UNIVERZITA PALACKÉHO OLOMOUC FAKULTA ZDRAVOTNICKÝCH VĚD ÚSTAV RADIOLOGICKÝCH METOD

Rozměr: px
Začít zobrazení ze stránky:

Download "UNIVERZITA PALACKÉHO OLOMOUC FAKULTA ZDRAVOTNICKÝCH VĚD ÚSTAV RADIOLOGICKÝCH METOD"

Transkript

1 UNIVERZITA PALACKÉHO OLOMOUC FAKULTA ZDRAVOTNICKÝCH VĚD ÚSTAV RADIOLOGICKÝCH METOD ZOBRAZOVACÍ POSTUPY V DIAGNOSTICE ONEMOCNĚNÍ PÁTEŘE BAKALÁŘSKÁ PRÁCE Zpracovala: Michaela Hájková Vedoucí práce: Bc. Marek Novák OLOMOUC 2010

2 Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně a je mým původním autorským dílem. Uvedla jsem úplný seznam citované a použité literatury a další zdroje, ze kterých jsem čerpala. Současně souhlasím s užitím práce ke studijním účelům. V Olomouci dne

3 Poděkování Tímto bych chtěla poděkovat vedoucímu své práce, Bc. Marku Novákovi, za pomoc, ochotu a čas, který mi věnoval při vzniku této práce. A také Fakultní nemocnici Olomouc za umožnění přístupu k potřebným materiálům.

4 Anotace bakalářské práce Název práce: Zobrazovací postupy v diagnostice onemocnění páteře Název práce v AJ: Imaging procedures in diagnosis of spinal diseases Datum zadání: Datum odevzdání: Vysoká škola, fakulta, ústav: Univerzita Palackého v Olomouci Fakulta zdravotnických věd Ústav radiologických metod Autor práce: Hájková Michaela Vedoucí práce: Bc. Marek Novák Abstrakt v ČJ: Práce se zabývá současnou otázkou zobrazovacích metod páteře a je teoretického charakteru. Dochází v ní ke shrnutí všech zobrazovacích modalit uplatňovaných v diagnostice onemocnění a poruch páteře. Z teoretické části vyplývají možnosti moderního radiodiagnostického zobrazování. Bakalářská práce přispívá k rozšíření informací dané problematiky. Abstrakt v AJ: This work deals with the current issue of imaging of the spine and is of theoretical character. It occurs in a summary of all imaging modalities applied in the diagnosis of diseases and disorders of the spine. The theoretical result of the capability of modern radilogical imaging. Bachelor thesis contributes to the dissemination of information of the issue. Klíčová slova v ČJ: zobrazovací metody, páteř, projekce, výpočetní tomografie, magnetická rezonance Klíčová slova v AJ: imaging techniques, spine, projections, computed tomography, magnetic resonance Rozsah: 40 s.

5 OBSAH ÚVOD Anatomie páteře Krční páteř Hrudní páteř Bederní páteř Os sacrum Os coccygis Historie vzniku rentgenového záření Rentgenka a rentgenové záření Skiagrafie Konvenční skiagrafie Digitální skiagrafie Všeobecné zásady při snímkování Skiagrafie páteře Skiagrafie krční páteře AP projekce krční páteře Šikmá projekce krční páteře Projekce na dens axis a C-C přechod Funkční snímky krční páteře Skiagrafie hrudní páteře AP projekce hrudní páteře Bočná projekce hrudní páteře Šikmá projekce hrudní páteře Skiagrafie bederní páteře AP projekce bederní páteře Bočná projekce bederní páteře...24

6 Šikmá projekce bederní páteře Funkční snímky bederní páteře Skiagrafie os sacrum AP projekce na os sacrum Bočná projekce na os sacrum Skiagrafie kostrče AP projekce na kostrč Bočná projekce na kostrč Skiagrafie SI (sakroiliakální) skloubení PA projekce na SI skloubení AP projekce na SI skloubení Kontrastní látky v zobrazovacích metodách páteře Výpočetní tomografie (computed tomography = CT) Zobrazování páteře pomocí výpočetní tomografie Myelografie CT myelografie Magnetická rezonance Zobrazení páteře pomocí MR...37 ZÁVĚR...39 Seznam literatury a použitých zdrojů:...40

7 ÚVOD Samotný název mé práce Zobrazovací postupy v diagnostice onemocnění páteře napovídá, čím se bude tato práce zabývat. Onemocnění a poruchy páteře patří k nejčastějším klinickým diagnózám současné medicíny a možností jejího zobrazení je mnoho. Cílem této práce je komplexně shrnout zobrazovací metody páteře a přehledně podat informace o postupech jednotlivých vyšetření. V prvním oddíle své teoretické práce se zabývám anatomií jednotlivých úseků páteře. V druhé části popisuji vznik rentgenového záření a ve třetí, nejobsáhlejší části, se věnuji samotným zobrazovacím postupům a jednotlivým přístrojům. Radiologické zobrazovací metody mají velmi důležitou úlohu v lékařské diagnostice a jejich přínos je nenahraditelný. Během svého studia jsem zjistila, že rychlost, s jakou se současná medicína vyvíjí, je opravdu závratná a pozoruhodná. 7

8 1. Anatomie páteře Páteř (columna vertebralis) je součástí osového skeletu (souhrnné označení pro páteř, sternum, žebra a lebku). Jsou k ní připojeny pletence horních a dolních končetin. Umožňuje člověku vzpřímenou chůzi, chrání míchu a je krvetvorným orgánem. V jednotlivých úsecích páteře je rozdílná pohyblivost. Rozsah pohybů je dán geometrií obratlů, v hrudní páteři přítomností žeber, výškou disků a dalších dílčích faktorů. Lidská páteř je dvakrát esovitě prohnutá. Lordóza (zakřivení dopředu) u krční a bederní páteře. Kyfóza (zakřivení dozadu) u hrudní páteře a kosti křížové. Zakřivení páteře se vyvíjejí postupně. U novorozenců je páteř zakřivena v jedné kyfóze. Lordózy se utvářejí později zdviháním hlavy, vzpřimováním trupu, stojem a chůzí. Skolióza je vybočení páteře do strany. Je považována za patologickou a při extrémní skolióze hrozí až zborcení páteře a poškození míchy. Páteř je složena z 34 obratlů: 7 krčních (vertebrae cervicales), 12 hrudních (vertebrae thoracicae), 5 bederních (vertebrae lumbales), 5 křížových obratlů srůstá v kost křížovou (os sacrum), kost kostrční (os coccygis) tvoří 4-5 srostlých obratlů. Obratle jsou navzájem spojeny klouby, vazy a meziobratlovými ploténkami. Základem každého obratle je obratlové tělo (corpus vertebrae), oblouk obratle (arcus vertebrae) a obratlové výběžky, které zajišťují pohyblivost obratlů (processi articulares, processi transversi a processi spinosi). Těla obratlů a obratlové oblouky tvoří páteřní kanál, který je ochranou pro míchu. Mezi jednotlivými obratli se nachází meziobratlové ploténky (disci intervertebrales). Nejmohutnější částí obratle je jeho tělo. Oblouk obratle spolu s tělem vytváří otvor (foramen vertebrale). Tělo a oblouk obratle spojuje pediculus arcus vertebrae. Při odstupu oblouku se nacházejí zářezy (incisura vertebralis superior, incisura vertebralis inferior), které ohraničují meziobratlové otvory (foramina intervertebralia). Těmi vystupují z páteřního kanálu míšní nervy. Z oblouku odstupují obratlové výběžky. Laterálně odstupují párové výběžky příčné (processi transversi), dorzálně směřuje trnový výběžek (processus spinosus), který slouží k uchycení svalů a vazů. Výběžky kloubní (processi articulares) umožňují skloubení jednotlivých obratlů. Páteřní kanál (canalis vertebralis) sahá od foramen magnum po hiatus sacralis. V krční a bederní oblasti má trojúhelníkovitý tvar, v hrudní je oválný a v canalis sacralis je předozadně zploštělý. Páteřní kanál obsahuje míchu, která končí v úrovní obratle L 2, a 8

9 míšní obaly. Zevním obalem míchy je dura mater spinalis. Prostor mezi páteřním kanálem a durálním vakem je epidurální prostor (spatium epidurale). Na vnitřní straně durálního vaku je arachnoidea. Pia mater naléhá k povrchu míchy. Mezi arachnoideou a pia mater je subarachnoidální prostor (spatium subarachnoidale), který je vyplněný mozkomíšním mokem. Do epidurálního prostoru páteřního kanálu je možné aplikovat lokální anestetika, která pronikají k míšním kořenům. [1, 3, 4] Obr. 1.1: obecná stavba obratle 9

10 1.1 Krční páteř Vertebrae cervicales mají kraniokaudálně prosedlá těla, transverzálně široká. Foramen vertebrale má trojhranný tvar. Na processus transversus se nachází otvor, foramen transversarium, kudy probíhá arteria vertebralis (v rozsahu C 1 -C 6 ). Trnové výběžky jsou rozdvojené a poměrně krátké. Výjimkou je processus spinosus u C 7, nazývá se vertebra prominens. Je dlouhý a pod kůží dobře hmatný. Specifické jsou obratle C 1 a C 2. Atlas (C 1 ), neboli nosič, nemá obratlové tělo a má velké kloubní plošky. Axis (C 2 ), čepovec má jeden výběžek navíc čep (dens axis). Společně s C 1 zajišťují pohyb hlavy. Predilekční traumatická místa jsou v kraniocervikálním přechodu a segmentech C 5 - Th 1. [1, 4] Obr. 1.2: Atlas Obr. 1.3: Axis 10

11 1.2 Hrudní páteř Hrudní páteř je tvořena 12 obratli. Mají vysoká, dorzoventrálně hluboká těla. Processus spinosus se ke konci zužuje a míří šikmo dolů. Na bocích obratlových těl jsou kloubní plošky, foveae costales, pro spojení s žebry. Z toho důvodu má hrudní páteř omezenou pohyblivost. [1, 4] Obr. 1.4: Hrudní obratel (boční pohled) 11

12 1.3 Bederní páteř Vertebrae lumbales jsou ze všech obratlů největší. Tělo je vysoké a transverzálně rozměrné. Příčné výběžky nahrazují processi costarii, což jsou rudimenty lumbálních žeber. Foramen vertebrale je trojúhelníkovité a relativně malé. Přechod L 5 v os sacrum se nazývá promontorium. [1, 4] Obr. 1.5: Bederní obratel Krční, hrudní a bederní obratle společně tvoří pohyblivou, presakrální část páteře. 12

13 1.4 Os sacrum Os sacrum je součástí páteře, pánve i pletence dolní končetiny. Je kraniálně široká, kaudálně se zužuje. Přední plocha je konkávní a zadní naopak konvexní. Specifickým útvarem jsou foramina sacralia, kterými vystupují míšní nervy. Pokračováním páteřního kanálu je canalis sacralis. Zevní část os sacrum tvoří facies auricularis pro skloubení s kyčelní kostí. [1, 4] Obr. 1.6: Os sacrum 13

14 1.5 Os coccygis Os coccygis tvoří 4-5 rudimentálních (zakrnělých) spojených obratlů. Kostrč tvoří trojúhelníkovité zakončení páteře. [4] Obr. 1.7: Oc coccygis 14

15 2. Historie vzniku rentgenového záření Objevitelem rentgenového záření byl Wilhelm Conrad Röntgen ( ). Německý fyzik se narodil v německém městě Lennep. V době svého největšího vědeckého úspěchu pracoval jako profesor fyziky a ředitel fyzikálního ústavu na univerzitě ve Würzburgu. V roce 1895 začal Röntgen systematicky pracovat s katodovou trubicí obalil katodovou trubici černým papírem, aby z ní po zapnutí elektrického proudu nevycházelo žádné světlo. Po jejím zapojení však zjistil, že fluorescenční štít položený poblíž aparatury, začal světélkovat a uvědomil si, že z trubice musí vycházet neviditelné záření. Mezi první rentgenové fotografie patřil stínový snímek ruky Röntgenovy manželky a hlaveň lovecké pušky. Paprsky začaly sloužit v medicíně a defektoskopii a byly souhrnně označovány jako paprsky X. V roce 1901 získal Wilhelm C. Röntgen za objev rentgenového záření Nobelovu cenu za fyziku. Díky záření, které nyní nese Röntgenovo jméno, diagnostikujeme nejen v medicíně, ale známe stavbu mnoha krystalických, anorganických látek i strukturu nukleových kyselin, penicilinu, cholesterolu a spousty dalších. [5, 7, 11] Obr. 2.1: Jeden z prvních rentgenových snímků (obraz ruky objevitelovy manželky; 1895) [11] 15

16 3. Zobrazovací metody páteře 3.1 Rentgenka a rentgenové záření Rentgenové záření je souhrnný název pro elektromagnetické vlnění o krátké vlnové délce ( m). Dělíme jej na záření z přirozených a umělých zdrojů, tedy z kosmu a z rentgenky. V rentgence dochází ke vzniku brzdného a charakteristického záření. Brzdné záření vzniká při náhlém zbrzďování rychle letících elektronů, o vysoké kinetické energii, v poli atomového jádra. Elektrony ztratí část své energie, která je vyzařována ve formě záření. Charakteristické záření vzniká při přechodech elektronů v atomovém obalu. Prudce letící elektron uvolní elektron ze slupky obalu atomu, který je blíže k jádru atomu. Vznikne prázdné místo, které zaplní elektron ze sféry jádru vzdálenější. Elektron s větší energií. Energetické rozdíly mezi hladinami jsou vyzářeny ve formě záření. Nejběžnějším zdrojem rentgenového záření je rentgenka. Jde o vakuovou trubici ze skla nebo oceli. Uvnitř je umístěna žhavená katoda a rotační anoda (ne vždy je anoda rotační; například v zubním lékařství používáme anody pevné). Na katodu dodáváme žhavící napětí v desítkách voltů. V důsledku tepelné emise se uvolní elektrony a kolem katody vznikne elektronový mrak. Elektrony s obrovskou kinetickou energií dopadají na wolframový terčík na anodě, kde jsou zbrzďovány a dochází ke vzniku rentgenového záření. 99% energie elektronů se přemění na teplo, pouze 1-2% na záření. Z toho důvodu musí být rentgenka chlazena. Nezbytnou součástí rentgenového přístroje je generátor vysokého napětí. Vysoké napětí urychluje elektrony emitované z katody a ovlivňuje tvrdost (kvalitu) záření. Rentgenové záření je neviditelné, proniká hmotou a šíří se přímočaře o velké rychlosti. Primární záření vzniká při dopadu elektronů na anodu a je využíváno při snímkování. Sekundární záření vzniká v ozařovaném objektu. Při snímkování objektů větších jak 15 cm nebo při napětí větším než 60 kv využíváme při expozicích sekundární clony. Primární clony využíváme při každé expozici a jsou umístěny mezi ohniskem a ozařovaným objektem a vymezují primární svazek záření na potřebný formát. Sekundární clony slouží k odstranění nežádoucího sekundárního záření. Umístěny jsou mezi ozařovaným objektem a záznamovým materiálem. Jejich základem je mřížka složená z jemných olověných lamel. Sekundární Buckyho clona 16

17 obsahuje pohyblivou mřížku, jejíž lamely se při expozici nerovnoměrně pohybují. Sekundární Lysholmova clona obsahuje nepohyblivé lamely a je využívána při snímkováni pacientů na lůžku nebo na operačních sálech. [6, 7, 11] 3.2 Skiagrafie Konvenční skiagrafie Svazek záření vzniká v rentgence a při snímkování prochází vyšetřovanou oblastí. Tam se absorbuje podle složení tkání a poté dopadá na kazetu s rentgenovým filmem. Na filmu vzniká latentní obraz, který se zviditelní vyvolávacím procesem. Kazeta slouží jako světlotěsné, ochranné pouzdro. Na jejích vnitřních stranách se nachází zesilovací fólie, mezi kterými je vložený film. Rentgenový obraz je dvourozměrné zobrazení trojrozměrného objektu. Při skiagrafii se pořizují snímky ve dvou, na sebe kolmých, projekcích (kvůli lepší prostorové orientaci). Nejčastěji předozadní (anteroposterior; AP) a bočné (laterál). Výjimkou mohou být například snímky srdce a plic, které se dělají jako projekce zadopřední (PA) u mobilních pacientů (AP u imobilních pacientů). Vzniklý obraz je obrazem sumačním. Zachycuje všechny tkáně, kterými rentgenové záření prochází. Tkáně absorbující méně záření tvoří na snímku projasnění. Tkáně, které absorbují více rentgenového záření, vytvářejí zastínění. Nejvíce fotonů absorbují kosti, a proto jsou na snímku bílé. Nejtmavší jsou na snímku tkáně obsahující vzduch (např. plíce), protože absorbují jen velmi málo záření. Protože je rentgenový snímek negativem, oblasti projasnění jsou tmavší a oblasti zastínění světlejší. [1, 2, 5] Digitální skiagrafie Digitální radiografii dělíme na přímou a nepřímou. Při přímé radiografii dopadá záření na detektor, který jej převádí na elektrický signál, a nepřímá radiografie využívá fosforeskující paměťové fólie. Výhodami digitální radiografie je možnost úpravy obrazu 17

18 (post-processing), redukce dávky záření a jednoduchá archivace v systému PACS (picture archiving comunication system). Jde o bezfilmový, archivační, komunikační systém, který slouží jako datové úložiště v rámci celé nemocniční sítě. Nevýhodou digitální radiografie je hlavně vysoká cena Všeobecné zásady při snímkování Při pořizování rentgenových snímků musíme vždy dodržovat určitá pravidla a zásady. Jde o zásady bezpečnosti práce a radiační hygieny, správnou přípravu a polohování pacienta a dodržování standardních projekcí a správného manipulování s přístroji. Ochrana radiologických pracovníků spočívá v použití bezpečnostních pomůcek (olovnatá zástěra, olovnaté brýle, límec k ochraně štítné žlázy, atd.), dodržování bezpečné vzdálenosti od primárního svazku záření a minimálním čase stráveném v blízkosti zdroje rentgenového záření. Pacienty chráníme správným vykrýváním kritických orgánů a co nejnižšími expozičními hodnotami, které jsou možné pro kvalitní zobrazení snímkované oblasti. Při přípravě pacienta dbáme na odstranění všech kovových materiálů (náušnice, brýle, knoflíky, zubní protézu, atd.), které by narušily kvalitní finální snímek. Správné polohování pacienta závisí na jeho věku a vážnosti poranění. S tím souvisí i snímkování ve standardních projekcích. Většinu vyšetření provádíme ve dvou základních, na sebe kolmých projekcích: projekce předozadní nebo zadopřední (AP, PA) a na ni kolmá projekce bočná. Podle směru vstupu centrálního paprsku rozlišujeme i další projekce: šikmá, axiální (centrální paprsek je rovnoběžný s dlouhou osou těla) a tangenciální (centrální paprsek se tečnovitě dotýká okrajů snímkovaného objektu). Směr centrálního paprsku je u většiny projekcí kolmý, ale lze ho i sklápět (kraniálně nebo kaudálně). Míří do středu vyšetřované oblasti. Pokud lze, snímkujeme pacienta v anatomickém postavení. Při čerstvých úrazech polohujeme pacienta dle potřeby, ale s co nejmenší manipulací. Rentgenové snímky musí být označeny stranově (P, L = pravá, levá). Stacionární snímky pořizujeme skiagrafickými přístroji. Mobilní skiagrafické přístroje využíváme při snímkování na odděleních přímo u lůžka pacienta, u pacientů neschopných dostavit se na radiologickou kliniku a ojediněle na operačních sálech. [5, 6, 7] 18

19 3.2.4 Skiagrafie páteře Skiagrafie krční páteře Všechny projekce na krční páteř se provádí přes sekundární clonu a s povely nedýchat a nepolykat. Na snímcích by mělo být zobrazeno všech 7 obratlů krční páteře AP projekce krční páteře Předozadní projekci krční páteře děláme vleže na zádech nebo vestoje, zády k vertigrafu. Formát snímku je 18x24 cm nebo 24x30 cm. Vzdálenost OK (ohnisková vzdálenost; vzdálenost ohnisko kůže) je 100 cm a centrální paprsek míří kolmo na štítnou chrupavku. Pacientovi dáme povely nedýchat, nepolykat. Snímkujeme přes sekundární clonu. [1, 6] Obr. 3.1: AP projekce C páteře (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) 19

20 Bočná projekce krční páteře Bočnou projekci provádíme vsedě nebo vestoje bokem k vertigrafu (eventuelně vleže na vyšetřovacím stole). Pacient je otočený celým bokem, neotáčí jen hlavu a krk. Brada mírně zvednutá, hlava rovně v ose těla a ramena táhne pacient co nejvíce dolů. Úhly dolní čelisti se na snímku musí překrývat. Vzdálenost OK je 120 cm, z důvodu velké vzdálenosti objekt film (paprsek prochází skrz rameno). Formát kazety je 24x30 cm. [1, 6] Obr. 3.2: bočná projekce C páteře (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) Šikmá projekce krční páteře Šikmou projekci provádíme jen zřídka pro zobrazení intervertebrálních prostor. Provádí se vleže nebo vestoje u vertigrafu. Pacient vytáčí hlavu a hrudník 45 od kazety (24x30 cm). Vzdálenost OK je 120 cm a provádí se šikmá projekce na každou stranu s použitím sekundární clony. Možnost provést v AP i PA postavení. [1, 6] 20

21 Projekce na dens axis a C-C přechod Transorální snímky krční páteře se provádí přes otevřená ústa. Jde o projekce na dens axis a zobrazení kranoicervikálního přechodu (C-C přechodu). Pacient leží na zádech, hlavu zakloněnou dozadu tak, aby pomyslná spojnice mezi horním rtem a nosem byla rovnoběžná s vyšetřovacím stolem. Centrální paprsek míří do úst a vzdálenost OK je 100 cm. Na kraniocervikální přechod se provádí i projekce dle Sandberga. Uložení pacienta je stejné jako u transorální projekce. Při snímkování pacient co nejrychleji otevírá a zavírá ústa pohybem dolní čelisti proto, aby došlo k pohybovému rozostření dolní čelisti a na snímku se kvalitně zobrazil samotný C-C přechod. Z toho důvodu je expoziční doba dlouhá minimálně 3 sekundy. Formát snímku je 18x24 cm nebo 24x30 cm a snímkujeme přes sekundární clonu. [1, 6] Funkční snímky krční páteře Funkční snímky krční páteře se provádí za účelem posouzení dynamiky při onemocnění plotének. Jde o bočné snímky v maximálním předklonu (flexi) a záklonu (extenzi) hlavy. Méně častým požadavkem jsou funkční snímky v předozadní projekci lateroflexe na levou a na pravou stranu. Formát kazety je 24x30 cm a vzdálenost OK 120 cm. Snímkujeme přes sekundární clonu. [1, 6] 21

22 Skiagrafie hrudní páteře AP projekce hrudní páteře Základní projekce hrudní páteře provádíme obvykle vleže na vyšetřovacím stole. Při předozadní projekci leží pacient na zádech, OK 100 cm, formát kazety 18x40 cm a centrální paprsek míří kolmo na Th 6, tj. zhruba do středu sterna. Projekce provádíme přes sekundární clonu s povely nadechnout, vydechnout a nedýchat. [1, 6] Obr. 3.3: AP projekce Th páteře (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) Bočná projekce hrudní páteře U bočné projekce leží pacient na boku, kdy osa páteře musí jít paralelně s vyšetřovacím stolem. Ruce pod hlavou a mírně pokrčená kolena. OK 100 cm, kazeta 30x40 cm a CP směřuje kolmo na Th 6, tj. přibližně k dolním okrajům lopatek. Povel nadechnout a pomalu vydechovat, aby došlo k pohybovému rozostření žeber. Provádí se přes sekundární clonu. [1, 6] 22

23 Obr. 3.4: bočná projekce Th páteře (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) Šikmá projekce hrudní páteře Šikmá projekce Th páteře se provádí jen výjimečně. Velmi dobře zobrazuje foramina intervertebralia v oblasti horní hrudní páteře. Provádí se šikmá projekce na každou stranu za použití sekundární clony. Pacient leží na břiše a jednu stranu nadzvedne šikmo 45 nahoru. Končetinu naléhající na stůl zapaží, druhou končetinu předpaží a zapře se o okraj stolu. CP směřuje kolmo na dolní pól lopatky. Další možností jak provést šikmou projekci hrudní páteře je, že pacient leží na pravém (levém) boku. Pravou (levou) horní končetinu co nejvíce vytáhne dopředu a druhou končetinu co nejvíce zapaží dozadu. CP směřuje nad dolní úhel lopatky. Formát kazety je 24x30 nebo 30x40 cm. [1, 6] 23

24 Skiagrafie bederní páteře AP projekce bederní páteře Lumbální páteř se obvykle vyšetřuje vleže. Při předozadní projekci leží pacient na zádech na vyšetřovacím stole a má pokrčená kolena, aby páteř dolehla na stůl. Centrální paprsek míří do středu bikristální linie, tj. zhruba na L 3. Vzdálenost OK je 100 cm a snímkujeme ve výdechu přes sekundární clonu. Formát kazety je 20x40 nebo 35x43 cm. Na předozadním snímku musí být zachycen poslední hrudní obratel a LS přechod. [1, 6] Obr. 3.5: AP projekce L páteře (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) Bočná projekce bederní páteře Bočnou projekci provádíme tak, že pacienta položíme na bok, v ideálním případě zády k sobě. Nohy mírně pokrčí v kolenou a ruce položí pod hlavu. Osa páteře musí jít 24

25 souběžně s vyšetřovacím stolem. Paprsek centrujeme 2-3 prsty nad lopatu kosti kyčelní a formát filmu je 20x40 nebo 35x43 cm. Snímkujeme přes sekundární clonu. Vzdálenost OK je 100 cm. [1, 6] Obr. 3.6: bočná projekce L páteře (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) Šikmá projekce bederní páteře Šikmé projekce bederní páteře se provádí k zobrazení anomálií obratlového oblouku a facies articularis. Pacienta položíme na záda a vyšetřovanou stranu vytočíme o 45 nad úložnou desku tak, aby v oblasti pánve bylo zvednutí větší než v oblasti hrudníku. Centrální paprsek míří na vrchol kosti kyčelní. Formát kazety je 24x30 nebo 30x40 cm a vzdálenost OK je 100 cm. Snímkujeme přes sekundární clonu. [1, 6] 25

26 Funkční snímky bederní páteře Funkční snímky bederní páteře se dělají vestoje, kdy pacient stojí bokem k vertigrafu a provede maximální předklon a poté maximální záklon. Méně častým požadavkem jsou funkční snímky v AP projekci pacient provádí úklony nejprve na levou a následně na pravou stranu. Hlavní indikací je nestabilita páteře. Ohnisková vzdálenost je 100 cm a formát kazety 24x30 nebo 30x40 cm. Snímkujeme přes sekundární clonu. [1, 6] Skiagrafie os sacrum AP projekce na os sacrum Předozadní projekci provádíme vleže na vyšetřovacím stole, pacient leží na zádech. Centrální paprsek míří 3 cm nad symfýzu a je sklopený 35 kraniálně. Ohnisková vzdálenost je 100 cm, formát kazety 24x30 cm a snímkujeme přes sekundární clonu s povelem nedýchat. [1, 6] Bočná projekce na os sacrum Při bočné projekci leží pacient na boku, nejlépe zády k nám. CP je kolmý na střed kazety a míří 2 cm pod lopaty kosti kyčelní. U této projekce je vzdálenost OK 100 cm a formát filmu 24x30 cm. I tuto projekci provádíme přes sekundární clonu. [1, 6] Skiagrafie kostrče AP projekce na kostrč U AP projekce se pacient položí na záda na vyšetřovací stůl. CP je skloněn 10 kaudálně a míří 2 cm nad okraj symfýzy. Vzdálenost OK je 100 cm a snímkujeme s povelem nedýchat za použití sekundární clony. Formát kazety je 24x30 cm. [1, 6] 26

27 Obr. 3.7: AP projekce kostrče (zdroj: Fakultní nemocnice Olomouc, archiv Radiologické kliniky) Bočná projekce na kostrč V nejlepším případě se pacient položí na bok, zády směrem k nám. Centrální paprsek je kolmý na střed kazety a míří na horní okraj integluteální rýhy. Vzdálenost OK je 100 cm, formát kazety 18x24 cm a snímkujeme přes sekundární clonu. Na tomto snímku jsou segmenty kostrče zobrazeny nejlépe. [1, 6] Skiagrafie SI (sakroiliakální) skloubení Přestože je SI skloubení viditelné na předozadní projekci bederní páteře, jsou potřeba speciální snímky. Provádí se šikmé projekce nebo srovnávací zadopřední či předozadní projekce. [1, 6] 27

28 Šikmé snímky na SI skloubení Při šikmé projekci leží pacient na zádech a vyšetřovanou stranu nadzvedne zhruba 30 směrem vzhůru. Snímkujeme každý kloub zvlášť. Centrální paprsek je kolmý na střed kazety (24x30 cm) a vzdálenost OK je 100 cm. U této projekce nelze zaručit, že prokreslení obou sakroiliakálních skloubení bude vyvážené. [1, 6] PA projekce na SI skloubení Při PA projekci leží pacient na břiše na vyšetřovacím stole. Centrální paprsek míří kolmo na os sacrum. Vzdálenost OK je 100 cm, formát kazety 18x24 cm nebo 24x30 cm na šířku. Snímkujeme přes sekundární clonu s povelem nedýchat. [1, 6] AP projekce na SI skloubení Pacient leží na zádech na vyšetřovacím stole. Snímkujeme přes sekundární clonu na kazetu 24x30 cm. Centrální paprsek je skloněný 30 kraniálně a směřuje zhruba 5 cm nad symfýzu. Vzdálenost OK je 100 cm. [1, 6] 28

29 3.3 Kontrastní látky v zobrazovacích metodách páteře Důležitým pomocníkem v radiologické diagnostice jsou kontrastní látky (KL). Zvyšují nebo snižují absorpci ionizujícího záření a tím ovlivňují výsledné zobrazení snímaných objektů. Základní je dělení na pozitivní a negativní kontrastní látky. Existují speciální KL pro zobrazování magnetickou rezonancí (MR) a jiné pro ultrasonografii. Pozitivní kontrastní látky zvyšují absorpci rentgenového záření a zvyšují kontrast ve výsledném obrazu. Hlavními zástupci pozitivních KL jsou jodové, baryové a olejové kontrastní látky. Jodové KL jsou ve vodě rozpustné a jsou vylučovány ledvinami. K negativním KL patří tekutiny a plyny, které mají naopak nízkou schopnost absorbovat rentgenové záření. Při zobrazování páteře a páteřního kanálu používáme pozitivní jodové kontrastní látky a KL pro vyšetřování magnetickou rezonancí. Při CT (výpočetní tomografie) vyšetření páteře a míchy aplikujeme nejčastěji ml kontrastní látky intravenózně. Hlavní indikací k vyšetření s využitím kontrastu jsou nádorová onemocnění. Hlavně intradurální nádory (meningeom, neurinom) a míšní tumory, protože se kontrastní látkou výrazně nasytí. Při myelografii a CT myelografii je kontrastní látka aplikována subarachnoidálně. I nejmodernější jodové KL stále způsobují různé vedlejší účinky. Nejpodstatnější skupinu tvoří alergické reakce, které se objevují a šíří velmi rychle. Prevencí je nutné odebrání alergické anamnézy. Taktéž kontrastní látky pro MR jsou hydrofilní, nefrotropní, ale zároveň paramagnetické. Jde o látky na bázi gadolinia. Dobře odhalí zánětlivé procesy a přítomnost nádorové tkáně, kdy je aplikace kontrastní látky důležitá pro posouzení velikosti tumoru a jeho šíření. Pronikání kontrastní látky je výrazně lepší při MR než při CT. Po aplikaci KL lépe rozlišíme zdravou tkáň od té patologické. Doporučené aplikované množství kontrastu je 0,2 ml/kg váhy člověka u dětí i dospělých. Alergické reakce jsou velmi ojedinělé, ale objevit se může hypotenze, pálení očí, exantém nebo poruchy chuti. Vyšetřovna, kde se aplikují kontrastní látky, by měla být vybavena přístroji pro kardiopulmonální resuscitaci a léky pro neodkladnou první pomoc. [1, 8] 29

30 3.4 Výpočetní tomografie (computed tomography = CT) Při poranění páteře patří výpočetní tomografie spolu se skiagrafií k základním vyšetřovacím metodám. Je primární volbou v diagnostice kraniocerebrálních traumat i v dnešní éře magnetické rezonance. Na rozdíl od klasických rentgenových snímků jde o dvojrozměrné zobrazení trojrozměrného objektu, které můžeme následně upravovat do trojrozměrných rekonstrukcí. Výpočetní tomografie detekuje informace o traumatech v oblastech, které jsou na digitálním rentgenovém snímku špatně viditelné (možnost prostorového zobrazení). V roce 1975 představil Godfrey N. Hounsfield (anglický inženýr) první přístroj k vyšetření celého těla, který pracoval na principu počítačového tomografu. V roce 1979 získal spolu s Allanem McLeodem Cormackem Nobelovu cenu za fyziologii a medicínu. Jsou po něm pojmenovány Hounsfieldovy jednotky (HU), ve kterých se udává denzita vyjádřena ve stupních šedi. Tato stupnice je rozdělena na 2000 jednotek. Vzduch odpovídá hodnotě okolo HU, tuk = -130 HU, voda = 0 HU, měkké tkáně = 25 HU, krev = HU a kosti = 1000 HU. Vyšetřujeme jen v určitých rozmezích stupnice, tzv. oknech (kostní okno, plicní okno, atd.). CT přístroj se vyvíjel v několika generacích. Nejmodernější CT je multidetektorový CT přístroj, který pracuje na principu rotačního pohybu soustavy rentgenka-detektor kolem pacienta. Rentgenka vějířovitě vysílá rentgenové záření, které prochází vyšetřovanou oblastí a dopadá na protilehlou soustavu detektorů. Detektory v tomto případě nahrazují film. Digitální data získaná z detektorů jsou počítačem zpracována do výsledného obrazu. Hlavní výhody multidetektorového CT spočívají ve zrychlení získávání dat, vzniká méně pohybových artefaktů a proces rekonstrukce obrazů je velmi kvalitní. Nevýhodou zůstává vysoká radiační zátěž. Každé CT vyšetření začíná topogramem (scout). Jde o prvotní sumační obraz vyšetřované oblasti, podle kterého nastavíme přesné místo snímkování. Samotné snímkování provádíme dvěma metodami. Při konvenčním snímkování se musí proces zastavit po každém oběhu rentgenky a stůl s pacientem se posune. Takové vyšetření trvá dlouhou dobu a výsledný obraz je často rozmazaný, protože pacient volně dýchá. Z toho důvodu se v současné době využívá hlavně spirální metoda vyšetření. Tato metoda je kontinuální. Vyšetřovací stůl s pacientem se pomalu posunuje napříč gantry, rentgenka se nezastavuje a proto dochází ke kratší době expozice. Získáme několik set projekcí, ze 30

31 kterých počítač zrekonstruuje výsledný, plošný řez vyšetřovanou oblastí. Tento proces rekonstrukce spočívá v matematickém vypočítání složité soustavy rovnic, kdy absorpce záření je udávána v určitých voxelech. Šíře jednotlivých řezů je dána vyšetřovanou oblastí. Snímek má tím vyšší rozlišení, čím je vrstva tenčí. Příprava pacienta záleží na typu vyšetření. Minimálně 4 hodin před CT vyšetřením pacient nejí ani nepije (při CT břicha minimálně 6 hodin). Pacienta poučíme o průběhu vyšetření a vyžádáme od něj podepsaný informovaný souhlas s vyšetřením, za použití ionizujícího záření. Jestliže lékař indikuje vyšetření s kontrastní látkou, zajistíme flexibilní kanylu ideálně v kubitální žíle. [1, 5, 8, 10] 31

32 3.4.1 Zobrazování páteře pomocí výpočetní tomografie Pro každé vyšetření existují standardní vyšetřovací protokoly, podle kterých se vyšetření řídí. Žádná speciální příprava pacienta obvykle není nutná. Pouze pokud lékař indikuje vyšetření s intravenózní aplikací kontrastní látky, zajistíme pacientovi kanylu a poučíme o možných vedlejších účincích. Pacient by měl po celou dobu vyšetření ležet na zádech na vyšetřovacím stole. Vyšetření začínáme bočným topogramem. CT páteře se zobrazuje v koronárních, sagitálních a transverzálních řezech. Šíře jednotlivých vrstev se pohybuje v rozmezí 1 4 mm. Je dána vyšetřovanou anatomickou strukturou. Kloubní plochy, meziobratlové ploténky a malé struktury vyžadují vrstvy tenčí pro kvalitnější zobrazení. Při snímání celých obratlů používáme vrstvy silnější. Parametry snímání volíme podle indikace a rozsahu cíleného vyšetření. Nativní vyšetření páteře provádíme v rozsahu 2 3 segmentů. Zároveň je třeba zachytit i část měkkých tkání k detekci zánětu nebo nádorových lézí. Podle indikace vyšetřujeme s intravenózní aplikací kontrastní látky (zánětlivá onemocnění, nádorová onemocnění, postoperační vyšetření páteře, atd.). Jednotlivé skeny volíme v různé šířce a středu okna podle denzity a patologického nálezu. Důležitým požadavkem je přesné označení výšky vyšetřovaného segmentu páteře a označení jednotlivých skenů. Vyšetření páteře a páteřního kanálu začíná být v dnešní době doménou magnetické rezonance, ale výhodami CT vyšetření zůstává vyšší rychlost vyšetření, větší dostupnost, nižší finanční náklady a lepší rozlišení akutního krvácení. Dále patří k hlavním indikacím CT vyšetření zlomeniny páteřního skeletu, průkaz epidurálních hematomů, stenóza páteřního kanálu, vrozené malformace páteře nebo postoperační potíže. Vyšetření páteře spirálním CT je optimální, protože zobrazíme delší úsek a kompaktní zobrazení páteře je nedocenitelné jak v traumatologii, tak u většiny nádorových onemocnění. Hlavní nevýhodou výpočetní tomografie zůstává vysoká radiační zátěž. Ta závisí na zvoleném protokolu, typu vyšetření i typu přístroje. Faktem zůstává, že v rychlosti a dostupnosti vyšetření, následném post-processingu a rekonstrukci obrazů má CT vyšetření prioritu. [1, 2, 10, 12] 32

33 Obr. 3.8: protokol CT vyšetření páteře a páteřního kanálu (zdroj: Fakultní nemocnice Olomouc; Radiologická klinika) 33

34 Obr. 3.9: protokol CT vyšetření krční páteře (zdroj: Fakultní nemocnice Olomouc; Radiologická klinika) 34

35 3.5 Myelografie Tato metoda vyšetření (s dřívějším názvem perimyelografie) je v dnešní době již zastaralá a využívá se jen velmi málo. Pomocí kontrastní látky aplikované do subarachnoidálního prostoru zjišťujeme změny v páteřním kanálu. Nejprve provedeme lumbální punkci ve výši obratlů L 3 S 1 a poté aplikujeme zhruba 5 15 ml pozitivní jodové kontrastní látky. Vyšetření provádíme pod rentgenovou kontrolou v PA, AP, obou šikmých i bočné projekci. Hlavním cílem je zobrazit kořenové pochvy páteřního kanálu a jejich spojitost s kostními strukturami. Tímto způsobem můžeme vyšetřit všechny úseky páteře. [1] CT myelografie CT myelografie je kombinací samotného CT vyšetření a klasické myelografie. Hlavní indikací je předoperační vyšetření při degenerativních onemocněních páteře. Přestože je myelografie nahrazována hlavně vyšetřením pomocí magnetické rezonance (lze provést i MR myelografii), v oblasti krční páteře je stále velmi přínosným vyšetřením. [1] 35

36 3.6 Magnetická rezonance S pomocí magnetické rezonance získáváme řezy jednotlivých oblastí těla, které dále zpracováváme a rekonstruujeme třeba i do výsledných 3D obrazů vyšetřované oblasti. Jde o neinvazivní vyšetřovací metodu, která na rozdíl od výpočetní tomografie nevyužívá zdrojů rentgenového záření, ale zdrojem signálu je velké magnetické pole a magnetické momenty atomů (protonů) vodíku. Jelikož je lidské tělo ze dvou třetin tvořeno vodou, jsou atomy vodíku hojně zastoupeny v každé tkáni. Vodíkové atomy vytváří díky své rychlé rotaci magnetické pole a mají schopnost absorbovat energii ve formě radiofrekvenčních pulzů, které vysílá příslušná, speciální cívka. Jakmile cívka přestane pulzy vysílat, dochází k desynchronizaci pohybů atomů (T 2 relaxační čas) a návratu atomů do původní polohy (T 1 relaxační čas). Právě v tomto momentě dochází k vyzařování energie z tkáně. Radiofrekvenční cívky zastupují i funkci přijímače, kdy zachytí signál vycházející z vyšetřované tkáně. Cívky se umisťují co nejblíže tělu pacienta. Tkáně s vysokým obsahem vody mají dlouhé T 1 a T 2 relaxační časy a naopak časy v tkáni tukové jsou krátké. Jednotlivé zobrazení tkání, vnitřních orgánů a patologických procesů je ovlivněno i různou koncentrací atomů vodíku. Proto výsledný obraz vyjadřuje v podstatě hustotu vodíkových protonů a molekulární charakter tkáně, kterou vyšetřujeme. Hlavní výhodou magnetické rezonance je detailnější a přesnější zobrazení jednotlivých tkání bez využití škodlivého ionizujícího záření. Neexistují tedy žádná rizika spojená s radiační zátěží. Nespornou předností MR je i možnost zobrazení v libovolné rovině. Magnetická rezonance je využívána zejména k zobrazení nervů, mozkové tkáně, traumat páteře a muskuloskeletálního aparátu. K záporům MR se řadí vysoké finanční náklady i poměrně zdlouhavé časy jednotlivých vyšetření. Nevýhodou je i relativně dlouhý objednací termín. Ke zlepšení výsledných obrazů přispívá i aplikace paramagnetické kontrastní látky. Nezbytnou součástí vyšetření je odebrání anamnézy pacienta a vyžádání podepsaného, informovaného souhlasu s vyšetřením. Důležitá je znalost kontraindikací této vyšetřovací metody. Tou hlavní je implantovaný kardiostimulátor a přítomnost jakéhokoliv kovového předmětu v těle (svorky, kloubní náhrady, atd.). Při pořizování snímků za přítomnosti nemagnetických kovů, často dochází ke vzniku artefaktů ve výsledném obraze. Pacient musí před vyšetřením odstranit ušní implantáty, zubní 36

37 protézu a kovová tělesa z feromagnetického materiálu. Vyšetření není vhodné indikovat v prvním trimestru těhotenství a nevhodná je i přítomnost velkých tetování v místě vyšetření. Relativní kontraindikací je i klaustrofobie. Pacienti trpící touto fobií vnímají stísněný prostor v gantry negativně. [1, 5, 8, 9, 13] Zobrazení páteře pomocí MR Magnetická rezonance je jediná vyšetřovací metoda, která umožní neinvazivně zobrazit páteř, páteřní kanál a míchu v kontinuálním rozsahu (nejmodernější přístroje až 50 cm). Pouze magnetická rezonance umožňuje přesné zobrazení míšních struktur. Při vyšetření zobrazujeme současně páteřní skelet a obsah páteřního kanálu. Vyšetřování páteře provádíme ve třech základních rovinách sagitální, koronární a transverzální. Indikací k MR vyšetření páteře je mnoho. K nejzákladnějším indikacím patří vyšetření meziobratlových plotének, míchy a míšních kořenů, hematoonkologická onemocnění, detekce zánětu a vyšetření muskuloskeletálního aparátu. Zobrazení vazů a plotének pomocí MR je mnohem výtěžnější než při CT vyšetření a má i větší citlivost pro měkké tkáně. Základem je vyšetření v sagitální rovině a doplňujících transverzálních rovinách. Řezy pořizujeme nejčastěji v T 1 a T 2 vážených obrazech a doplňujeme o speciální STIR sekvenci. Jde o sekvenci s potlačením tukové tkáně, protože kostní dřeň i mícha mají vysoký obsah tuku a vody. Proto poskytují kvalitnější obrazové informace než kostní kompakta a pevná obratlová část. Ty obsahují jen minimum protonů vodíku, které, jak již bylo řečeno, jsou základem pro zobrazování pomocí magnetické rezonance. Výsledný obraz je složen ze světlejších či tmavších bodů. Hyperintenzní (hypersignální) jsou světlejší místa a zobrazují se tak mícha, tuk a částečně kostní dřeň. Tmavší body (hypointenzní, hyposignální) mají nižší intenzitu signálu a tmavě se zobrazují meziobratlové ploténky, likvor a ligamenta. Samozřejmě záleží na zvolené sekvenci, kterou jednotlivé úseky páteře snímáme. Asignálně (černě) se vždy zobrazí kostní kompakta, kalcifikace i proudící krev. Patologické změny na míše jako cysty, záněty, nádorová onemocnění, se nejlépe hodnotí na T 2 vážených obrazech. Hematoonkologická onemocnění se standardně snímají v sagitální rovině T 1, T 2 a STIR 37

38 sekvencí. Zánětlivá onemocnění páteře a páteřního kanálu se snímají ve standardních sekvencích za intravenózní aplikace kontrastní látky. Magnetická rezonance je metodou volby při úrazech, z důvodu diagnostiky přímého poškození míchy a epidurálního hematomu. Bývá indikována v ordinacích praktických i odborných lékařů. [1, 9, 13] 38

39 ZÁVĚR Při svém studiu oboru Radiologický asistent jsem se seznámila s širokou škálou možností radiologického zobrazování. Vzhledem k životnímu stylu dnešní populace si myslím, že indikací k vyšetření páteře bude stále přibývat. Z toho důvodu jsem si zvolila téma Zobrazovací postupy v diagnostice onemocnění páteře. Domnívám se, že komplexní shrnutí vyšetřovacích metod v mé bakalářské práci, bude přínosem čtenářům při jejím listování a pročítání. Ve své práci jsem se zaměřila na jednotlivé zobrazovací metody lidské páteře. Přestože současná medicína nabízí mnoho moderních a vysoce kvalitních způsobů zobrazení, klasické rentgenové snímky jsou stále prioritní metodou volby, a jejich přínos pro základní diagnostiku je nenahraditelný. Spolu s objevem rentgenového záření získala velké možnosti i lékařská diagnostika. Pokrok, kterého od objevu rentgenových paprsků dosáhla současná medicína, je opravdu pozoruhodný. Mým cílem bylo sjednotit, charakterizovat a zhodnotit jednotlivé možnosti zobrazovacích metod páteře. Dle mého názoru jsou lidé velmi málo (ne-li chybně) informováni o přínosu rentgenového záření v současné medicíně a zobrazovacích metodách obecně. Věřím, že má práce dobře nastíní problematiku diagnostických možností při vyšetřování páteře a pomůže odhalit výhody a nevýhody těchto vyšetření. 39

40 Seznam literatury a použitých zdrojů: 1. NEKULA, Josef. Zobrazovací metody páteře a páteřního kanálu. 1. vyd. Hradec Králové: Nucleus HK, s. ISBN ŽVÁK, Ivo. Traumatologie ve schématech a RTG obrazech. 1. vyd. Praha: Grada, s. ISBN CHMELOVÁ, Jana. Rentgenová anatomie pro bakaláře I. 2. vyd. Ostrava: Ostravská univerzita v Ostravě, Fakulta zdravotnických studií, s. ISBN PETEROVÁ, Věra. Páteř a mícha. 1. vyd. Praha: Galén, c s. + 1 CD- ROM. ISBN NEKULA, J. et al. Radiologie. 2. vyd. Olomouc: Univerzita Palackého, s. ISBN NEKULA, J., CHMELOVÁ, J. Vybrané kapitoly z konvenční radiologie. 1. vyd. Ostrava: Ostravská univerzita, Zdravotně sociální fakulta, s. ISBN ZUNA, I., POUŠEK, L. Úvod do zobrazovacích metod v lékařské diagnostice I. 2. vyd. V Praze: Nakladatelství ČVUT, 2007, c s. ISBN tefajir.cz/files/radioot.doc ( ) 9. ( ) Radiodiagnostika.pdf ( ) ( ) ( ) ( ) 40

Marek Mechl. Radiologická klinika FN Brno-Bohunice

Marek Mechl. Radiologická klinika FN Brno-Bohunice Marek Mechl Radiologická klinika FN Brno-Bohunice rentgenový snímek kontrastní RTG metody CT MR Anatomie - obratle 33 ks tělo a oblouk - 2 pedikly - 2 laminy - 4 kloubní výběžky -22 příčnép výběžky - 1

Více

Kosterní soustava I. - Kostra osová

Kosterní soustava I. - Kostra osová I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 2 Kosterní soustava I. - Kostra

Více

PÁTEŘ. Komponenty nosná hydrodynamická kinetická. Columna vertebralis 24 pohybových segmentů, 40 % délky těla

PÁTEŘ. Komponenty nosná hydrodynamická kinetická. Columna vertebralis 24 pohybových segmentů, 40 % délky těla BIOMECHANIKA PÁTEŘ PÁTEŘ Komponenty nosná hydrodynamická kinetická Columna vertebralis 24 pohybových segmentů, 40 % délky těla PÁTEŘ STRUKTURA Funkce: stabilizace, flexibilita, podpora, absorpce nárazu,

Více

Praktické cvičení TESTY NA VYŠETŘENÍ PÁTEŘE a JEJÍ POHYBLIVOSTI

Praktické cvičení TESTY NA VYŠETŘENÍ PÁTEŘE a JEJÍ POHYBLIVOSTI Jméno a příjmení: Studijní kombinace : datum: Praktické cvičení TESTY NA VYŠETŘENÍ PÁTEŘE a JEJÍ POHYBLIVOSTI Úvod: Jedním z prvních hlavních znaků správného držení těla je správné fyziologické zakřivení

Více

POLOHA: vzpřímený sed (je možná opora zad o židli), prsty jedné ruky přiloží na bradu

POLOHA: vzpřímený sed (je možná opora zad o židli), prsty jedné ruky přiloží na bradu . CERVIKOKRANIÁLNÍ PŘECHOD POLOHA: vzpřímený sed (je možná opora zad o židli), prsty jedné ruky přiloží na bradu POHYB: bradu tlačí ke krku, tím provádí vyrovnání extenčního postavení CC přechodu a flekčního

Více

ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ

ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ ZOBRAZOVACÍ VYŠETŘOVACÍ METODY MAGNETICKÁ REZONANCE RADIONUKLIDOVÁ Markéta Vojtová MAGNETICKÁ REZONANCE MR 1 Nejmodernější a nejsložitější vyšetřovací metoda Umožňuje zobrazit patologické změny Probíhá

Více

Osový skelet, spojení na páteři

Osový skelet, spojení na páteři Univerzita Karlova v Praze 1. lékařská fakulta Osový skelet, spojení na páteři Anatomický ústav Autor: Ondřej Naňka Obor: bakalářské obory společný kmen Kostru trupu představuje osový skelet, ke kterému

Více

Kraniocervikální přechod

Kraniocervikální přechod Kraniocervikální přechod anatomie zobrazení Bušková J., Šprláková-Puková A., Keřkovský M. Radiologická klinika FN Brno a LF MU v Brně Přednosta: prof. MUDr. Vlastimil Válek, CSc. MBA obsah anatomie kraniocervikálního

Více

(columna vertebralis)

(columna vertebralis) PÁTEŘ Páteř (columna vertebralis) Páteř je tvořena z obratlů a je charakteristická pro celý nejvyšší kmen živočichů pro obratlovce Páteř (columna vertebralis) je pohyblivou oporou pro ostatní měkčí tkáně

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: Šablona/číslo materiálu: Jméno autora: Třída/ročník CZ.1.07/1.5.00/34.0996 III/2 VY_32_INOVACE_TVD539 Mgr. Lucie

Více

Skenovací parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň

Skenovací parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň Skenovací parametry H.Mírka, J. Ferda, KZM LFUK a FN Plzeň Skenovací parametry Expozice Kolimace Faktor stoupání Perioda rotace Akvizice. ovlivňují způsob akvizice. závisí na nich kvalita hrubých dat.

Více

VZDĚLÁVACÍ PROGRAM v oboru DĚTSKÁ RADIOLOGIE

VZDĚLÁVACÍ PROGRAM v oboru DĚTSKÁ RADIOLOGIE VZDĚLÁVACÍ PROGRAM v oboru DĚTSKÁ RADIOLOGIE 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání v oboru dětská radiologie je získání specializované způsobilosti osvojením potřebných teoretických

Více

1) Vyšetření flexorů (ohybačů) šíje Základní pozice

1) Vyšetření flexorů (ohybačů) šíje Základní pozice 1) Vyšetření flexorů (ohybačů) šíje Ležíme na podložce, dolní končetiny pokrčíme, chodila máme opřené o zem. Paže jsou volně podél těla. Vyšetřovaná osoba provede pomalu a plynule flexi (předklon) hlavy

Více

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013 Název: Školitel: POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD René Kizek Datum: 20.09.2013 Základy počítačové tomografie položil W. C. Röntgen, který roku 1895 objevil paprsky X. Tyto paprsky,

Více

BAKALÁŘSKÁ PRÁCE MASARYKOVA UNIVERZITA V BRNĚ LÉKAŘSKÁ FAKULTA KATEDRA RADIOLOGICKÝCH METOD

BAKALÁŘSKÁ PRÁCE MASARYKOVA UNIVERZITA V BRNĚ LÉKAŘSKÁ FAKULTA KATEDRA RADIOLOGICKÝCH METOD MASARYKOVA UNIVERZITA V BRNĚ LÉKAŘSKÁ FAKULTA KATEDRA RADIOLOGICKÝCH METOD BAKALÁŘSKÁ PRÁCE ÚLOHA RADIOLOGICKÉHO ASISTENTA PŘI ZOBRAZOVÁNÍ...PÁTEŘE A PÁTEŘNÍHO KANÁLU NA RADIOLOGICKÉM PRACOVIŠTI Autor

Více

Princip CT. MUDr. Lukáš Mikšík, KZM FN Motol

Princip CT. MUDr. Lukáš Mikšík, KZM FN Motol Princip CT MUDr. Lukáš Mikšík, KZM FN Motol Tomografie tomos = řez; graphein = psát definice - zobrazení objektu pomocí řezů Damien Hirst Autopsy with Sliced Human Brain 2004 Historie 1924 - matematická

Více

Poranění horní krční páteře u dětí školního věku

Poranění horní krční páteře u dětí školního věku Poranění horní krční páteře u dětí školního věku Mrůzek M.,Krejčí O. Neurochirurgická klinika LF OU a Fakultní nemocnice Ostrava poranění horní krční páteře v dětském věku je vzácné cca 1% ze všech úrazů

Více

Otázky ke zkoušce z DIA 2012/13

Otázky ke zkoušce z DIA 2012/13 Otázky ke zkoušce z DIA 2012/13 Obecná část 1. Rentgenové záření charakteristika, princip rentgenky 2. Skiagrafie princip, indikace, postavení v diagnostickém algoritmu, radiační zátěž 3. Skiaskopické

Více

Skiagrafické projekce při radiodiagnostickém zobrazování páteře Tereza Perchlíková

Skiagrafické projekce při radiodiagnostickém zobrazování páteře Tereza Perchlíková Univerzita Pardubice Fakulta zdravotnických studií Skiagrafické projekce při radiodiagnostickém zobrazování páteře Tereza Perchlíková Bakalářská práce 2013 Prohlašuji: Tuto práci jsem vypracovala samostatně.

Více

Anatomie. Roviny. Směry

Anatomie. Roviny. Směry Anatomie Pro popis těla se používá terminologie rovin a směrů abychom se orientovali v umístění jednotlivých částí a v pohybech, je to něco jako kompas. Postavení těla pro popis je vzpřímený postoj s volně

Více

KOSTRA. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se stavbou a funkcí lidské kostry.

KOSTRA. Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se stavbou a funkcí lidské kostry. KOSTRA Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se stavbou a funkcí lidské kostry. Kostra opora těla spolu se svaly umožňuje pohyb chrání některé vnitřní orgány (srdce,

Více

Nativní rtg v diagnostice onemocnění nervového aparátu. Ladislav Stehlík Odd. zobrazovacích metod VFU Brno

Nativní rtg v diagnostice onemocnění nervového aparátu. Ladislav Stehlík Odd. zobrazovacích metod VFU Brno Nativní rtg v diagnostice onemocnění nervového aparátu. Ladislav Stehlík Odd. zobrazovacích metod VFU Brno Neurocranium Kongenitální anomálie Infekční a zánětlivé změny Neoplazie 2 Hydrocefalus Dorzální

Více

Omyly v diagnostice IBD: zobrazovací metody. Martin Horák Nemocnice Na Homolce, Praha

Omyly v diagnostice IBD: zobrazovací metody. Martin Horák Nemocnice Na Homolce, Praha Omyly v diagnostice IBD: zobrazovací metody Martin Horák Nemocnice Na Homolce, Praha Obsah 1. Správný výběr modality 2. Měření délky střev 3. Záněty jejuna 4. Krátké stenózy tenkého střeva 5. Mezikličkové

Více

Pohybový systém KOSTRA A KOSTI. 2. Klouby. 1. Kosti fce. Kost

Pohybový systém KOSTRA A KOSTI. 2. Klouby. 1. Kosti fce. Kost KOSTRA A KOSTI Pohybový systém 1. Kosti 2. Klouby 3. Svaly 4. Vazy Mgr. Jiří Okrouhlý Ph.D. 1. Kosti fce. - pevnost a pružnost - chrání orgány - umožňuje pohyb (úpony svalů) 2. Klouby - část organická

Více

Anotace: Žáci se během prezentace seznámili s kosterní soustavou, s nejdůležitějšími částmi kost. soustavy. Prezentace trvala 35 minut.

Anotace: Žáci se během prezentace seznámili s kosterní soustavou, s nejdůležitějšími částmi kost. soustavy. Prezentace trvala 35 minut. Základní škola a mateřská škola Lázně Kynžvart Autor: PAVLÍNA SEDLÁKOVÁ NÁZEV: VY_32_INOVACE_01_CJS_13 Vzdělávací oblast: Člověk a jeho svět Ročník: 5. Druh učebního materiálu: prezentace Číslo projektu:

Více

Příručka vybraných stomatologických projekcí pro radiologické asistenty - PŘÍLOHA J

Příručka vybraných stomatologických projekcí pro radiologické asistenty - PŘÍLOHA J Příručka vybraných stomatologických projekcí pro radiologické asistenty - PŘÍLOHA J Obecná pravidla snímkování - Před ozářením vždy znovu zkontrolovat identitu pacienta. - Ujistit se u žen ve fertilním

Více

Rekonstrukce obrazu. Jiří Ferda, Hynek Mírka. Klinika zobrazovacích metod LFUK a FN v Plzni

Rekonstrukce obrazu. Jiří Ferda, Hynek Mírka. Klinika zobrazovacích metod LFUK a FN v Plzni Rekonstrukce obrazu Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni Hrubá data Raw data Data získaná detektorovou soustavou Výchozí soubor pro výpočet atenuace a rekonstrukci obrazů

Více

Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci opěrné soustavy

Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci opěrné soustavy Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci opěrné soustavy člověka. Materiál je plně funkční pouze s použitím internetu.

Více

Planmeca ProMax. zobrazovací možnosti panoramatického rentgenu

Planmeca ProMax. zobrazovací možnosti panoramatického rentgenu Planmeca ProMax zobrazovací možnosti panoramatického rentgenu U panoramatického rentgenu nové generace Planmeca ProMax neexistuje žádné mechanické omezení geometrie zobrazení. Nastavit lze libovolné požadované

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI FAKULTA ZDRAVOTNICKÝCH VĚD ÚSTAV RADIOLOGICKÝCH METOD KONVENČNÍ A MODERNÍ RADIODIAGNOSTICKÉ METODY VE VYŠETŘOVÁNÍ OSOVÉHO SKELETU Bakalářská práce Autor: Kristýna Navrátilová,

Více

Přednášky z lékařské přístrojové techniky

Přednášky z lékařské přístrojové techniky Přednášky z lékařské přístrojové techniky Masarykova univerzita v Brně - Biofyzikální centrum Wilhelm Conrad Roentgen 1845-1923 Klasické metody rentgenové diagnostiky Rengenka Coolidgeova trubice Schématický

Více

Manuál držení těla. Regionální akademie Pardubického kraje

Manuál držení těla. Regionální akademie Pardubického kraje Manuál držení těla Regionální akademie Pardubického kraje Vypracoval: Radek Baťa Dis., Mgr. Tomáš Hák V Pardubicích 18. 12. 2016 Kontakt: bata.radek@seznam.cz, tomashak@seznam.cz Tento dokument je majetkem

Více

Variace. Kostra. 21.7.2014 15:54:28 Powered by EduBase

Variace. Kostra. 21.7.2014 15:54:28 Powered by EduBase Variace 1 Kostra 21.7.2014 15:54:28 Powered by EduBase BIOLOGIE ČLOVĚKA KOSTRA LIDSKÉHO TĚLA Kostra osová Kostra končetin Kostra SOŠS a SOU Kadaň Biologie člověka - Kostra lidského těla 2 Kostra osová

Více

Konstrukce výpočetního tomografu. Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni

Konstrukce výpočetního tomografu. Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni Konstrukce výpočetního tomografu Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni Výpočetní tomografie Hlavní indikace Urgentní diagnostika Plicní parenchym Skelet Srdce a cévy CT

Více

Rentgen - příručka pro učitele

Rentgen - příručka pro učitele Cíl vyučovací hodiny: - student definuje pojem rentgen; - student zná objevitele RTG záření; - student umí popsat součásti RTG přístroje; - student zná rizika RTG záření; Rentgen - příručka pro učitele

Více

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty.

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty. 2.snímek Historie rentgenového záření Na počátku vzniku stál německý fyzik W.C. Röntgen (1845-1923). V roce 1895 objevil při studiu výbojů v plynech neznámý druh záření. Röntgen zkoumal katodové záření,

Více

CT - artefakty. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika

CT - artefakty. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika CT - artefakty Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika Artefakty v CT Systematické neshody v CT číslech v rekonstruovaném obraze oproti skutečné hodnotě koeficientu zeslabení

Více

Kostra trupu EU peníze středním školám Didaktický učební materiál

Kostra trupu EU peníze středním školám Didaktický učební materiál Kostra trupu EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_BI1.1 Předmět: Biologie Tematická oblast: Biologie člověka Autor: RNDr. Marta Najbertová Datum vytvoření:

Více

Iterativní rekonstrukce obrazu ve výpočetní tomografii

Iterativní rekonstrukce obrazu ve výpočetní tomografii Iterativní rekonstrukce obrazu ve výpočetní tomografii Jakub Grepl, Jan Žižka, Tomáš Kvasnička, Jiří Jandura, Jana Štěpanovská, Zuzana Poulová, Jaroslav Strom Fakultní nemocnice Hradec Králové Radiační

Více

Otázka: Opěrná soustava. Předmět: Biologie. Přidal(a): Kostra. Kosterní (opěrná) soustava:

Otázka: Opěrná soustava. Předmět: Biologie. Přidal(a): Kostra. Kosterní (opěrná) soustava: Otázka: Opěrná soustava Předmět: Biologie Přidal(a): Kostra Kosterní (opěrná) soustava: základem je kost, soubor kostí v těle = kostra 206 230 kostí (novorozenec 300) tvoří pouze 14% tělesné hmotnosti

Více

Šablona č. 01.33. Přírodopis. Opakování: Kosterní soustava člověka

Šablona č. 01.33. Přírodopis. Opakování: Kosterní soustava člověka Šablona č. 01.33 Přírodopis Opakování: Kosterní soustava člověka Anotace: Opakování učiva o kosterní soustavě člověka Autor: Ing. Ivana Přikrylová Očekávaný výstup: Písemné opakování učiva o kosterní soustavě.

Více

AC SPARTA PRAHA ANTEVERZE PÁNVE. nadměrné prohnutí v oblasti bederní páteře. = větší riziko poranění zadního svalu stehenního

AC SPARTA PRAHA ANTEVERZE PÁNVE. nadměrné prohnutí v oblasti bederní páteře. = větší riziko poranění zadního svalu stehenního AC SPARTA PRAHA ANTEVERZE PÁNVE nadměrné prohnutí v oblasti bederní páteře = větší riziko poranění zadního svalu stehenního = větší riziko poranění tkání v oblasti třísel = bolesti v bederní části páteře

Více

Pohled do historie. -Wilhelm Conrad Röntgen - objev X-paprsků ,

Pohled do historie. -Wilhelm Conrad Röntgen - objev X-paprsků , RTG a CT biofyzika Pohled do historie -Wilhelm Conrad Röntgen - objev X-paprsků 11.8.1895, Nobelova cena za fyziku - 1901-1897 - první vyráběné rentgeny (plynem plněná rentgenka) - 1902 - změření vlnové

Více

PROTOKOL: ANATOMICKÉ ZMĚNY POHYBOVÉHO APARÁTU U

PROTOKOL: ANATOMICKÉ ZMĚNY POHYBOVÉHO APARÁTU U PROTOKOL: ANATOMICKÉ ZMĚNY POHYBOVÉHO APARÁTU U ČLOVĚKA V DŮSLEDKU VERTIKALIZACE II 1) POPIŠTE ANATOMICKÉ ZMĚNY NA TRUPU ČLOVĚKA OPROTI LIDOOPŮM Kostra šimpanze Kostra trupu člověka 2) POPIŠTE ANATOMICKÉ

Více

Běžné denní aktivity hráče

Běžné denní aktivity hráče Běžné denní aktivity hráče Regionální akademie Pardubického kraje Vypracoval: Radek Baťa Dis., Mgr. Tomáš Hák V Pardubicích 31.8 2017 Kontakt: bata.radek@seznam.cz, tomashak@seznam.cz Tento dokument je

Více

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu).

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu). P9: NDT metody 2/5 - Princip průmyslové radiografie spočívá v umístění zkoušeného předmětu mezi zdroj vyzařující RTG nebo gama záření a detektor, na který dopadá záření prošlé daným předmětem. - Uvedeným

Více

Pokyny pro přípravu pacientů k jednotlivým CT vyšetřením

Pokyny pro přípravu pacientů k jednotlivým CT vyšetřením NH Hospital a.s. Nemocnice Hořovice K Nemocnici 1106/14, 268 31 Hořovice tel.: +420 311 551 111 fax: +420 311 559 050 e-mail: sekr@nemocnice-horovice.cz www.nemocnice-horovice.cz Pokyny pro přípravu pacientů

Více

Ján Kočiš, Peter Wendsche et al. Poranění páteře

Ján Kočiš, Peter Wendsche et al. Poranění páteře Ján Kočiš, Peter Wendsche et al. Poranění páteře Upozornění Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě

Více

Základy výpočetní tomografie

Základy výpočetní tomografie Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Téma / kapitola Prameny 8. třída (pro 3. 9. třídy)

Více

Prezentace pracoviště magnetické rezonance

Prezentace pracoviště magnetické rezonance Prezentace pracoviště magnetické rezonance na RDG oddělení Nemocnice Chomutov, o. z. MUDr. M. Derner, prim. MUDr. D. Kollertová 3. 8. 2018 MRI principy Protony se v magnetickém poli chovají jako malé magnety

Více

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice

Více

SPECIALIZAČNÍ NÁPLŇ TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE ZOBRAZOVACÍ METODY V RADIOLOGII

SPECIALIZAČNÍ NÁPLŇ TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE ZOBRAZOVACÍ METODY V RADIOLOGII SPECIALIZAČNÍ NÁPLŇ v oboru TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE ZOBRAZOVACÍ METODY V RADIOLOGII 1. Cíl specializační přípravy Cílem specializační přípravy

Více

Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability. skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu.

Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability. skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu. Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu. 2007 Objednatel: Zhotovitel: Státní úřad pro jadernou bezpečnost

Více

Zobrazování. Zdeněk Tošner

Zobrazování. Zdeněk Tošner Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství

Více

Kostra pracovní list

Kostra pracovní list Kostra pracovní list Autor: Mgr. Anna Kotvrdová Vzdělávací oblast: Somatologie Tematický okruh: Soustava opěrná - kostra Mezioborové přesahy a vazby: Ošetřovatelství, Klinická propedeutika, První pomoc,

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ZDRAVOTNICKÝCH STUDIÍ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ZDRAVOTNICKÝCH STUDIÍ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ZDRAVOTNICKÝCH STUDIÍ BAKALÁŘSKÁ PRÁCE 2013 Bureš Jiří FAKULTA ZDRAVOTNICKÝCH STUDIÍ Studijní program: Specializace ve zdravotnictví B5345 Jiří Bureš Studijní obor:

Více

Stavba pojivová tkáň (spojuje a izoluje orgány, složí k ukládání rezervních látek, plní funkci ochrannou). Tvoří ji: - vazivo - chrupavka - kost

Stavba pojivová tkáň (spojuje a izoluje orgány, složí k ukládání rezervních látek, plní funkci ochrannou). Tvoří ji: - vazivo - chrupavka - kost Opěrná (kosterní) soustava (skelet) - Tvořena pevnou a pohybovou oporu celého těla - orgán pasívního pohybu - krvetvorba - ochrana ostatních orgánů (např. páteř mícha, hrudník plíce, srdce aj.) Stavba

Více

Medim spol. s r.o., Selská 80, 614 00 Brno. AM110-0018 "Max" kostra se znázorněnými

Medim spol. s r.o., Selská 80, 614 00 Brno. AM110-0018 Max kostra se znázorněnými Kostry v životní velikosti AM110-0015 "Stan" standardní kostra na pojízdném stojanu, výška 170 cm AM110-0016 "Stan" standardní kostra, závěsná verze, výška 186 cm AM110-0017 "Stan" standardní kostra, vyztužený

Více

Informace ze zdravotnictví Olomouckého kraje

Informace ze zdravotnictví Olomouckého kraje Informace ze zdravotnictví Olomouckého kraje Ústavu zdravotnických informací a statistiky České republiky 26. 8. 2014 6 Činnost oboru radiologie a zobrazovací metody v Olomouckém kraji v roce 2013 Activity

Více

TYPY KLOUBNÍCH SPOJENÍ

TYPY KLOUBNÍCH SPOJENÍ BIOMECHANIKA KLOUBY TYPY KLOUBNÍCH SPOJENÍ SYNARTRÓZA VAZIVO (syndesmóza) sutury ligamenta KOST (synostóza) křížové obratle CHRUPAVKA (synchondróza) symfýza SYNOVIÁLNÍ (diartróza) 1-5 mm hyalinní chrupavka

Více

Posaďte se, prosím. MUDr. Vlasta Rudolfová

Posaďte se, prosím. MUDr. Vlasta Rudolfová Posaďte se, prosím. MUDr. Vlasta Rudolfová Současná civilizace je charakteristická nedostatečnou pohybovou aktivitou. ICHS obesita DM hemoroidy ICHDK bolesti zad stoupá počet profesí se sedavým charakterem

Více

Anatomie kostry. Kostra psa. 1. lebka 2. obličej 3. dolní čelist 4. jazylka. 5. hrtanové a průdušnicové chrupavky.

Anatomie kostry. Kostra psa. 1. lebka 2. obličej 3. dolní čelist 4. jazylka. 5. hrtanové a průdušnicové chrupavky. Anatomie kostry Kostra psa 1. lebka 2. obličej 3. dolní čelist 4. jazylka 5. hrtanové a průdušnicové chrupavky 1 / 6 6. krční obratle 7. hrudní obratle 8. bederní obratle 9. křížové obratle 10. ocasní

Více

UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ

UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ UNIVERZITA PARDUBICE FAKULTA ZDRAVOTNICKÝCH STUDIÍ BAKALÁŘSKÁ PRÁCE 2017 Kristýna Záhorová Univerzita Pardubice Fakulta zdravotnických studií Úloha radiologického asistenta při MR vyšetření páteře. Kristýna

Více

Regionální anestezie na dětské klinice FN Olomouc. Stanislava Weinlichová FN Olomouc Klinika anestezie, resuscitace a intenzivní medicíny

Regionální anestezie na dětské klinice FN Olomouc. Stanislava Weinlichová FN Olomouc Klinika anestezie, resuscitace a intenzivní medicíny Regionální anestezie na dětské klinice FN Olomouc Stanislava Weinlichová FN Olomouc Klinika anestezie, resuscitace a intenzivní medicíny Regionální = svodná anestezie (RA) = anestezie v určité oblasti

Více

Anatomie I přednáška 3. Spojení kostí. Klouby.

Anatomie I přednáška 3. Spojení kostí. Klouby. Anatomie I přednáška 3 Spojení kostí. Klouby. Obsah přednášek Úvod. Přehled studijní literatury. Tkáně. Epitely. Pojiva. Stavba kostí. Typy kostí. Růst a vývoj kostí. Spojení kostí. Klouby. Páteř, spojení

Více

TEPNY LIDSKÉHO TĚLA. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

TEPNY LIDSKÉHO TĚLA. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje TEPNY LIDSKÉHO TĚLA Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Září 2010 Mgr. Jitka Fuchsová TEPNY TEPNA = arteria vede krev okysličenou vede krev

Více

Nukleární magnetická rezonance NMR

Nukleární magnetická rezonance NMR Nukleární magnetická rezonance NMR Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje ÚNOR 2011 Mgr. Helena Kollátorová Historie Magnetická rezonance (MR/MRI)

Více

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450

Více

M ASARYKŮ V ONKOLOGICKÝ ÚSTAV Žlutý kopec 7, Brno

M ASARYKŮ V ONKOLOGICKÝ ÚSTAV Žlutý kopec 7, Brno PET. PET / CT, PET Centrum, Cyklotron Pozitronová emisní tomografie ( PET ) je neinvazivní vyšetřovací metoda nukleární medicíny založená na detekci záření z radiofarmaka podaného pacientovi.nejčastěji

Více

Ing. Radovan Pařízek Brno

Ing. Radovan Pařízek Brno Ing. Radovan Pařízek Brno 11.6.2016 Nová řada skiagrafií Top STROPNÍ ZÁVĚS - AUTOPOSITIONING, POKROČILÉ APLIKACE Střed STROPNÍ ZÁVĚS - AUTOTRACKING Levné Výhody 1. Různé konfigurace systému 2. Jednoduché

Více

Soustava opěrná a pohybová

Soustava opěrná a pohybová Pořadové číslo a název projektu: CZ.1.07/1.4.00/21.2671 "Učení nás baví" Soustava opěrná a pohybová Škola Základní škola praktická, Liberecká 31, Jablonec nad Nisou, příspěvková organizace Autor Mgr. Zuzana

Více

VZDĚLÁVÁCÍ PROGRAM v oboru INTERVENČNÍ RADIOLOGIE

VZDĚLÁVÁCÍ PROGRAM v oboru INTERVENČNÍ RADIOLOGIE VZDĚLÁVÁCÍ PROGRAM v oboru INTERVENČNÍ RADIOLOGIE 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání v oboru intervenční radiologie je získání specializované způsobilosti osvojením teoretických

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Radiologická vyšetření cévního zásobení mozku

Radiologická vyšetření cévního zásobení mozku Miroslav Heřman Eva Čecháková Radiologická vyšetření cévního zásobení mozku UNIVERZITA PALACKÉHO V OLOMOUCI LÉKAŘSKÁ FAKULTA ÚSTAV PATOLOGICKÉ FYZIOLOGIE RADIOLOGICKÁ KLINIKA LF UP A FAKULTNÍ NEMOCNICE

Více

Informace ze zdravotnictví Moravskoslezského kraje

Informace ze zdravotnictví Moravskoslezského kraje Informace ze zdravotnictví Moravskoslezského kraje Ústavu zdravotnických informací a statistiky České republiky Ostrava 26. 8. 2014 6 Souhrn Činnost oboru radiologie a zobrazovací metody v Moravskoslezském

Více

Neurofyziologie a pohybový systém v ontogenezi X. POMOCNÁ VYŠETŘENÍ V NEUROLOGII

Neurofyziologie a pohybový systém v ontogenezi X. POMOCNÁ VYŠETŘENÍ V NEUROLOGII Neurofyziologie a pohybový systém v ontogenezi X. POMOCNÁ VYŠETŘENÍ V NEUROLOGII Paraklinické vyšetřovací metody také tzv. pomocná vyšetření v neurologii nejmodernější vyšetřovací metody = specializovaný

Více

Poranění krční páteře

Poranění krční páteře Poranění krční páteře Mrůzek M.,Paleček T. Neurochirurgická klinika FN Ostrava Přednosta: MUDr Tomáš Paleček Ph.D. Neurochirurgická klinika Úvod Poranění C páteře: 64 spinálních poranění/ 1milion obyvatel/1rok

Více

Polohování pacientů po CMP podle Bobath konceptu

Polohování pacientů po CMP podle Bobath konceptu Polohování pacientů po CMP podle Bobath konceptu Mikula J, Müllerová N. Prevence dekubitů. Praha: Grada Publishing, 2008. Polohování pacienta po cévní mozkové příhodě (CMP) je velmi důležité a mělo by

Více

Výukový program. pro vybrané pracovníky radiodiagnostických RTG pracovišť č. dokumentu: VF A-9132-M0801T1

Výukový program. pro vybrané pracovníky radiodiagnostických RTG pracovišť č. dokumentu: VF A-9132-M0801T1 Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované

Více

Pozitronová emisní tomografie.

Pozitronová emisní tomografie. Pozitronová emisní tomografie. Pozitronová emisní tomografie (PET) s využitím 18F-2-D-fluor-2- deoxy-glukózy (FDG), je jedna z metod nukleární medicíny, která umožňuje funkční zobrazení tkání organismu,

Více

Anatomie I přednáška 7. Svaly zad.

Anatomie I přednáška 7. Svaly zad. Anatomie I přednáška 7 Svaly zad. Svaly zad I. 4 vrstvy (od povrchu k hlouběji uloženým) 1. vrstva (povrchová) sval trapézový široký sval zádový 2. vrstva zdvihač lopatky svaly rhombické Svaly spinohumerální

Více

SEZNÁMENÍ S MAGNETICKOU REZONANCÍ

SEZNÁMENÍ S MAGNETICKOU REZONANCÍ SEZNÁMENÍ S MAGNETICKOU REZONANCÍ Vážený pane, vážená paní, na základě klinického nálezu Vám doporučil indikující lékař vyšetření magnetickou rezonancí. Jedná se o jednu z nemodernějších vyšetřovacích

Více

Traumata obličejového skeletu. H.Mírka, J. Baxa, J. Ferda KZM LF UK a FN Plzeň

Traumata obličejového skeletu. H.Mírka, J. Baxa, J. Ferda KZM LF UK a FN Plzeň Traumata obličejového skeletu H.Mírka, J. Baxa, J. Ferda KZM LF UK a FN Plzeň Úrazy obličeje narůstající frekvence autonehody (70 %) násilné činy sport Úloha zobrazovacích metod diagnostika plánování rekostrukce

Více

Ortodontická léčba. Autor: Daňková B., Janková A., Školitel: odb. as. MUDr. Štefková M., CSc. Úvod do ortodoncie

Ortodontická léčba. Autor: Daňková B., Janková A., Školitel: odb. as. MUDr. Štefková M., CSc. Úvod do ortodoncie Ortodontická léčba Autor: Daňková B., Janková A., Školitel: odb. as. MUDr. Štefková M., CSc. Úvod do ortodoncie Ortodoncie je jedním z oborů zubního lékařství, jehož náplní je léčba anomálií v postavení

Více

ZÁKLADY FUNKČNÍ ANATOMIE

ZÁKLADY FUNKČNÍ ANATOMIE OBSAH Úvod do studia 11 1 Základní jednotky živé hmoty 13 1.1 Lékařské vědy 13 1.2 Buňka - buněčné organely 18 1.2.1 Biomembrány 20 1.2.2 Vláknité a hrudkovité struktury 21 1.2.3 Buněčná membrána 22 1.2.4

Více

Vyšetření je možno provádět jen na písemný požadavek ošetřujícího lékaře.

Vyšetření je možno provádět jen na písemný požadavek ošetřujícího lékaře. Scintigrafie Vyšetření, při kterém je podáno malé množství radioaktivní látky většinou do žíly, někdy ústy. Tato látka vysílá z vyšetřovaného orgánu záření, které je pomocí scintilační kamery zachyceno

Více

Marek Mechl, Miloš Keřkovský. Radiologická klinika LF MU a FN Brno - Bohunice

Marek Mechl, Miloš Keřkovský. Radiologická klinika LF MU a FN Brno - Bohunice Marek Mechl, Miloš Keřkovský Radiologická klinika LF MU a FN Brno - Bohunice Anatomie CT, MR - Mozek metodika vyšetření baze lební obaly mozku likvorové prostory mozková kůra bazální ganglia kmen, mozeček

Více

Příloha III. Změny v příslušných bodech informací o přípravku

Příloha III. Změny v příslušných bodech informací o přípravku Příloha III Změny v příslušných bodech informací o přípravku Poznámka: Tyto změny v příslušných bodech informací o přípravku jsou výsledkem postupu přezkoumání. Informace o přípravku může být následně

Více

HISTORIE ZOBRAZOVACÍCH METOD V MEDICÍNĚ

HISTORIE ZOBRAZOVACÍCH METOD V MEDICÍNĚ HISTORIE ZOBRAZOVACÍCH METOD V MEDICÍNĚ Doc.RNDr. Roman Kubínek, CSc. předmět: lékařská přístrojová technika Rozvoj radiologie, jako medicínského oboru začíná v prvním desetiletí 20. století objevem rtg.

Více

Baterie protahovací. Regionální akademie Pardubického kraje

Baterie protahovací. Regionální akademie Pardubického kraje Baterie protahovací Regionální akademie Pardubického kraje Vypracoval: Radek Baťa Dis., Mgr. Tomáš Hák V Pardubicích 30.9.2016 Kontakt: bata.radek@seznam.cz, tomashak@seznam.cz Tento dokument je majetkem

Více

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3

Více

Lékařské přístroje. Diagnostické Terapeutické (včetně implantabilních) Invazivní Neinvazivní

Lékařské přístroje. Diagnostické Terapeutické (včetně implantabilních) Invazivní Neinvazivní Lékařské přístroje Diagnostické Terapeutické (včetně implantabilních) Invazivní Neinvazivní Krátkodobé snímání Dlouhodobé monitorování (Holter, JIP, ) Podle charakteru měření Jednotlivé údaje (tonometr,

Více

Obrazové parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň. Z jedné sady hrubých dat je možno vytvořit mnoho obrazů různé kvality

Obrazové parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň. Z jedné sady hrubých dat je možno vytvořit mnoho obrazů různé kvality Obrazové parametry H.Mírka, J. Ferda, KZM LFUK a FN Plzeň Z jedné sady hrubých dat je možno vytvořit mnoho obrazů různé kvality Obrazové parametry. výpočet obrazu z hrubých dat. je možno je opakovaně měnit

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Rentgenové zobrazovací metody

Rentgenové zobrazovací metody Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Wilhelm Conrad Roentgen 1845-1923 Godfrey N. Hounsfield 1919-2004 Rentgenové zobrazovací metody Rentgenové

Více

Metody nukleární medicíny. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika

Metody nukleární medicíny. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Metody nukleární medicíny Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Nukleární medicína Zobrazení metodami nukleární medicíny (rovněž označované jako skenování) patří mezi diagnostické

Více

ZÁZNAM POHOVORU S LÉKAŘEM

ZÁZNAM POHOVORU S LÉKAŘEM Strana 1 / 5 Vážená pacientko, vážený paciente, vážení rodiče, vzhledem k Vašemu zdravotnímu stavu (zdravotnímu stavu Vašeho dítěte) je Vám doporučeno provedení výše uvedeného zákroku (výkonu). Před vlastním

Více

Obsah. Předmluva...13

Obsah. Předmluva...13 Obsah Předmluva...13 1 Pohyb jako základní projev života...17 1.1 Pohyb obecně...17 1.2 Pohybové chování...17 1.3 Vliv pohybu na životní pochody...18 1.4 Vztah pohybu k funkci CNS...19 1.5 Psychomotorické

Více