Lorenzův atraktor. MM semestrální práce. Jméno a příjmení: Pavel Martínek Osobní číslo: A08N0203P. Datum odevzdání: 12.2.

Rozměr: px
Začít zobrazení ze stránky:

Download "Lorenzův atraktor. MM semestrální práce. Jméno a příjmení: Pavel Martínek Osobní číslo: A08N0203P. Datum odevzdání: 12.2."

Transkript

1 Lorenzův atraktor Jméno a příjmení: Osobní číslo: A08N0203P Obor: MA pmartine@students.zcu.cz Datum odevzdání: Strana 1 (celkem 25)

2 Obsah Lorenzův atraktor...1 Úvod...3 Dynamický systém...3 Lineární systém...3 Stavový prostor...3 Atraktor dynamického systému...4 Chaos...4 Model konvektivního proudění atmosféry...8 Numerické experimenty v programu Mathematica...12 Stacionární body...16 Přesnost při výpočtu v programu Mathematica...22 Závěr...26 Zdroje...27 Strana 2 (celkem 25)

3 Úvod Dynamický systém Dynamický systém sestává ze stavového prostoru, jehož souřadnice popisují stav systému v daném čase a z dynamických podmínek, které popisují změnu tohoto systému v čase. Stav systému je potom popsán vektorem, který celý leží ve stavovém prostoru. Dynamické podmínky jsou většinou zadány soustavou diferenciálních rovnic, které popisují změnu stavového vektoru v čase. Změna stavu dynamického systému se děje provedením těchto diferenciálních rovnic a nahrazením starého stavového vektoru vektorem novým. Dynamický systém může být deterministický nebo stochastický (náhodný). Deterministický dynamický systém lze poměrně přesně popsat, zatímco u systému stochastického jsme odkázáni pouze na statistické vlastnosti takového systému (například střední hodnota, disperze, směrodatná odchylka, centrální moment a jiné). Lineární systém Lineární systém je takový systém, v němž lze uplatnit princip superpozice. Superpozice využíváme při řešení velkého množství problémů, například při řešení průtoku elektrického proudu v elektronických obvodech nebo ve fyzice při skládání působení sil na hmotný bod. Obecně platí, že je-li systém lineární a lze využít superpozice, je řešení takového systému často velmi jednoduché a jednoznačné. Chování takových systémů lze předpovědět i do budoucnosti. Při práci se systémy, které nejsou lineární, častou používáme postupu zvaného linearizace. Nelineární závislost se nahradí závislostí lineární. Stavový prostor Stavový prostor určuje, jakých hodnot může nabývat stavový vektor dynamického systému. Stavový vektor je tvořen množinou proměnných, které mohou nabývat hodnot z určitého intervalu. Interval všech těchto hodnot potom určuje celý stavový prostor. Stavový prostor může být několika typů: konečný spočitatelný nekonečný Strana 3 (celkem 25)

4 Atraktor dynamického systému Atraktor (anglicky attractor) dynamického systému je stav, do kterého systém směřuje. Je to tedy množina, ve které je stavový vektor, když je systém v nekonečném čase. Atraktory rozdělujeme do několika tříd: atraktorem jsou pevné body atraktorem jsou periodické body atraktorem jsou kvaziperiodické body atraktor je chaotický podivný atraktor Jsou-li atraktorem dynamického systému pevné body, jde o nejjednodušší případ. Systém se tedy v nekonečném čase ustálil v nějakém stabilním stavu a v podstatě už nejde o dynamický systém. Příkladem může být kyvadlo, které se vlivem odporu vzduchu a odporu ložisek zastaví v nejnižším bodě své dráhy. Jsou-li atraktorem periodické (resp. kvaziperiodické) body, jde také o jednoduchý případ. Systém se ustálil tak, že osciluje mezi několika stavy. Příkladem je těleso, které se na své cestě vesmírem dostane do blízkosti velmi hmotného tělesa. Po určitém čase se pohyb tohoto tělesa ustálí na eliptické dráze. Je-li atraktor chaotický, znamená to, že výsledný atraktor nelze v podstatě nijak dopředu předpovědět. To je způsobeno tím, že je systém velmi citlivý na počáteční podmínky. Chaotičnost v tomto případě neznamená náhodnost, protože se bavíme o deterministických systémech. Příkladem může být koule postavená na vrcholku jehlanu. Jakýkoliv vnější podnět způsobí, že koule tento stav opustí a dostane se do některého atraktoru (místo pod jehlanem). Tento atraktor nelze předpovědět, protože nemůžeme bez zásahu do měření zjistit počáteční podmínky. V kvantové fyzice existuje takzvaný princip neurčitosti, který má obdobný význam pro kvantové jevy. Podivný atraktor (anglicky strange attractor) je nejzajímavějším případem atraktoru. Tento typ atraktoru vzniká, je-li systém popsán minimálně třemi diferenciálními rovnicemi. Takový systém může mít velmi komplikovaný atraktor, který sice bude chaotický, ale přesto bude vykazovat určité pravidelnosti. Termín podivný atraktor není ještě přesně matematicky definován, ale považujeme za něj takový atraktor, který vykazuje stejné vlastnosti, jaké mají fraktály (podivný atraktor je tedy fraktálem). Chaos Chaos je z časového hlediska budoucí stav deterministického dynamického systému, který není předpovídatelný v důsledku velké citlivosti na počáteční podmínky. Chaos může nastat v systému, který má více než dvě stavové proměnné, tedy například v trojrozměrném prostoru. Pro diskrétní procesy existuje i jednorozměrný chaos. Jako příklad můžeme uvést takzvanou Logistickou mapu, která je definována předpisem: Tato funkce je pro r > 4 chaotická. f(x) = r*x(1-x) Strana 4 (celkem 25)

5 Obr. 1: Celkový pohled na Mandelbrotovu množinu Obr. 2: Detail z Mandelbrotovy množiny Strana 5 (celkem 25)

6 Obr. 3: Dynamický systém - Eulerova substituce Obr. 4: Dynamický systém - simulace difúze Strana 6 (celkem 25)

7 Obr. 5: Dynamický systém - simulace difúze Strana 7 (celkem 25)

8 Model konvektivního proudění atmosféry Proudící tekutina je poměrně složitý spojitý dynamický systém, s velkou variabilitou okrajových podmínek, lze jej charakterizovat velmi vysokým počtem stupňů volnosti. Studium vlastností takového systému je obecně technicky velmi obtížné. Proto budeme demonstrovat chaotické chování dynamických systémů na případě daleko jednoduššího systému s nízkým počtem stupňů volnosti. Základní mechanismus vzniku chaosu je společný všem dynamickým systémům bez ohledu na jejich složitost. Jako příklad jsme zvolili Lorenzův systém, který vlastně odstartoval éru systematického studia chaosu. I když by se na první pohled mohlo zdát, že x, y, z jsou prostorové souřadnice, ale není tomu tak. Jejich fyzikální význam je poněkud abstraktní. Proměnná x představuje rychlost rotace pohybu částice, kladná hodnota je ve směru hodinových ručiček. Proměnná y je rozdíl teplot stoupající a klesající tekutiny. Proměnná z charakterizuje odchylku svislého profilu teploty od lineárního průběhu. Parametr r je Rayleigho číslo (v normovaném tvaru), sigma Prandtlovo číslo a parametr b představuje štíhlost válce tekutiny při konvekci, tedy poměr jeho délky a průměru. Tento matematický model zachycuje základní vlastnosti konvektivního proudění atmosféry, která je zahřívána povrchem ze spodu a ochlazována svrchu. Vzniká tak rotační pohyb částic vzduchu, kdy ohřátá částice stoupá, tím se ochlazuje a začne klesat, aby se opět zahřála a stoupala. Tento jev je známý jako Rayleigh-Bénárdova nestabilita. Okrajové podmínky jsou poněkud idealizovány: proudění v horní oblasti je považováno bez smykového napětí místo realističtější podmínky stejných rychlostí, v příčném směru je uvažována periodická okrajová podmínka místo omezení stěnami a celý případ je modelován jako rovinný místo prostorového. Lorenzovy rovnice mají následující vlastnosti: Jsou autonomní, to znamená, že jejich pravá strana explicitně neobsahuje čas, koeficienty jsou konstantní; Obsahují pouze první časové derivace. Důsledkem tohoto spolu s uvážením autonomie systému je zřejmé, že jeho vývoj závisí pouze na okamžitých vlastnostech proměnných (x, y, z) a nikoli na jejich historii; rovnice jsou nelineární, viz členy xz a xy ve druhé a třetí rovnici; řešení soustavy rovnic je omezené v prostoru proměnných. Strana 8 (celkem 25)

9 Atraktor příslušející Lorenzovu systému je prvním z tzv. "podivných atraktorů" charakterizujících chaotické chování dynamického systému a má některé vskutku podivné vlastnosti: je tvořen spojitou křivkou v prostoru, která obecně začíná v jistém počátečním bodě, může však mít nekonečně velkou délku. Přitom vyplňuje jistý přesně vymezený podprostor ve fázovém prostoru, ze kterého nikdy nevybíhá; nikdy neprotíná sám sebe, nekříží se ani se neopakuje; má vlastnost fraktálů, tj. jeho struktura se opakuje na různých měřítkách; jeho průběh v prostoru je náhodný, chaotický, nepředpověditelný. Ukazuje se, že kritická hodnota parametru r při výše uvedených hodnotách parametrů s a b je rovna asi 24,74, pro hodnoty nižší směřuje vývoj systému do jediného bodu ve fázovém prostoru, pro hodnoty vyšší dostáváme nekonečný pohyb s prvky chaosu. Obr. 7: Rozložení teploty pro nízké r (nižší než kritická hodnota) Obr. 6: Rozložení teploty pro vysoké r (vyšší než kritická hodnota) Strana 9 (celkem 25)

10 Obr. 8: Schéma Lorenzova systému Reygleigh-Bénárdova buňka Strana 10 (celkem 25)

11 Obr. 9: Grafické znázornění proudění pro různé r (vyšší než kritická hodnota) Strana 11 (celkem 25)

12 Numerické experimenty v programu Mathematica Při numerických experimentech jsme vycházeli z následujícího tvaru Lorenzových rovnic. dx = b x t y t z t dt dy = s y t s z t dt dz = y t x t r y t z t dt Při zkoumání tohoto modelu se nejčastěji používá následujících hodnot pro parametry b = 8/3, s = 10, r = yhtl xhtl -10 Obr. 10: Fázový diagram - {x, y} pro y 0 = [0,3,10] Strana 12 (celkem 25)

13 zhtl xhtl -20 Obr. 11: Fázový diagram - {x, z} pro y 0 = [0,3,10] zhtl yhtl Obr. 12: Fázový diagram - {y, z} pro y 0 = [0,3,10] Strana 13 (celkem 25)

14 8xHtL, yhtl, zhtl< t Obr. 13: Všechny složky řešení pro y 0 = [0,3,10] Strana 14 (celkem 25)

15 Stacionární body a) S 1 = [0, 0, 0] det( I J(S 1 )) = - (b + ) * (s r * s + + s * + 2 ) 1 = -b, 2,3 = ½ (-1 s (1 2s + 4r * s + s 2 ) ½ ). 2 = -½((1 + s) - ((1 + s) 2 + 4s * (r - 1)) ½ ) > 0 => S 1 je nestabilní. b) Z druhé rovnice vyplývá, že z = y. Nyní třetí rovnici vydělíme y (pro y = 0 bychom dostaly S 1 ) a vyjde nám že x = r - 1. Po dosazení za x do první rovnice nám vyjde, že y = z = n => S 2,3 = [r 1, n, n], kde n = [b(r-1)] ½. det( I J(S 2 )) = 3 + (b + s + 1) * 2 + (b + b * s + n 2 ) * + 2n 2 * s Nyní dosadíme za b, r, s a vyjdou nám komplexně sdružené kořeny s kladnou reálnou částí => S 2,3 je nestabilní. Strana 15 (celkem 25)

16 Pro počáteční hodnotu rovnu jednomu ze stacionárních bodů S 2,3 je výsledkem opět tento bod. Pro obvyklou volbu b, r, s je y 0 = [27, 6 * 2 ½, 6 * 2 ½ ]. a) Vychýlení počáteční hodnoty y 0 pro x o 5 * 10-5 Výsledné řešení se pro nízká t příliš neliší od konstantního: yhtl Obr. 14: Fázový diagram {x, y} xhtl zhtl xhtl Obr. 15: Fázový diagram - {x, z} Strana 16 (celkem 25)

17 zhtl yhtl Obr. 16: Fázový diagram - {y, z} 8yHtL - zhtl< t Obr. 17: Rozdíl složek řešení {y, z} Strana 17 (celkem 25)

18 b) Chování systému pro r = 24, y 0 a t (0, 200). yhtl Obr. 18: Fázový diagram {x, y} xhtl zhtl Obr. 19: Fázový diagram {x, z} xhtl Strana 18 (celkem 25)

19 zhtl Obr. 20: Fázový diagram - {y, z} yhtl 8yHtL -zhtl< t -1 Strana 19 (celkem 25)

20 Přesnost při výpočtu v programu Mathematica Pro výpočet relativní chyby jsem využil vzorce: e r (t) = Max [x ok (t) x n (t), y ok (t) y n (t), z ok (t) z n (t)] * (Max [x ok (t), y ok (t), z ok (t)] ) -1 x ok x složka řešení, které bylo numericky spočítáno na min 100 platných cifer x n x složka řešení, které bylo spočtená danou metodou (y 0 = [0,3,10]). t {1, 2,, 20} Relativní c hyba NDSolve funkce programu Mathematica pro řešení dif. rovnic. V tomto případě bez jakýchkoliv nastavení Čas Pro klasický NDSolve Relativní c hyba Parametr WorkingPrecision -> 32 znamená, že v průběhu výpočtu bude program pracovat s čísly o 32 číslicích. Dále již jen NDSolve s WorkingPrecision -> Čas Strana 20 (celkem 25)

21 Relativní c hyba Mé nastavení NDSolve[LorenzEquations, {x,y,z},{t,0,20}, WorkingPrecision->32,Metod-> StiffnessSwitching ]. Pro vyplněný parametr metod počítá mathematica pouze pomocí této (těchto) numerických metod. Dále vždy uvádím jen jméno použité metody (v anglickém originálu, jméno je shodné s probíranými metodami). Čas Relativní c hyba Adams Čas Relativní c hyba Adams Čas Strana 21 (celkem 25)

22 Relativní c hyba BDF Čas Relativní c hyba BDF Čas Relativní c hyba ExplicitRungeKutta Čas Strana 22 (celkem 25)

23 Relativní c hyba ExplicitRungeKutta Čas Relativní c hyba ImplicitRungeKutta Čas Relativní c hyba Čas ImplicitRungeKutta + 32 Strana 23 (celkem 25)

24 Závěr V této práci jsme popsali Lorenzův systém, který popisuje cirkulaci tepla v zemské atmosféře. A i když jde o model značně zjednodušující skutečnost, podařilo se nám ilustrovat jeho chování pro různé volby parametru r a různé počáteční podmínky. Pokud bychom chtěli předpovídat počasí na základě tohoto jednoduchého modelu, museli bychom se vypořádat s jeho nepříjemným chaotickým chování pro r vetší než je jeho kritická hodnota. Přestože Lorenz formuloval tento model už v roce 1963 a dnešní meteorologie již jistě používá mnohem sofistikovanější modely, zcela určitě budou vykazovat podobné chování jako rovnice námi zkoumané. Proto věřím, že po shlédnutí příští relace o počasí se spokojíte s přáním slunce v duši a nevydá se všanc stochastickému fenoménu jakým je počasí. Strana 24 (celkem 25)

25 Zdroje 1., seminární práce ze SNM1 2. Ing. Václav Uruba, Csc, Náhoda v exaktní vědě, 3. Pavel Tišnovský, Fraktály, Strana 25 (celkem 25)

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc.

Dynamické systémy 4. Deterministický chaos. Ing. Jaroslav Jíra, CSc. Dynamické systémy 4 Deterministický chaos Ing. Jaroslav Jíra, CSc. Jednorozměrné mapy Jednorozměrné mapy (též známé jako diferenční rovnice) jsou matematické systémy, které modelují vývoj proměnné v čase

Více

Nelineární systémy a teorie chaosu

Nelineární systémy a teorie chaosu Martin Duspiva KOIF2-2007/2008 Definice Lineární systém splňuje podmínky linearita: f (x + y) = f (x) + f (y) aditivita: f (αx) = αf (x) Každý systém, který nesplňuje jednu z předchozích podmínek nazveme

Více

Náhoda v exaktní vědě

Náhoda v exaktní vědě Uruba, V., 2005, Náhoda v exaktní vědě, Essentia, http://www.essentia.cz Náhoda v exaktní vědě Ing.Václav Uruba, CSc uruba@it.cas.cz, tel.: 286 588 547 *1957, autor pracuje v Ústavu termomechaniky AV ČR,

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Biofyzikální ústav LF MU Brno. jarní semestr 2011 pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při

Fraktály a chaos. Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při Martin Šarbort 8.května 2006 Fraktály a chaos 1 Fraktály - základní pojmy 1.1 Úvod Za otce fraktální geometrie je dnes považován Benoit Mandelbrot. Při zkoumání chyb při přenosu signálu zjistil, že při

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

Generování sítě konečných prvků

Generování sítě konečných prvků Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností

Více

Řešení "stiff soustav obyčejných diferenciálních rovnic

Řešení stiff soustav obyčejných diferenciálních rovnic Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

2 Tokové chování polymerních tavenin reologické modely

2 Tokové chování polymerních tavenin reologické modely 2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Konference Vytápění Třeboň 2015 19. až 21. května 2015 OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Ing. Petr Komínek 1, doc. Ing. Jiří Hirš, CSc 2 ANOTACE Většina realizovaných

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

POČASÍ A PODNEBÍ. 4.lekce Jakub Fišák, Magdalena Špoková

POČASÍ A PODNEBÍ. 4.lekce Jakub Fišák, Magdalena Špoková POČASÍ A PODNEBÍ 4.lekce Jakub Fišák, Magdalena Špoková Dnes se dozvíte Jaký je rozdíl mezi počasím a podnebím, proč je složité předpovídat počasí, čím je ovlivněno klima na Zemi, jak se bude klima vyvíjet.

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra

Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra Úvaha nad slunečními extrémy - 2 A consideration about solar extremes 2 Jiří Čech Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem

Více

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků

Více

Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.

Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D. Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)

Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1) 4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

vztažný systém obecné napětí předchozí OBSAH další

vztažný systém obecné napětí předchozí OBSAH další p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

ODR metody Runge-Kutta

ODR metody Runge-Kutta ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =

Více

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát). Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 8.10.2008 Obsah Metody dynamické analýzy Obsah Metody dynamické analýzy Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Úvod do chaotické dynamiky

Úvod do chaotické dynamiky Úvod do chaotické dynamiky Jakub Dohnal, Střední škola stavební Jihlava, jakudon@centrum.cz Kristýna Onderková, gymnázium Budějovická, Praha, padawanka@gmail.com Libor Šeda, gymnázium Vysoké Mýto, Oromis.E@seznam.cz

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více