2. Difrakce elektronů na krystalu
|
|
- Jan Matějka
- před 8 lety
- Počet zobrazení:
Transkript
1 2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení směru vlny na okraji (hraně) překážky Rozptyl proces, při kterém jsou částice, atomy atd. vychylovány následkem srážek Rozptyl elektronů Nezbytná podmínka pro viditelnost objektů v EM EM zobrazuje: a) prostorovou distribuci rozptýl. e - (intenzita) - obraz b) úhlovou distribuci rozptýl. e - - difrakce Terminologie: a) částice pružný (elastický) rozptyl ( E = 0) nepružný (inelastický) rozptyl ( E 0) b) vlna koherentní rozptyl (ve fázi, λ = konst. = f(v)) nekoherentní rozptyl Pružný rozptyl na tenkých krystalických vzorcích je koherentní
2 TEM Poznámka: Rozdíly rozptylu e - a RTG RTG rozptyl na e - obalu atomů vzorku : e - + elmag. pole RTG oscilace e - s periodou RTG svazku emise elmag. signálu (λ, ϕ) jako RTG Výměnná interakce 2 elmag. polí e - - rozptyl na el. obalu a jádrech atomů vzorku přímý rozptyl vzorkem intezivnější λ = 2 d hkl sin Θ B 2 úkoly: Stanovení podmínek vzniku difraktovaných svazků Výpočet intenzity difraktovaných svazků Řešení: Vlnově-optický přístup + QM aspekty interakce e - s krystalem Kinematická aproximace: I DIFF << I PRIM
3 Rozptyl e - na atomu na EB na ideálním krystalu a) Rozptyl elektronů na atomu Vlnová fce : Ψ(r) popisuje dráhu e - ; Ψ 2 = Ψ. Ψ * pravď. výskytu (r, t) Stacionární případ: Schrödingerova rce E celková energie -ev.. potenciální energie relativistické korekce m a E: Řešení SCHR pro V(r) = konst.: rovinná vlna vlnový vektor; λ = λ (V) lom
4 Rozptyl e - na atomu: Rozptýlená vlna: kulová vlna úhel: 2Θ V bodě P: Rozptylová schopnost atomu: Rozptylový atomový faktor pro e - : Resumé: Rozptyl e - na atomu Dopadající vlna: Rozptýlená vlna:
5 b) Rozptyl elektronů na elementární buňce Rozptyl na EB rozptyl na atomech (r i ) + princip superpozice 2 atomy EB: r = 0 a r = r i Interference v bodě P (r >> r i ): K = k - k.. rozptylový vektor EB: n atomů r i Princip superpozice Rozptýlená vlna EB pro r >> r i Strukturní faktor EB: F(Θ) Resumé: rozptyl na EB Dopadající vlna: Rozptýlená vlna:. F(Θ)
6 Identický postup jako pro EB r n. počátky EB v krystalu c) Rozptyl elektronů na ideálním krystalu Rozptýlená vlna: Vynechán faktor: e 2πikr /r F n strukturní faktor n-té EB poloh. vektor počátku n-té EB K vektor reciproké mříže Opakování Reciproká mřížka translační vektory RM Vektor RM: g.r n = celé g = 1/d hkl Rozptýlená vlna krystalem: Maxima amplitud: (..) celé pro všechny kombinace n 1, n 2, n 3 u = h, v = k, w = l
7 Důsledky: Laueho podmínky pro silnou difrakci Braggova rce tj. silná difrakce jen pro Θ B Grafické určení Braggových reflexí pro dané λ, a k Ewaldova konstrukce O počátek RM poloměr 1/λ Povrch koule: koncové body k Braggovy reflexe - průsečíky koule s body RM Θ B 10 mrad 0.5 Platí: 1/λ >> g kouli lze v okolí počátku nahradit rovinou podmínka pro silné reflexe: k. g = 0 k g Difraktogram MK = projekce roviny RM procházející počátkem kolmo na k, z bodu C do roviny stínítka mikroskopu. Poznámky: 1. Křivost koule nelze zanedbat na SAD pouze omezený počet stop
8 2. Zakázané reflexe (vyhasínání reflexí) Splněna Braggova podmínka, ale F hkl = 0 FCC: h, k, l všechny sudé nebo všechny liché BCC: h+k+l sudé! atom. rozptyl. faktory všech atomů jsou stejné 3. 0 i pro směry z okolí Θ B odchylka od Braggovy polohy Předpokládáme Amplituda rozpt. vlny ve směru g. r n je celé pro malé s fáze se mění pomalu od buňky k buňce Krystal tvaru hranolu o rozměrech A, B a C: Amplituda vlny v okolí bodu g Řez pro s y = s z = 0 Pološířka 1/A Minima: s x = ± n/a Odchylky pouze v rámci hlavního maxima
9 TEM tenké fólie s k s z = s Znaménková konvence s: s > 0 s a k paralelní g uvnitř koule s < 0 opak Meze platnosti kinematické aproximace Nutná podmínka: I g << 1 dopadající svazek má všude stejnou intenzitu. Reálná situace: difrakce části intenzity a) velmi tenké krystaly - nedostatek rozptylových center, na kterých by se vytvořily silné difraktované svazky b) daleko od Braggových poloh rozptyl na jednotlivých centrech s velkým fázovým rozdílem anihilace brání vzniku silného difraktovaného svazku
10 Základní typy difrakčních obrazců v TEM a) soustředné kružnice z PK vzorků b) bodové difraktogramy z MK vzorků (zrn) c) Kikuchiho linie silnější MK vzorky (často současně s b) Difrakce na polykrystalech Soustava soustředných spojitých/diskrétních kružnic Poloměry kulových ploch: R i = g i = 1/d hkl (i) FCC: d = a / (h 2 + k 2 + l 2 ) 1/2 ρ počet zrn / 1 V spojitý kruh (ρ ) diskrétní body (ρ ) Indexování: a) λl známá R i 1/d i b) λl neznámá
11 Difrakce na monokrystalech Bodové difraktogramy Obraz roviny RM směr dopadajícího svazku B vektor přímé mříže danou rovinu antiparalelní s k (konvenčně) k.g = 0 refl. roviny k (B) B osa zóny refl. rovin B.g = 0,1, 2, n n-tá Laueho zóna Pozn.: RM FCC BCC RM BCC - FCC Zakřivenost reflexní koule
12 Poznámka: Indexování zakázané reflexe F khl = 0 - dvojitá difrakce extra stopy (zakázané v jednoduchém difraktogramu Indexování porovnávání se známými řezy RM (nízkoindexové B) vysokoindexové B B.g i = 0, d i a úhly Difrakce na monokrystalech (tlustý vzorek) Kikuchiho linie t > ½ užitečné prosvětlitelnosti KL pásy rovnoběžných světlých a tmavých linií + parabolické a kruhové linie B = [112] Mechanismus vzniku KL nepružný rozptyl elektronů do všech možných směrů λ inel λ el Dodatečná Braggovská reflexe nepružně rozptýlených e - : 0 nepružný rozptyl A,B Braggovská reflexe (nastává na všech rovinách, kde F hkl 0) Pohyb e - po kuželových plochách s vrch. úhlem (π-2θ) a osou <hkl> - průsečík se stínítkem 2 hyperboly (blízko středu rovnoběžky) vzdálenost 2.Θ.L (= d XY od středu= prim. stopy) a osou (hkl)
13 Použití: Při naklápění vzorku se KL pohybují. - Přesné určení krystalové orientace (Braggovy polohy), mnohem přesnější než bodový difraktogram (1 linie středem, 2 hkl (g) dvojsvazková aproximace - Stanovení odchylky od Braggovy polohy (s > 0) optimální podmínka pro pozorování - Stanovení vzájemné orientace precipitátu a matrice Kikuchiho mapy
14
15 Stereografická projekce Kikuchiho linií
Teorie rentgenové difrakce
Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární
Elektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Electron BackScatter Diffraction (EBSD)
Electron BackScatter Diffraction (EBSD) Informace o xtalografii objemových vzorků získané pomocí SEM + EBSD a) základní součásti systému EBSD 1. Základy EBSD Vzorek Detektor EBSD Fluorescenční stínítko
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Úvod do fyziky tenkých vrstev a povrchů. Typy interakcí, základy elektronové difrakce, metody LEED a RHEED
Úvod do fyziky tenkých vrstev a povrchů Typy interakcí, základy elektronové difrakce, metody LEED a RHEED \ Signál Sonda \ Svazek elektron Elektrony Ionty Elektromagnetické zá ení AES (SAM) TEM, SEM LEED,
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
Fourierovské metody v teorii difrakce a ve strukturní analýze
Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Přednáška č. 3. Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů.
Přednáška č. 3 Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů. Strukturní krystalografie Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
Fyzika rentgenových paprsků
Absorpce rentgenového záření Fyzika rentgenových paprsků rtg. paprsky elektromagnetické záření o λ 10-4 10 nm nejčastěji využívaná oblast s vlnovou délkou 0.1 nm (tj. přibližně rozměry atomů) spektroskopie
Fyzika rentgenových paprsků
Absorpce rentgenového záření Fyzika rentgenových paprsků rtg. paprsky elektromagnetické záření o λ 10-4 10 nm nejčastěji využívaná oblast s vlnovou délkou 0.1 nm (tj. přibližně rozměry atomů) spektroskopie
RTG difraktometrie 1.
RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat
18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách
18 SMĚRY HLAVNÍCH DIFRAKČNÍCH MAXIM PŘI DIFRAKCI NA MŘÍŽKÁCH 1 18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách V odst. 2.1 bylo vysvětleno že vlnová funkce záření difraktovaného
Rentgenografické difrakční určení mřížového parametru známé kubické látky
Rentgenografické difrakční určení mřížového parametru známé kubické látky Rozšířená webová verze zadání úlohy dostupná na: http://krystal.karlov.mff.cuni.cz/kfes/vyuka/lp/ Prášková difrakce - princip metody
Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu
Mikroskopické metody Přednáška č. 3 Základy mikroskopie Kontrast ve světelném mikroskopu Nízký kontrast biologických objektů Nízký kontrast biologických objektů Metodika přípravy objektů pro světelnou
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
FYZIKA II. Marek Procházka 1. Přednáška
FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III
Princip práškové metody Prášková metoda slouží k určení hodnot mřížkových parametrů krystalické mřížky dané krystalické látky.
Vyhodnocování rentgenogramu určení mřížové konstanty Úkol: 1) Seznamte se podrobně s Debye-Scherrerovou komůrkou a jejími funkčními prvky. 2) Analyzujte debyegram práškového ZnS proměřte polohy linií a
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)
Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Kvantová mechanika - model téměř volných elektronů. model těsné vazby
Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
Mřížkové parametry a chvála nomogramů
Mřížkové parametry a chvála nomogramů Podzim rok 1966 Měření mřížkových parametrů, zpracování dat, a nejen to Něco málo z rentgenové difraktografie 3 Mřížkové parametry a c c a a Měření mřížkových parametrů,
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Youngův dvouštěrbinový experiment
Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
Maticová optika. Lenka Přibylová. 24. října 2010
Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Difrakce elektronů v polykrystalické mřížce (Debye-Scherrerova difrakce)
ifrakce elektronů v polykrystalické mřížce (ebye-scerrerova difrakce) Teorie V roce 1924 Louis de Broglie navrl představu, že by částice moly mít kromě předpokládanýc částicovýc vlastností i vlnové vlastnosti.
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.
Optické zobrazení Optické zobrazení je proces, kterým optické soustavy vytvářejí obrazy reálných předmětů. Tyto soustavy mění chod světelných paprsků. Obsahují zrcadla, čočky, odrazné hranoly aj. Princip
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali
Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
do strukturní rentgenografie e I
Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka
Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
27. Vlnové vlastnosti světla
27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla
Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu
Praktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
Mezony π, mezony K, mezony η, η, bosony 1
Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Fyzika pro chemiky II
Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
Chemie a fyzika pevných látek p3
Chemie a fyzika pevných látek p3 strukturní faktor, monokrystalové a práškové difrakční metody Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Úloha 10: Interference a ohyb světla
Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Využití komplementarity (duality) štěrbiny a páskového dipólu M
Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada
Fázový Dopplerův analyzátor (PDA) Základy geometrické optiky Index lomu látky pro světlo o vlnové délce λ je definován jako poměr rychlosti světla ve vakuu k rychlosti světla v látce. cv n = [-] (1) c
Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
5.3.5 Ohyb světla na překážkách
5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
9. Geometrická optika
9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie
Odraz světla na rozhraní dvou optických prostředí
Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný