota ỹ =3. Interpretace: Polovina známek měla hodnotu nejvýše 3 (tj. 3 nebo nižší)
52 KVANTILY 2. Určení přímo pomocí dat a) Data uspořádáme vzestupně dle velikosti b) Nalezneme celočíselné z vyhovující nerovnicím: n p < z < n p +1 c) Hledaným kvantilem je hodnota s pořadovým číslem z. Příklad 1 pokračování: Nalezněte 60% kvantil známek žáka. Známky seřadíme: 2, 2, 3, 3, 3, 3, 3, 4. Jelikož n=8 a p=0,6, vyjde n p=4,8, takže hledáme z : 4,8 < z < 5,8 Tudíž z=5, aneb hledaným kvantilem je 5. známka, čili trojka: ỹ 60 =3.
53 KVANTILY Příklad 1 pokračování: Interpretujte nalezený výsledek: ỹ 60 =3. Znamená to, že 60 % zjištěných známek mělo hodnotu nejvýše 3 (tj. 3 nebo nižší). Podobně interpretujte to, kdyby pro veličinu plat měl např. horní kvartil hodnotu 32 tis. Kč: Znamenalo by to, že 75 % zjištěných platů mělo hodnotu nejvýše 32 tis. Kč (tj. zbylých 25 % platů bylo jakých?)
54 KVANTILY 2. Určení přímo pomocí dat možný problém a) Data uspořádáme vzestupně dle velikosti b) Nenalezneme celočíselné z vyhovující nerovnicím: n p < z < n p +1 Stane se to tehdy, když obě hodnoty (n p ; n p+1) vyjdou přesně celočíselně. c) Nalezneme hodnotu s pořadovým číslem n p a s následujícím pořadovým číslem n p+1. d) Za hledaný kvantil prohlásíme průměr obou nalezených hodnot.
55 KVANTILY 2. Určení přímo pomocí dat možný problém Příklad 1 pokračování: Nalezněte medián známek žáka. Známky seřadíme: 2, 2, 3, 3, 3, 3, 3, 4. Jelikož n=8 a p=0,5, vyjde n p =4, takže hledáme z : 4 < z < 5 (neexistuje) Najdeme tedy jak 4., tak 5. známku. Jelikož jsou obě trojky, jejich průměrem je také trojka a to je hledaný medián: ỹ=3.
56 GRAFICKÉ ZNÁZORNĚNÍ DAT Číselné veličiny (i spojité!) - graf F(y) Kategoriální veličiny - graf četností (vel. DETI): HISTOGRAM KRUHOVÝ (výsečový, koláčový ) GRAF
57 GRAFICKÉ ZNÁZORNĚNÍ DAT Spojité veličiny krabičkový graf (box plot)
58 GRAFICKÉ ZNÁZORNĚNÍ DAT Dvojice číselných veličin scatter plot (xy)
59 POPIS DAT ( vlastnosti grafu ) PARAMETR POLOHY ( těžiště ) Průměr Medián Modus PARAMETR VARIABILITY ( šířka ) Rozptyl (směrodatná odchylka, var.koef.) Mezikvartilové rozpětí
60 POPIS DAT aneb DESKRIPCE PARAMETR POLOHY další možnosti Geometrický průměr (je-li vhodný): n (x 1 x 2 x n ) Harmonický průměr (je-li vhodný): n / (1/x 1 +1/x /x n )
61 PRAVDĚPODOBNOSTNÍ MODELY STAT. DAT Ω={ω 1,, ω k } mna elementárních jevů (všech možných výsledků náhod.pokusu) Náh.jevy A, B, libovolné podmnožiny Ω Příklad: Náh.pokus hod kostkou Ω={1,2,,6} A={6} B={2,4,6} hození šestky hození sudého čísla
62 PRAVDĚPODOBNOSTNÍ MODELY STAT. DAT PRAVDĚPODOBNOST je vhodně definovaná relativní míra výskytu náh.jevů KLASICKÁ DEFINICE A značí počet elem.jevů tvořících A: Příklad pokračování: P(A) = A / Ω P(A) = 1/6 P(B) = 3/6 = 1/2
63 PRAVDĚPODOBNOSTNÍ MODELY STAT. DAT Základní vlastnosti (příklady?): a) P({ }) = 0, P(Ω) = 1 b) 0 P(A) 1 c) A je podmnožina B => P(A)<P(B) d) P(A ) = 1 P(A) (doplněk) e) P(A B) = P(A) P(B) (A,B nezávislé) f ) P(AUB) = P(A) + P(B) P(A B) g) P(A B) = P(A B) / P(B) (podmínka)
64 Rozklad Ω Náhodné jevy (množiny) A 1 až A K jsou rozklad Ω A i A j ={} pro i j, A 1 U UA K =Ω
65 Příklad 4: Ω: výsledky 2 hodů kostkou (X=počet šestek) A 1 nehozena ani jedna šestka (X=0) A 2 hozena jedna šestka (X=1) A 3 hozeny dvě šestky (X=2) 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6
66 P(A 1 )=25/36 aneb P(X=0)=25/36 P(A 2 )=10/36 aneb P(X=1)=10/36 P(A 3 )=1/36 aneb P(X=2)=1/36 Výpočty pomocí základních vlastností: P(A 3 )= P(A A) = P(A) P(A) = 1/6 1/6 = 1/36 jde o průnik výskytu A={6} při 1.hodu a při 2.hodu, tj.platí nezávislost P(A 1 )= P(A A ) = P(A ) P(A ) = 5/6 5/6 = 25/36 analog., ale v obou hodech má nastat doplněk P(A 2 )= P[(A A ) U (A A)] = P(A A )+P(A A) = = P(A) P(A ) + P(A ) P(A) = 1/6 5/6 + 5/6 1/6 = = 5/36 + 5/36 = 10/36 buď hodíme šestku jen napoprvé, nebo jen napodruhé
STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení. + odevzdání seminární práce (úkoly na PC)
STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení + odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) KONZULTACE Není hanba, že nevíš, ale že se neptáš.
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení první aneb Sumační symbolika, úvod do popisné statistiky Statistika I (KMI/PSTAT) 1 / 15 Obsah hodiny Po dnešní hodině byste měli být schopni: správně používat sumační
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
22. Pravděpodobnost a statistika
22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění.
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.) 1 respondent (pacient,
Základní statistické pojmy
POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase
Písemná práce k modulu Statistika
The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
a způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
(motto: Jestliže má jednotlivec rád čísla, pokládá se to za neurózu. Celá společnost se ale sklání před statistickými čísly. Alfred Paul Schmidt)
Popisná státistiká (motto: Jestliže má jednotlivec rád čísla, pokládá se to za neurózu. Celá společnost se ale sklání před statistickými čísly. Alfred Paul Schmidt) 1. Příklad V pobočce banky za celý den
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Popisná statistika v praxi aneb Je statistika nuda? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Popisná statistika v praxi aneb Je statistika nuda? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? Google 196.10 6 odkazů (čeština), 2,88.10 9 odkazů (angličtina)