Zobrazování. Zdeněk Tošner
|
|
- Romana Vaňková
- před 6 lety
- Počet zobrazení:
Transkript
1 Zobrazování Zdeněk Tošner
2 Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT)
3 Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství 2-30 MHz) Zdroj Detektor piezoelektrický jev při aplikaci tlaku na krystal na něm vzniká napětí úměné tlaku při aplikaci el. pole se krystal roztahuje/smršťuje úměrně el. poli
4 Ultrazvuk Rychlost šíření vzduch voda měkké tkáně kosti Lom 330 m/s 1520 m/s 1450 m/s (tuk) až 1560 m/s (játra, ledviny) 3800 m/s α rozdílná rychlost šíření ve dvou prostředích β v1 Snellův zákon v2 sin β sin α = v2 v1 Odraz hranice dvou prostředí s různým odporem pro šíření I R Z 1 Z 2 = I 0 Z 1 Z 2 Z1 Z2 2
5 Ultrazvuk Princip sonografie vyhodnocení odezvy těla na sekvenci ultrazvukových pulzů odezva = echa, odrazy na rozhraních vyslaný pulz vzdálenost rozhraní od zdroje echo d =v TS t echo 2 techo frekvence 3.5 MHz délka pulzu 1 µs rychlost šíření 1540 m/s hloubka průniku 15 cm hloubka průniku klesá pro vyšší frekvence (pro 7.5 MHz je 5 cm) Úkol: 5000 Hz maximální frekvence opakování pulzů?
6 Ultrazvuk Zobrazení řezu vysíláno postupně více paprsků lineární sektorové intenzita echa stupně šedi
7 Ultrazvuk
8 Ultrazvuk
9 Ultrazvuk
10 Ultrazvuk
11 Ultrazvuk Doplerův effekt v c f ' = f 1±
12 Ultrazvuk Doplerova ultrazvuková metoda odraz/rozptyl na červených krvinkách měření rychlosti a směru toku krve ϕ v ' f = f 1 2 v kr cos v ult
13 Počítačová tomografie CT W. C. Roentgen rentgenové záření proud elektronů vyrazí elektrony z vnitřního orbitalu přechod elektronu z vyšší hladiny, vyzáření fotonu až Hz Konvenční rentgenové snímky různé tkáně mají různou propustnost intenzita prošlého záření zobrazena ve stupních šedi sumární projekce
14 Počítačová tomografie CT Princip zdroj a detektory se otáčí kolem pacienta různé tkáně absorbují X-záření různě intenzita na detektoru = součet všech zeslabení nalézt rozložení absorbujících elementů (koeficientu tlumení) obraz 2D mapa voxelů
15 Počítačová tomografie CT Rekonstrukce obrazu metoda zpětné projekce superpozice obrazů 1D profil zeslabení Radonova transformace odpovídající obraz pro úplnou rekonstrukci zapotřebí nekonečně mnoho profilů
16 Počítačová tomografie CT Sumární artefakty potlačeny konvolucí profilu zeslabení s vhodnou funkcí Konvoluční jádra zvýraznění přechodů mezi orgány změna textury obrazu... vyhlazovací zdůrazňující hrany
17 Počítačová tomografie CT Přístrojové uspořádání 1. generace 1 zdroj, 1 detektor 4. generace širší paprsek, více detektorů 7. generace ~1000 detektorů přes snímků během několika vteřin 16. generace mnoho detektorů po obvodu kruhu, rotující rentgenka
18 Počítačová tomografie CT Výběr vrstvy řezu Spirální CT možnost 3D rekonstrukce
19 Počítačová tomografie CT CT 3D rekonstrukce srdce
20 Magnetická rezonance MRI Jev nukleární magnetické rezonance makroskopická magnetizace atomová jádra spin magnetický moment M=0 magnetické pole Larmorova precese B0 B0 ω=γ B0 M=0
21 Magnetická rezonance MRI Jev nukleární magnetické rezonance Kvantový popis spin 1/2 Boltzmanovo rozdělení B0 ΔE=ℏ γ B 0 N1 N0 ΔE kt =exp ~10-5 pro 1H, 1.5 T, 37 C
22 Magnetická rezonance MRI Jev nukleární magnetické rezonance Interakce s přídavným polem B0 B1 Rotující soustava souřadná pole B1 konstantní fiktivní síla kompenzuje vliv B0 radiofrekvenční pole B= B1 Podmínka rezonance ω RF =γ B0 pro 1H, 1.5 T, je asi 63 MHz B1 0 B 0 ω RF γ
23 Magnetická rezonance MRI Jev nukleární magnetické rezonance 90 pulz pole B1 zapnuto pouze po určitou dobu B0 časově proměnný magnetický tok indukuje se napětí signál volné precese Fourierova transformace
24 Magnetická rezonance MRI Jev nukleární magnetické rezonance Relaxační efekty obnovení rovnovážného stavu celkové magnetizace spin-mřížková relaxace spin-spinová relaxace změny v ose z změny v rovině xy T1 T2 > fluktuace lokálního magnetického pole Brownův pohyb molekul dipól-dipólová interakce stimulace přechodů mezi energetickými hladinami postupná ztráta koherence, rozfázovávání
25 Magnetická rezonance MRI Jev nukleární magnetické rezonance Spinové echo 90 τ 180 ztráta koherence: τ T2 relaxace nehomogenity statického pole pomalejší rychlejší τ rozfázování τ otočení o 180 sfázování
26 Magnetická rezonance MRI Principy MRI, prostorové rozlišení sledujeme signál jader vodíku vázaného ve vodě RF výběr vrstvy Gz Gy fázové kódování Gx náběr dat frekvenční kódování TE TR
27 Magnetická rezonance MRI Principy MRI, prostorové rozlišení Výběr vrstvy RF Gz tvarovaný pulz směs více frekvencí Tloušťka vrstvy ω Δω RF =γ ΔB 0 z
28 Magnetická rezonance MRI Principy MRI, prostorové rozlišení Fázové kódování y Gy různá místa získají různý fázový posun φ y =γ G y t p y ky analogie s vlnovým vektorem
29 Magnetická rezonance MRI Principy MRI, prostorové rozlišení Frekvenční kódování Gx náběr dat různá místa precedují s různou frekvencí za dobu náběru dat získají fázi φ x =γ G x t acq x kx x
30 Magnetická rezonance MRI Principy MRI, prostorové rozlišení k-prostor MR obraz celkový signál s x, y exp ik x x exp ik y y dxdy s x, y Fourierova ky transformace kx
31 Magnetická rezonance MRI Principy MRI, původ kontrastu protonová hustota T1 relaxace T2 relaxace šedá hmota bílá hmota mozkomíšní mok T1 T2 920 ms 790 ms 3000 ms 100 ms 90 ms 1500 ms (pro 1.5 T) Mz GM WM CSF Mx,y vhodnou volbou parametrů TR a TE lze měnit kontrast a jeho původ
32 Magnetická rezonance MRI T1 T1-kl T2 GE MRA T1-IR
33 Magnetická rezonance MRI T1 vážený obraz T2 vážený obraz s potlačením tuku
34 Magnetická rezonance MRI tumor v játrech T1-vážený obraz T2-vážený obraz silně T2-vážený obraz T2-vážený +potlačení tuku
35 Magnetická rezonance MRI Angiografie zobrazení cév a toku krve
36 Magnetická rezonance fmri Funkční zobrazování mozku aktivita mapování mozkové aktivity vyšší přísun kyslíku (paramagnetický) lokálně ovlivněny relaxační časy změněná intenzita na MR obraze statistické zpracování série obrazů klid aktivita
37 Magnetická rezonance fmri Kde je centrum pro motoriku? úloha s pohybem prstů
38 Magnetická rezonance fmri
Magnetická rezonance. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013
Magnetická rezonance Biofyzikální ústav LF MU Magnetická rezonance Je neinvazivní zobrazovací metoda, která poskytuje informace o vnitřní stavbě lidského těla a o fyziologii a funkci jednotlivých orgánů.
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Relaxace, kontrast. Druhy kontrastů. Vít Herynek MRA T1-IR
Relaxace, kontrast Vít Herynek Druhy kontrastů T1 T1-kl T2 GE MRA T1-IR Larmorova (rezonanční) frekvence Účinek radiofrekvenčního pulsu Larmorova frekvence ω = γ. B Proč se zajímat o relaxační časy? Účinek
spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0
Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační
Počítačová tomografie (1)
Počítačová tomografie (1) velký počet měření průchodů rtg paprsků tělem - projekční data matematické metody pro rekonstrukci CT obrazů z projekčních dat Počítačová tomografie (2) generace CT 1. generace
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Magnetická rezonance (2)
NMR spektroskopie Principy zobrazování Fourierovské MRI Magnetická rezonance (2) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2013 1 http://www.cis.rit.edu/htbooks/mri/ NMR spektroskopie Principy zobrazování
Diagnostické ultrazvukové přístroje. Lékařské přístroje a zařízení, UZS TUL Jakub David kubadavid@gmail.com
Diagnostické ultrazvukové přístroje Lékařské přístroje a zařízení, UZS TUL Jakub David kubadavid@gmail.com Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální princip
Nukleární magnetická rezonance (NMR)
Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR
Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla
magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)
1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního
Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací
Magnetická rezonance (3)
Magnetická rezonance (3) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2018 1 http://www.cis.rit.edu/htbooks/mri/ MRI zobrazovací techniky Multislice imaging Šikmé zobrazování Spinové echo Inversion recovery
Magnetická rezonance (3)
Magnetická rezonance (3) J. Kybic, J. Hornak 1, M. Bock, J. Hozman April 28, 2008 1 http://www.cis.rit.edu/htbooks/mri/ MRI zobrazovací techniky Multislice imaging Šikmé zobrazování Spinové echo Inversion
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE
SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra
Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN
Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450
Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Magnetická rezonance Přednáška v rámci projektu IET1
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Magnetická rezonance Přednáška v rámci projektu IET1 Miloslav Steinbauer Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.
12.NMR spektrometrie při analýze roztoků
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
PROČ TATO PŘEDNÁŠKA? KDO JSEM?
PROČ TATO PŘEDNÁŠKA? KDO JSEM? BARNEY: LÉKAŘKA (GENETIKA, NEUROCHIRURGIE), T.Č. VĚDECKÝ PRACOVNÍK V CENTRU POKROČILÉHO PREKLINICKÉHO ZOBRAZOVÁNÍ (CAPI) CAPI : VÝZKUMNÉ PRACOVIŠTĚ ZAMĚŘENÉ NA MULTIMODÁLNÍ
Základy výpočetní tomografie
Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Pokroky matematiky, fyziky a astronomie
Pokrok matematik, fzik a astronomie Jaroslava Černá NMR Imaging. Nobelova cena za lékařství a fziologii 2003 Pokrok matematik, fzik a astronomie, Vol. 49 (2004), No. 1, 15--23 Persistent URL: http://dml.cz/dmlcz/141205
Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň
Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI
Magnetická rezonance. Martin Sedlář 2011. >> sedlar.m@mail.muni.cz <<
Magnetická rezonance Martin Sedlář 2011 >> sedlar.m@mail.muni.cz
BBZS - Zobrazovací systémy
2016-06-05 06:59 1/11 BBZS - Zobrazovací systémy BBZS - Zobrazovací systémy Převodní charakteristiky Otázky ke zkoušce Energie elektromagnetického zárení se dá vyjádrit jako E = h.v a jednotkou bude J.
Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm)
Gyromagnetická částice, jev magnetické rezonance Pojmy s kterýma se můžete setkat: u elektronů lze Bohrův magneton Zkoumat NMR lze jen ty jádra, které mají nenulový jaderný spin: Několik systematických
PRAKTIKUM IV. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: X Název: Studium nukleární magnetické rezonance Vypracoval: Michal Bareš dne.11.7 Pracovní úkol 1) Nastavte optimální
NMR spektroskopie Instrumentální a strukturní analýza
NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR
Úvod Základy Fyzika MRI. Magnetická rezonance. J. Kybic, J. Hornak 1, M. Bock, J. Hozman, P.Doubek. 1
Úvod Základy Fyzika MRI Magnetická rezonance J. Kybic, J. Hornak 1, M. Bock, J. Hozman, P.Doubek 2008 2016 1 http://www.cis.rit.edu/htbooks/mri/ Úvod Základy Fyzika MRI Magnetická rezonance Úvod a motivace
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Rekonstrukce obrazu. Jiří Ferda, Hynek Mírka. Klinika zobrazovacích metod LFUK a FN v Plzni
Rekonstrukce obrazu Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni Hrubá data Raw data Data získaná detektorovou soustavou Výchozí soubor pro výpočet atenuace a rekonstrukci obrazů
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE
ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování
Základní principy ultrazvuku a ovládání UZ přístroje MILAN JELÍNEK ARK, FN U SVATÉ ANNY IVO KŘIKAVA KARIM, FN BRNO 2013
Základní principy ultrazvuku a ovládání UZ přístroje MILAN JELÍNEK ARK, FN U SVATÉ ANNY IVO KŘIKAVA KARIM, FN BRNO 2013 Zdroje www.usra.ca www.neuraxiom.com ÚVOD DO ULTRASONOGRAFIE V OTÁZKÁCH A ODPOVĚDÍCH-Prof.
Nanostruktury a zobrazovací metody v medicíně
Nanostruktury a zobrazovací metody v medicíně Nanostruktury Alespoň jeden rozměr v řádu nanometrů Atomy Molekuly Organely Buňky,... Nanostruktury v lidském organismu Molekula CD3 (součást TCR) Orientačně
ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické
Strukturní analýza. NMR spektroskopie
Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní
Magnetická rezonance
Úvod Základy Fyzika MRI Magnetická rezonance J. Kybic, J. Hornak 1, M. Bock, J. Hozman April 28, 2008 1 http://www.cis.rit.edu/htbooks/mri/ Úvod Základy Fyzika MRI Magnetická rezonance Úvod a motivace
NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet
NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
Aplikace jaderné fyziky (několik příkladů)
Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
Vznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
Nukleární Overhauserův efekt (NOE)
Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.
Mapování indukce magnetického pole v okolí malých cívkových aplikátorů metodou magnetické rezonance
Mapování indukce magnetického pole v okolí malých cívkových aplikátorů metodou magnetické rezonance 1 Petr Bidman, 2 Karel Bartušek 1 Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické
Kmity a mechanické vlnění. neperiodický periodický
rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
ELEKTRICKÉ POLE V BUŇKÁCH A V ORGANISMU. Helena Uhrová
ELEKTRICKÉ POLE V BUŇKÁCH A V ORGANISMU Helena Uhrová Hierarichické uspořádání struktury z fyzikálního hlediska organismus člověk elektrodynamika Maxwellovy rovnice buňka akční potenciál fenomenologická
ZOBRAZENÍ MAGNETICKOU REZONANCÍ (MRI MAGNETIC RESONANCE IMAGING)
ZOBRAZENÍ MANETICKOU REZONANCÍ (MRI MANETIC RESONANCE IMAIN) Příběh začal roku 1938 Isidor Rabi předvedl signál nukleární magnetické rezonance na molekulách chloridu lithného v roce 1937 Nositel Nobelov
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Rovinná harmonická elektromagnetická vlna
Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25
Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)
Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek
STUDIUM TRANSPORTU LÁTEK VE STONCÍCH ROSTLIN STUDY OF SUBSTANCES TRANSPORT IN PLANTS STALKS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie
VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3
V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.
Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl
Elektrická impedanční tomografie
Biofyzikální ústav LF MU Projekt FRVŠ 911/2013 Je neinvazivní lékařská technika využívající nízkofrekvenční elektrické proudy pro zobrazení elektrických vlastností tkaní a vnitřních struktur těla. Různé
Lékařské přístroje. Diagnostické Terapeutické (včetně implantabilních) Invazivní Neinvazivní
Lékařské přístroje Diagnostické Terapeutické (včetně implantabilních) Invazivní Neinvazivní Krátkodobé snímání Dlouhodobé monitorování (Holter, JIP, ) Podle charakteru měření Jednotlivé údaje (tonometr,
Ultrazvuk Principy, základy techniky Petr Nádeníček1, Martin Sedlář2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno Čejkovice 2011
Ultrazvuk Principy, základy techniky Petr Nádeníček 1, Martin Sedlář 2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno zdroj UZ vlnění piezoelektrický efekt rozkmitání měniče pomocí vysokofrekvenčního
Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
CT-prostorové rozlišení a citlivost z
CT-prostorové rozlišení a citlivost z Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika Prostorové rozlišení a citlivost z Prostorové rozlišení význam vyjádření rozlišení měření rozlišení
NUKLEÁRNÍ MAGNETICKÁ REZONANCE
NUKLEÁRNÍ MAGNETICKÁ REZONANCE NMR spektrometrie PRINCIP NMR Jsou-li atomová jádra některých prvků v externím magnetickém poli vystavena vysokofrekvenčnímu elmag. záření, mohou absorbovat záření určitých.
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů
Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav
Elektromagnetický oscilátor
Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
HISTORIE ZOBRAZOVACÍCH METOD V MEDICÍNĚ
HISTORIE ZOBRAZOVACÍCH METOD V MEDICÍNĚ Doc.RNDr. Roman Kubínek, CSc. předmět: lékařská přístrojová technika Rozvoj radiologie, jako medicínského oboru začíná v prvním desetiletí 20. století objevem rtg.
Princip CT. MUDr. Lukáš Mikšík, KZM FN Motol
Princip CT MUDr. Lukáš Mikšík, KZM FN Motol Tomografie tomos = řez; graphein = psát definice - zobrazení objektu pomocí řezů Damien Hirst Autopsy with Sliced Human Brain 2004 Historie 1924 - matematická
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění
Zvukové (akustické) vlny: Akustické vlnění elastické podélné vlny s frekvencí v intervalu 16Hz-kHz objektivní fyzikální příčina (akustická vlna) vyvolá subjektivní vjem (vnímání zvuku) člověk tyto vlny
Modulace vlnoplochy. SLM vytváří prostorově modulovaný koherentní optický signál
OPT/OZI L06 Modulace vlnoplochy prostorové modulátory světla (SLM) SLM vytváří prostorově modulovaný koherentní optický signál řízení elektronicky adresovaný SLM opticky adresovaný SLM technologie fotografická
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Teorie rentgenové difrakce
Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární
Nukleární Overhauserův efekt (NOE)
LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární
Kvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
Omyly v diagnostice IBD: zobrazovací metody. Martin Horák Nemocnice Na Homolce, Praha
Omyly v diagnostice IBD: zobrazovací metody Martin Horák Nemocnice Na Homolce, Praha Obsah 1. Správný výběr modality 2. Měření délky střev 3. Záněty jejuna 4. Krátké stenózy tenkého střeva 5. Mezikličkové
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
ZÁKLADNÍ EXPERIMENTÁLNÍ
Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805,
Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. RNDr. Jan Lang, PhD. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každé pondělí od 8.30 do 11.30 Místo: posluchárna
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum