Lekce 9 Metoda Molekulární dynamiky III. Technologie

Rozměr: px
Začít zobrazení ze stránky:

Download "Lekce 9 Metoda Molekulární dynamiky III. Technologie"

Transkript

1 Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace

2 Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK, FK = rk Určení sil F1,, FN je výpočetně nejnáročnější část MD simulace. Předpoklad párové aditivity interakcí Matice F N 1 N ( IJ ) W ( 1 r,, rn ) = v ( rij ) I = 1 J = I + 1 ( ) = r F v ( r ) F r K J K J K - vhodné v každém integračním kroku určit předem - platí F = F celkem N(N-1)/ členů, JK ( N = 100 N ( F ) = 4950; N = 1000 N ( F ) = ) Pozor! Do sumy nutno zahrnout všechny podstatné příspěvky (nejen v rámci základní buňky), tedy N +!

3 Výpočet sil Klasifikace sil podle dosahu Rozdělme prostor kolem K-té částice na kouli o poloměru R a se středem v této částici, K R ( K ), a vnějšek této koule. Pak platí (částice jediného typu) kde a tedy 1 F F + d r f ( θ, ϕ )sin θ d θ d ϕ. K + π π F F + F ( r ) r sin θdr dθd ϕ, K J K J KR ( K ) R 0 0 r 1 F ( r ) = v ( r) f ( θ, ϕ), r r α + π π α J K r R 0 0 J KR ( K ) + α pro α > 3 je 1/ r dr konečný (a navíc 0 pro R + ) R krátkodosahové síly (dispersní, např. Lennardův-Jonesův potenciál) pro α 3 tento integrál diverguje ( + pro libovolné R ) dalekodosahové síly (interakce bodových nábojů Coulombův zákon)

4 Výpočet sil Krátkodosahové síly Volíme dostatečně velké R a integrální korekci zanedbáme F K J K J K ( K ) R F Dlouhodosahové síly Integrální korekci nelze zanedbat, používáme speciální techniky Ewaldova sumace.

5 Výpočet termodynamických veličin Vnitřní energie (U ) N Celková energie systém 1 E MKv K + W ( 1 r,, rn ) (mikrokanonický soubor): K = 1 N je počet částic v základní buňce N A U = E, N se během MD simulace zachovává Teplota (T ) Obvykle počítáme pomocí kanonického ekvipartičního principu N n N 3N kbt KAN = EKIN MK v K = n MK v K ti K = 1 i = 1 K = 1 ( ). Pro mikrokanonický soubor bychom měli ale použít vzorec Pro N + ale platí T µ KAN T. KAN B µ KAN = KIN N k T E

6 Výpočet termodynamických veličin Střední hodnota interakční (potenciální) energie (U int ) N 1 N N + NA N A Uint = W = v( r ) + v( rkj ) + NA 4 r v( r) d r, N N π ρ K = 1 J = K + 1 K = 1 j KR ( K ) R kde ρ = N /V je hustota počtu částic, J a K indexují částice uvnitř základní buňky a j částice vně základní buňky. (Předpokládáme částice jediného typu.) Tepelná kapacita (C V ) C V U T V Parciální derivaci počítáme numericky U U ( T + T ) U ( T T ) U ( T + T ) U ( T T ) = + o( T ). T T T V

7 Výpočet termodynamických veličin Tlak (P ) P = = W 1 1 = W W W 1 = 1 + ρkbt 3V r 3ρ N r 3ρ N N N N 1 rk rk rk FK K = 1 K K = 1 K K = 1 P n N = r ( t ) F ( t ) K i K i ρkbt 3ρ n i = 1 N K = 1 Ve vnitřní sumě sčítáme přes všechny částice uvnitř základní buňky.

8 Ekvilibrizační a simulační část MD simulace Ekvilibrizace MD simulace (τ = τ E + τ S ) = ekvilibrizace (τ E ) + simulace (τ S ). Prvořadá otázka Jak dlouhá musí být ekvilibrizace (τ E =?). Nepříliš povzbudivá odpověď Neexistuje jednoznačné pravidlo, závisí na studovaném modelu a počítaných veličinách. Postup Sledujeme časový vývoj okamžitých hodnot vybraných veličin: - potenciální energie, - kinetické energie (tedy okamžité teploty ), - veličin, které počítáme (např. viriál). Dvě možnosti - systematický drift ekvilibrizace, - náhodný šum kolem jisté střední hodnoty simulace.

9 Ekvilibrizační a simulační část MD simulace Simulace Záznam dat k dalšímu zpracování. průběžný záznam polohových vektorů a rychlostí částic (event. i sil), výpočet středních hodnot na závěr - šetří výpočetní čas (v budoucnu můžeme dopočítat jakýkoliv parametr, který nebyl do výpočtů původně zahrnut), - velmi velké nároky na paměť (1000 částic, simulačních kroků, záznam ve dvojnásobné přesnosti: polohy,4 GB, rychlosti,4gb, síly 1,1TB) průběžný výpočet předem definovaných parametrů - šetří paměť, - při rozšíření množiny sledovaných parametrů nutno celou simulaci zopakovat.

10 Doporučená literatura I. NEZBEDA, J. KOLAFA, M. KOTRLA Úvod do počítačových simulací, kap. 5 Karolinum, Praha 003 D. C. RAPAPORT The Art of Molecular Dynamics Simulations, kap. 3, 4 Cambridge University Press, Cambridge 004 M. M. WOOLFSON, G. J. PERT An Introduction to Computer Simulation, kap. 1.3, Oxford University Press, New York 1999 A. HINCHLIFFE Molecular Modelling for Beginners, kap. 9 J. Wiley, Chchester 006

Molekulární dynamika vody a alkoholů

Molekulární dynamika vody a alkoholů Molekulární dynamika vody a alkoholů Pavel Petrus Katedra fyziky, Univerzita J. E. Purkyně, Ústí nad Labem 10. týden 22.4.2010 Modely vody SPC SPC/E TIP4P TIP5P Modely alkoholů OPLS TraPPE Radiální distribuční

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Ondřej Peisar

Ondřej Peisar 4. 5. 2011 Motivace Merkur generuje vlastní magnetické pole (dynamo) slabé magnetické pole na povrchu (1% zemského), dominantní příspěvek dipólového členu velké jádro (75 % poloměru planety) zajímá nás

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence. Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu

Více

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21 Příklad : Síla působící mezi dvěma bodovými náboji Dva bodové náboje na sebe působí ve vakuu silou, která je dána Coulombovým zákonem. Síla je přímo úměrná velikosti nábojů, nepřímo úměrná kvadrátu vzdálenosti,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

15 Fourierova transformace v hypersférických souřadnicích

15 Fourierova transformace v hypersférických souřadnicích 15 HYPERSFÉRICKÉ SOUŘADNICE 1 15 Fourierova transformace v hypersférických souřadnicích 151 Definice hypersférických souřadnic r, ϑ N,, ϑ 1, ϕ v E N Hypersférické souřadnice souvisejí s kartézskými souřadnicemi

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE

KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE Jiří Novotný Ústav matematiky a deskriptivní geometrie, Fakulta stavební, Vysoké učení technické v Brně Abstrakt: V rámci řešení projektu Inovace bakalářského studia Počítačová

Více

Plazma v kosmickém prostoru

Plazma v kosmickém prostoru Plazma v kosmickém prostoru Literatura F. F. Chen, Úvod do fyziky plazmatu Academia, Praha, 1984 D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

VI. Nestacionární vedení tepla

VI. Nestacionární vedení tepla VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Simulace pohybu chodců pomocí celulárních modelů

Simulace pohybu chodců pomocí celulárních modelů Simulace pohybu chodců pomocí celulárních modelů Marek Bukáček výzkumná skupina GAMS při KM KIPL FJFI ČVUT v Praze 8. červen 2011 Obsah Úvod Celulární modely úprava Floor field modelu Proč modelovat Akademický

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Body. 5. [10 bodů] Vyřešte diferenciální rovnici y + 2y + y = x [8 bodů] Vypočtěte dvojný integrál x 2 dxdy. Množina

Body. 5. [10 bodů] Vyřešte diferenciální rovnici y + 2y + y = x [8 bodů] Vypočtěte dvojný integrál x 2 dxdy. Množina Písemná zkouška z Inženýrské matematiky, 8.2.202 (60 minut) Body Jméno:...................................... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

Statistická termodynamika

Statistická termodynamika Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)

Více

Metropolis Hastings MC: Nesymetrická matice α + 1/21

Metropolis Hastings MC: Nesymetrická matice α + 1/21 Metropolis Hastings MC: Nesymetrická matice α + 1/21 Co když α j = α j? α j je-li π j α j π α j W j = π j α j α j π α j 1 k, k = p přij = min W k je-li π j α j < π α j pro = j 1, α j exp( βδu) α j Toto

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

INTEGRACE KOMPLEXNÍ FUNKCE

INTEGRACE KOMPLEXNÍ FUNKCE INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

Molekulový počítačový experiment

Molekulový počítačový experiment Molekulový počítačový experiment 1/16 též pseudoexperiment REÁLNÝ EXPERIMENT Vedení laboratorního deníku POČÍTAČOVÝ EXPERIMENT Vedení laboratorního deníku Zvol metodu (přístroj, protokol) Zvol metody (MD,

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

f x = f y j i y j x i y = f(x), y = f(y),

f x = f y j i y j x i y = f(x), y = f(y), Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).

Více

2. Difrakce elektronů na krystalu

2. Difrakce elektronů na krystalu 2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

Simulace (nejen) fyzikálních jevů na počítači

Simulace (nejen) fyzikálních jevů na počítači Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Molekulární dynamika - co to je? technika počítačové simulace, kde je časový vývoj množiny interagujících atomů popsán integrací jejich pohybových rov

Molekulární dynamika - co to je? technika počítačové simulace, kde je časový vývoj množiny interagujících atomů popsán integrací jejich pohybových rov PARALELNÍ VÝPOČTY V MOLEKULÁRNÍ DYNAMICE Vladimír Pelikán, Petr Hora Ústav termomechaniky AV ČR, v.v.i. Molekulární dynamika - co to je? technika počítačové simulace, kde je časový vývoj množiny interagujících

Více

Molekulární dynamika polymerů

Molekulární dynamika polymerů Molekulární dynamika polymerů Zbyšek Posel Katedra fyziky, Přírodovědecká fakulta, Univerzita J. E. Purkyně, Ústí n. Lab. Polymery základní dělení polymerů homopolymery (alkany) Počítačové simulace délkové

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n. Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

U V W xy 2 x 2 +2z 3yz

U V W xy 2 x 2 +2z 3yz E. Brožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 V.5. Gaussova-strogradského věta Má-li vektorováfunkce f (U,V,W spojitévšechn parciálníderivacevotevřenémnožině G E 3, pak skalární

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Univerzita Karlova v Praze procesy II. Zuzana. funkce

Univerzita Karlova v Praze   procesy II. Zuzana. funkce Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Přednášky z předmětu Aplikovaná matematika, rok 2012

Přednášky z předmětu Aplikovaná matematika, rok 2012 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Detekce kartografického zobrazení z množiny

Detekce kartografického zobrazení z množiny Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g. . Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,

Více

Sedmé cvičení bude vysvětlovat tuto problematiku:

Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin. Martin Šourek

CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin. Martin Šourek CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin Martin Šourek VŠCHT Praha Ústav matematiky Praha 13. Prosince 2016 Úvod Model Výsledky Závěr Úvod 13.12.2016

Více

17 Vlastnosti molekul

17 Vlastnosti molekul 17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0.

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0. VKM/IM - 4/5 Zintegrujte f, y) d dy pro f, y) y ), : + y 4,. Řešení: S využitím postupů a výsledků použitých při řešení příkladů z předchozí části věnované dvojnému integrálu, se můžeme bez obav pustit

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

5.1 Modelování drátových antén v časové oblasti metodou momentů

5.1 Modelování drátových antén v časové oblasti metodou momentů 5.1 Modelování drátových antén v časové oblasti metodou momentů Základní teorie V kapitolách 4.1, 4.4 resp. 4.5 byly drátový dipól, mikropáskový dipól a flíčková anténa modelovány metodou momentů ve frekvenční

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Cvičící: KOLAR KOSTKOVA KOZAK NOVAK STRACHOTA Zápočtová písemná práce č. 1 z předmětu 01MAB4 varianta A pondělí 13. dubna 2015, 11:20 13:20 ➊ (1 bod) Do tabulky výše vyplňte své příjmení a jméno a zakroužkujte

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Základní pasivní a aktivní obvodové prvky

Základní pasivní a aktivní obvodové prvky OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více