CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin. Martin Šourek
|
|
- Lubomír Horák
- před 6 lety
- Počet zobrazení:
Transkript
1 CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin Martin Šourek VŠCHT Praha Ústav matematiky Praha 13. Prosince 2016
2 Úvod Model Výsledky Závěr Úvod Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 2
3 Motivace Modelování vícefázových toků Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 3
4 Úvod Model Výsledky Závěr Model Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 4
5 Řešič interfoam Metoda konečných objemů Využití Gauss-Ostrogradského věty při integraci přes objem buňky V P adv = S P ads S P ads = f f a ds vektor S f Aproximace hodnotou v těžišti stěny f f a ds = f S f a f Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 5
6 Řešič interfoam Metoda objemu tekutiny Navier-Stokesovy rovnice nestlačitelného izotermického proudění doplněné o VoF (ρu) t α t U = 0 + Uα = 0 + ρu U = p + T + ρf b Ilustrace VoF metody Vlastnosti v buňce obsahující fázové rozhraní ρ = ρ l α + ρ g 1 α μ = μ l α + μ g 1 α Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 6
7 Řešič interfoam Implementace advekční rovnice Eulerův model dvou tekutin α t + U lα = 0 (1 α) + U t g (1 α) = 0 Předpoklad a relativní rychlost U = U l α + U g (1 α) U r = U l U g Advekční rovnice s kompresním členem α t + Uα + U rα 1 α = Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 7
8 Řešič interfoam Implementace zákonu zachování hybnosti Zákon zachování hybnosti (ρu) t + ρu U = p + T + ρf b Vyjádření členů v rovnici f σ = σκ α T = μ U + U μ Zákon zachování hybnosti ve tvaru implementovaném v řešiči interfoam (ρu) t + ρu U μ U U μ = p d g x ρ + σκ α Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 8
9 Výpočetní doména Nastavované parametry Dodatečné parametry H = 0.7 cm Úhel náklonu φ = π 3 rad Výška vstupu kapaliny H l = 0.4 mm Weberovo číslo L = 60 cm We = ρ l U 2 H l γ l W = 50 cm Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 9
10 Výpočetní doména Volba jemnosti sítě buněk buněk Tabulka jemnosti sítě pro různé kapaliny Kapalina počet buněk H2O CH3OH C2H5OH C6H C7H Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 10
11 Úvod Model Výsledky Závěr Výsledky Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 11
12 Validace Porovnání výsledků simulace pro H2O s dostupnými experimentálními daty Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 12
13 Smáčivost kapalin Porovnání smáčivosti studovaných kapalin v závislosti na voleném parametru Porovnání toků pro dané We C6H14 C2H5OH C7H16 CH3OH Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 13
14 Úvod Model Výsledky Závěr Závěr Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 14
15 Reference 1. Moukalled, F., L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. 2015: Springer Publishing Company, Incorporated Jasak, H., Error analysis and estimation for finite volume method with applications to fluid flow Versteeg, H.K., An introduction to computational fluid dynamics : the finite volume method. 1st ed. ed, ed. W. Malalasekera. 1995, Harlow: Pearson. 4. Cooke, J.J., et al., Gas-liquid flow on smooth and textured inclined planes. World Academy of Science, Engineering and Technology, (8): p Hoffmann, A., et al., Detailed Investigation of Multiphase (Gas Liquid and Gas Liquid Liquid) Flow Behaviour on Inclined Plates. Chemical Engineering Research and Design, (2): p Hoffmann, A., et al., Fluid dynamics in multiphase distillation processes in packed towers. Computers & Chemical Engineering, (6): p Martin Šourek, CFD simulace vícefázového proudění, 2. Seminář VŠCHT k OpenFOAM 15
16 Děkuji Vám za pozornost
OpenFOAM na VŠCHT: Martin Isoz
OpenFOAM na VŠCHT: CFD a modelování separačních kolon Martin Isoz VŠCHT Praha, Ústav matematiky 2. seminář VŠCHT k OpenFOAM, Praha 13. prosince 2016 Drobná organizační poznámka Informace k semináři je
VoF-Navier-Stokesových rovnic při. Jakub Smutek
Vliv diskretizace konvekčních členů VoF-Navier-Stokesových rovnic při simulaci kapilaritou řízených dějů Jakub Smutek VŠCHT Praha, Ústav Matematiky 2. Seminář VŠCHT k OpenFOAM, Praha 13. Prosince Teoretický
DEM-CFD studie proudění v sypané výplni. Martin Šourek
DEM-CFD studie proudění v sypané výplni Martin Šourek VŠCHT Praha Ústav matematiky Praha 12. prosince 2017 Motivace Modelování toku v sypané výplni 2 Úvod Model Výsledky Závěr Model 3 Metodika Přístup
Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami
Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš
Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu
Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu Vedoucí práce: doc. Ing. Petr Šidlof, Ph.D. Bc. Petra Tisovská 22. května 2018 Studentská 2 461 17 Liberec 2 petra.tisovska@tul.cz
2. semin aˇr Vˇ SCHT k OpenFOAM OpenFOAM na Vˇ SCHT 13. prosince 2016
2. seminář VŠCHT k OpenFOAM OpenFOAM na VŠCHT 13. prosince 2016 Obsah Modelování porézního média na základˇe dat z rentgenové mikrotomografie (Adéla Arvajová) 2 Numerická simulace hoˇrení methanu (Anna
1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno
1 POPIS MATEMATICKÉHO MODELU 1.1 Použitý software FLOW-3D Pro modelování proudění byl zvolen komerční softwarový balík FLOW-3D. Jedná se o CFD (Computional Fluid Dynamics) nástroj využívající matematické
Vliv vířivého proudění na přesnost měření průtoku v komínech
Vliv vířivého proudění na přesnost měření průtoku v komínech J. Geršl, S. Knotek Z. Belligoli, R. Dwight M. Coleman, R. Robinson Hradec Králové, 21.9. 2017 O čem bude přednáška Referenční metoda měření
Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -
Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:
FLUENT přednášky. Metoda konečných objemů (MKO)
FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních
MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal ribs in a channel with free surface
Colloquium FLUID DYNAMICS 007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 4-6, 007 p.1 MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal
EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY
10 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2011 June 16-17, 2011, Pilsen, Czech Republic EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY TŮMA Jan, KUBATA Jan, BĚTÁK
Počítačová dynamika tekutin užitečný nástroj pro inženýry
Počítačová dynamika tekutin užitečný nástroj pro inženýry M. Jahoda Úvod Počítačová dynamika tekutin (Computational Fluid Dynamics, CFD) je moderní metoda, která se zabývá prouděním tekutin, přenosem tepla
CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky
Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,
ŘEŠENÍ TURBULENTNÍHO VAZKÉHO PROUDĚNÍ S ČÁSTICEMI METODOU LARGE EDDY SIMULATION
ŘEŠENÍ TURBULENTNÍHO VAZKÉHO PROUDĚNÍ S ČÁSTICEMI METODOU LARGE EDDY SIMULATION Ing. Školitel: prof. Ing. Miroslav Jícha, CSc. VUT v Brně Fakulta strojního inženýrství Energetický ústav Odbor termomechaniky
přenosu tepla seznámí s teoretickou stránkou této problematiky, kterou si dále osvojují v následných
Koncepce virtuální laboratoře přenosu tepla Volavý, Jaroslav 1 & Knotek, Stanislav 2 & Jícha, Miroslav 3 1 Ing., VUT v Brně, Fakulta strojního inženýrství, Enegetický ústav, Odbor termomechaniky a techniky
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Modelování proudění ve vysokém rozlišení
Modelování proudění ve vysokém rozlišení Vladimír Fuka vedoucí práce: doc. RNDr. Josef Brechler, CSc. Cíle práce Vytvořit základ počítačového modelu proudění. Vyzkoušet některé nové postupy. Ověřit funkčnost
Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1
Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
MODELOVÁNÍ SHALLOW WATER
Západočeská univerzita Fakulta aplikovaných věd Matematické metody v aplikovaných vědách a ve vzdělávání MODELOÁNÍ SHLLOW WTER KRISTÝN HDŠOÁ ziraf@students.zcu.cz 1 ÚOD Dostala jsem za úkol namodelovat
Modelování přepadu vody přes pohyblivou klapkovou konstrukci
Konference ANSYS 2011 Modelování přepadu vody přes pohyblivou klapkovou konstrukci V. Jirsák, M. Kantor, P. Sklenář České vysoké učení v Praze, Fakulta stavební, Thákurova 7, 166 29 Praha 6 Abstract: The
Výpočet stlačitelného proudění metodou konečných objemů
Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -
Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,
Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení
Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního
Modelování dynamiky volné hladiny v turbulentní oblasti proudění
Konference ANSYS 2009 Modelování dynamiky volné hladiny v turbulentní oblasti proudění Jahoda M, Moštěk M. VŠCHT Praha, Ústav chemického inženýrství, Technická 5, 166 28 Praha 6 E-mail: Milan.Jahoda@vscht.cz
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ÚSTAV PROCESNÍHO INŽENÝRSTVÍ INSTITUTE OF PROCESS ENGINEERING 2-D EXTERNÍ AERODYNAMIKA
Zpráva ze stáže v IMP PAN Gdaňsk (Polsko) 14.10. 2014-13.12.2015. Martin Kožíšek
Zpráva ze stáže v IMP PAN Gdaňsk (Polsko) 14.10. 2014-13.12.2015 Martin Kožíšek 1 Informace o projektu Stáž v IMP PAN Gdaňsk v Polsku probíhající od 14.10. 2014 do 13.12.2015 byla financována v rámci projektu
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA
BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer
BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra hydrauliky a hydrologie MAGNUSŮV EFEKT. Semestrální práce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra hydrauliky a hydrologie MAGNUSŮV EFEKT Semestrální práce Zpracoval: Petr Šplíchal Datum: 1. května 2017 Obor: Vodní hospodářství a vodní stavby
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
Numerická simulace sdílení tepla v kanálu mezikruhového průřezu
Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper
κ ln 9, 793 ρ.u.y B = 1 κ ln f r, (2.2) B = 0 pro k s + < 2, 25, (2.3)
Obtékání drsných stěn (Modelování vlivu drsnosti stěn na ztráty v lopatkové mříži) Ing. Jiří Stanislav, Prof.Ing. Jaromír Příhoda, CSc., Prof.Ing. Pavel Šafařík, CSc. 1 Úvod Znalost smykového napětí na
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,
NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ
NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ VĚTREM V REÁLNÉ ATMOSFÉŘE NUMERICAL MODELING WIND ACTION ON STRUCTURES IN REAL ATMOSPHERE Vladimíra Michalcová 1, Zdeněk Michalec 2, Lenka Lausová 3, Abstract
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav
Analýza výpočtových metod pro únik a disperzi zkapalněného hořlavého plynu
Analýza výpočtových metod pro únik a disperzi zkapalněného hořlavého plynu Mária Skřínská 1*, Jan Skřínský 2, Vilém Sluka 1, Martina Pražáková 1, Stanislav Malý 1, Lenka Frišhansová 1, Josef Senčík 1 1
VÝPOČTOVÁ ANALÝZA PROUDĚNÍ V BUBNOVÉ SUŠIČCE PRÁDLA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
BEZSÍŤOVÉ MODELOVÁNÍ PROUDĚNÍ TEKUTIN
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS BEZSÍŤOVÉ MODELOVÁNÍ PROUDĚNÍ TEKUTIN
Rekonstrukce portálního řečiště v rámci chirurgického řešení pokročilého karcinomu pankreatu experiment na velkém zvířeti (biomechanická část)
NTIS Nové technologie pro informační společnost Fakulta aplikovaných věd Západočeská univerzita Rekonstrukce portálního řečiště v rámci chirurgického řešení pokročilého karcinomu pankreatu experiment na
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
Matematické modelování nízkoteplotní oxidace uhlí (samovzněcování uhlí)
Konference ANSYS 009 Matematické modelování nízkoteplotní oxidace uhlí (samovzněcování uhlí) Boko M., Kozubková M. VŠB-TU Ostrava, Fakulta stroní, Katedra hydromechaniky a hydraulických zařízení Abstrakt:
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický
Úvod do předmětu, úvod do problematiky CAE a MKP (přehled nástrojů a obecné postupy CAD/CAE, vazby součástí CAE)
CAD/CAE ÚNOD: Jan Tippner, Václav Sebera, Miroslav Trcala, Eva Troppová. Úvod do předmětu, úvod do problematiky CAE a MKP (přehled nástrojů a obecné postupy CAD/CAE, vazby součástí CAE) Podpořeno projektem
MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA KYBERNETIKY MODELOVÁNÍ A SIMULACE MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE SEMESTRÁLNÍ PRÁCE Vypracoval: 2011 1 I. ZADÁNÍ Sestavte model průběžné
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra mechaniky. reálné tekutiny pomocí lattice Boltzmannovy metody
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra mechaniky DIPLOMOVÁ PRÁCE Modelování vícefázového proudění reálné tekutiny pomocí lattice Boltzmannovy metody PLZEŇ, 2016 Bc. Iveta Študentová
Numerická simulace proudění okolo válce za použití metody LES (Large eddy simulation)
Numerická simulace proudění okolo válce za použití metody LES (Large eddy simulation) Bc. Zdeněk Sumara Vedoucí práce: Ing. Pavol Vitkovič Abstrakt Práce je zaměřena na simulaci turbulentního proudění
PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity flow at high Reynolds numbers
Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity
Matematika pro chemické inženýry
Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Výpočetní dynamika tekutin (Computational Fluid Dynamics)
Výpočetní tekutin (Computational Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Cíle CFD výpočetní tekutin se zabývá počítačovým simulováním proudění tekutin
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
CFD ANALÝZA CHLAZENÍ MOTORU
CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
Diskontinuity a šoky
Diskontinuity a šoky tok plazmatu Oblast 1 Oblast ( upstream ) ( downstream ) ρu Uu Bu pu ρd Ud Bd pd hranice mezi oblastmi může tu docházet k disipaci (růstu entropie a nevratným změnám) není popsatelná
Lekce 9 Metoda Molekulární dynamiky III. Technologie
Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Propojení matematiky, fyziky a počítačů
Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů
I. Formulace problému
Motivace Numerické řešení Eulerových rovnic v balíku FENICS Radim Cajzl Letní semestr 215 Cílem je vytvořit model proudění části chladící heliové smyčky umístěné v CV Řež. Smyčka slouží k testování materiálů
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Počítačová dynamika tekutin (CFD) Okrajové podmínky
Počítačová dynamika tekutin (CFD) Okrajové podmínky M. Jahoda Okrajové podmínky 2 Řídí pohyb tekutiny. Jsou požadovány matematickým modelem. Specifikují toky do výpočetní oblasti, např. hmota, hybnost
PŘESTUP TEPLA V MEZIFÁZOVÝCH KONTAKTORECH
PŘESTUP TEPLA V MEZIFÁZOVÝCH KONTAKTORECH Ing. Martin Žižka Školitel: Prof. Ing. Pavel Ditl, DrSc. Školitel specialista: Doc. Ing. Radek Šulc, Ph.D. České vysoké učení technické v Praze, Fakulta strojní,
MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ. Soušková H., Grobelný D.,Plešivčák P.
MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ Soušková H., Grobelný D.,Plešivčák P. Katedra měřicí a řídicí techniky VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Abstrakt : Příspěvek
Úvod do simulace dynamiky sypkých hmot
Úvod do simulace dynamiky sypkých hmot Lukáš Pospíšil Katedra aplikované matematiky, VŠB - Technická Univerzita Ostrava Seminář aplikované matematiky, 1. 4. 2014 Osnova formulace problému transformace
Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.
Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány
Oponentský posudek doktorské disertační práce
Oponentský posudek doktorské disertační práce Autor práce: Ing. Václav Štumbauer Název práce: Modelling, parameter estimation, optimization and control of transport and reaction processes in bioreactors
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Modelování ustáleného a neustáleného proudění v okolí plynových sond. Mgr. Hana Baarová
Modelování ustáleného a neustáleného proudění v okolí plynových sond Mgr. Hana Baarová Prezentace výsledků Říjen 2010, mezinárodní konference Permon 2010, SR Nové poznatky v oblasti vŕtania, ťažby, dopravy
Počítačová dynamika tekutin (CFD) Turbulence
Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat
K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat Jaroslav Šilhánek Vysoká škola chemicko-technologická v Praze silhanek@vscht.cz Publikované rozdíly jako výchozí
VIRTUAL MODELLING VÝPOČETNÍ DOMÉNY PRO CFD SIMULACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
Ústav matematiky a statistiky Masarykova univerzita Brno. workshopy Finanční matematika v praxi III Matematické modely a aplikace Podlesí
Ústav matematiky a statistiky Masarykova univerzita Brno workshopy Finanční matematika v praxi III Matematické modely a aplikace Podlesí 3. 6. září 2013 Obsah 1 2 3 4 y Motivace y 10 0 10 20 30 40 0 5
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VÝPOČTY PROUDĚNÍ V MÍCHANÉM REAKTORU S PLOVOUCÍMI ČÁSTICEMI COMPUTATIONS OF FLUID FLOW IN STIRRED REACTOR WITH FLOATING PARTICLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
FLUENT přednášky. Turbulentní proudění
FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní
Řešení průtoku vazké stlačitelné tekutiny minikanálem
Řešení průtoku vazké stlačitelné tekutiny minikanálem Bc. Jindřich Hála Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D., Ing. Martin Luxa, Ph.D. Abstrakt Příspěvek se zabývá prouděním vazké stlačitelné tekutiny
Viskoelastická deformace v geofyzikálních aplikacích
Viskoelastická deformace v geofyzikálních aplikacích Řešitel: Kateřina Sládková Vedoucí: doc. RNDr. Ondřej Čadek, CSc. (KG) Konzultant: RNDr. Ondřej Souček, Ph.D. (MÚ) Termální konvekce v zemském plášti
Počítačová dynamika tekutin (CFD) - úvod -
Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
EXPERIMENTÁLNÍ STUDIUM TOKU MAZIVA V BODOVÉM KONTAKTU Kryštof Dočkal
EXPERIMENTÁLNÍ STUDIUM TOKU MAZIVA V BODOVÉM KONTAKTU Kryštof Dočkal INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN Faculty of Mechanical Engineering BUT Brno Brno 28.06.2018 OBSAH ÚVOD DO PROBLEMATIKY SOUČASNÝ
Numerická simulace elastohydrodynamicky mazaného kruhového kontaktu nehladkých povrchů
Numerická simulace elastohydrodynamicky mazaného kruhového kontaktu nehladkých povrchů Pojednání ke státní doktorské zkoušce Ing. Libor Urbanec VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
Stacionární 2D výpočet účinnosti turbínového jeden a půl stupně
Stacionární D výpočet účinnosti turbínového jeden a půl stupně Petr Toms Abstrakt Příspěvek je věnován popisu řešení proudění stacionárního D výpočtu účinnosti jeden a půl vysokotlakého turbínového stupně
MODELOVÁNÍ POHYBU SPLAVENIN POMOCÍ PROGRAMU CFX
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA STAVEBNÍ Studentská vědecká odborná činnost Akademický rok 2011/2012 MODELOVÁNÍ POHYBU SPLAVENIN POMOCÍ PROGRAMU CFX SEDIMENT TRANSPORT MODELING USING CFX Jméno a příjmení
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Konstrukce optického mikroviskozimetru
Ing. Jan Medlík, FSI VUT v Brně, Ústav konstruování Konstrukce optického mikroviskozimetru Školitel: prof. Ing. Martin Hartl, Ph.D. VUT Brno, FSI 2008 Obsah Úvod Shrnutí současného stavu Měření viskozity
1. seminář VŠCHT k OpenFOAM Představení OpenFOAM. Martin Isoz
1. seminář VŠCHT k OpenFOAM Představení OpenFOAM Martin Isoz VŠCHT Praha, Ústav matematiky 9. února 2016 Úvod OpenFOAM je... Jak začít? Práce s OpenFOAM Shrnutí Úvod Cíle přednášky Stručné představení
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Energetický ústav Odbor termomechaniky a techniky prostředí. Možnosti implementace vlastního kódu pro použití v simulačním software TRNSYS
Možnosti implementace vlastního kódu pro použití v simulačním software TRNSYS Lubomír KLIMEŠ Energetický ústav Odbor termomechaniky a techniky prostředí Fakulta strojního inženýrství Vysoké učení technické
CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí
Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Program celoživotního vzdělávání: kurz Klimatizace a Větrání 2013/2014 CFD Jan Schwarzer Počítačová