Molekulový počítačový experiment
|
|
- Naděžda Valentová
- před 5 lety
- Počet zobrazení:
Transkript
1 Molekulový počítačový experiment 1/16 též pseudoexperiment REÁLNÝ EXPERIMENT Vedení laboratorního deníku POČÍTAČOVÝ EXPERIMENT Vedení laboratorního deníku Zvol metodu (přístroj, protokol) Zvol metody (MD, MC,... ) Stavba aparatury (z částí) Stáhni/kup/napiš počítačový program, slož bloky kódu Nakup chemikálie, syntetizuj, co není ke koupi Připrav experiment Proved experiment, pozorně sleduj, co se děje Analyzuj a počítej Uklid laboratoř Stáhni silové pole, nafituj parametry, které nejsou dostupné Připrav počáteční konfiguraci ap. Spust program, sleduj časovou závislost veličin vč. kontrolních Stanov střední hodnoty (s odhady chyb) Zapiš zálohy, vymaž nepotřebné soubory
2 MD nebo MC? 2/16 MC a MD se často dají použít na podobné systémy MD realistické modely, složité molekuly (vazby, úhly... ) kondenzovaná fáze obecně (tekutiny, toztoky; biochemie) kinetické veličiny (difuzivita, viskozita... ) snazší paralelizace, exituje mnoho balíků MC jednoduché kvalitativní modely (mřížkové, tuhé koule apod.) zředěné systémy kritiké jevy fázové rovnováhy překonávání bariér je v MC snazší horší paralelizace, existuje málo balíků
3 Je to správně? 3/16 Systematické chyby: nepřesný molekulární model (silové pole) zanedbání kvantových jevů, nepárových sil (např. polarizovatelnosti) malý vzorek (finite-size effects) nedostatečná časová škála (dlouhé korelace, hrdlo láhve ) nevhodná metodologie: chyby integrace (příliš dlouhý krok), nedostatečně zrovnovážněno, nepřesné Coulombovy síly... Náhodné (statistické) chyby jsou principiální pro stochastické metody časově korelované lze zmenšit delším výpočtem Nejistota (v metrologii) zahrnuje kritické posouzení systematických i náhodných chyb Názvosloví kolísá podle oboru (matematická statistika, fyzika, metrologie...)
4 Metodika simulace [sleep 3;simul/spce.sh] 4/16 Start simulace (počáteční konfigurace): experimentální struktura (biomolekuly) krystal kapalina, plyn kapalina; Packmol náhodná konfigurace (překryvy molekul = problém v MD) problém u špatně definovaných modelů (TIP4P aj.) mřížkové modely: krystal/chaos MD: rychlosti = Maxwell-Boltzmann (stačí přibližně) Zrovnovážňování: sledovat časový (konvergenční) profil Měření veličin vč. odhadu statistických chyb
5 Okrajové podmínky 5/16 volné (vakuové) kapka, protein ve vakuu aj. periodické (cyklické, toroidální) B D C A pevné stěny (tuhé, měkké, z atomů, zprůměrované), póry, vrstva (slab),... E
6 Periodické okrajové podmínky: MD + 6/16 REAL L velikost hrany kubické simulační buňky VECTOR r1, r2 kde vektor r = (r.x,r.y,r.z) oba vektory musí ležet v základní buňce VECTOR dr := r2 - r1 rozdíl vektorů bez ohledu na okrajové podmínky IF dr.x < -L/2 THEN dr.x := dr.x + L ELSE IF dr.x > L/2 THEN dr.x := dr.x - L IF dr.y < -L/2 THEN dr.y := dr.y + L ELSE IF dr.y > L/2 THEN dr.y := dr.y - L IF dr.z < -L/2 THEN dr.z := dr.z + L ELSE IF dr.z > -L/2 THEN dr.z := dr.z - L Vektor dr nyní směřuje od vektoru r1 k nejbližšímu obrazu vektoru r2 Výpočet druhé mocniny vzdálenosti nejbližších obrazů: REAL rr := dr.x**2 + dr.y**2 + dr.z**2
7 Periodické okrajové podmínky: MC + 7/16 V MC (zpravidla) nepotřebujeme vektor r 12 = r2 r1, stačí vzdálenost REAL L velikost hrany kubické simulační buňky VECTOR r1, r2 kde vektor r = (r.x,r.y,r.z) oba vektory musí ležet v základní buňce VECTOR dr := r2 - r1 rozdíl vektorů bez ohledu na okrajové podmínky REAL rr := (L/2 - abs(l/2-abs(dr.x)))**2 + (L/2 - abs(l/2-abs(dr.y)))**2 + (L/2 - abs(l/2-abs(dr.z)))**2
8 Výpočty [../simul/ar/showdrop.sh] 8/16 Příklad. Simulujeme kapku argonu v kubických periodických okrajových podmínkách. Mějme 1000 atomů za teploty 85 K. Vzdálenost mezi povrchy periodických obrazů kapky by měla být rovna průměru kapky. Vypočtěte velikost boxu v Å. Hustota kapalného argonu je 1.4 g cm Å
9 Měření Trajektorie = posloupnost konfigurací (MD: v čase) Konvergenční profil: vývoj veličiny (časový profil, ) problémy jsou líp vidět kumulativní (running average, ) lze odhadnout nepřesnost Typ zpracování: střední hodnoty ( ergodická hypotéza) méně často fluktuace Typ veličiny: P/MPa / mechanické (teplota, tlak, vnitřní energie, parametry uspořádání... ) entropické (S, F, μ,... ) strukturní (korelační funkce, počet sousedů, analýza klastrů... ) pomocné či kontrolní veličiny (parametry uspořádání, integrály pohybu v MD) t/ps
10 Náhodné chyby 10/16 veličina = (odhad střední hodnoty) ± (odhad chyby) Aritmetický průměr (příklad statistiky * ): X = 1 m Standardní chyba = standardní odchylka statistiky, obv. se označuje σ 2 σ X = X X Pro nekorelované (nezávislé) X a velké m má X Gaussovo rozdělení. m =1 X (X σ X, X + σ X ) s pravděpodobností 68% X (X 2σ X, X + 2σ X ) s pravděpodobností 95% Odhad standardní chyby nekorelovaných dat: m σ odhad =1 = ΔX2 X m(m 1), X kde ΔX = X X * též statistický funkcionál, v metrologii snad měřicí funkce (angl. measurement function)
11 Zvyky a terminologie 11/16 Fyzika: σ fyzika X = σ X (ovšem její odhad) σ odhad X = odhadnutá směrodatná/standardní chyba/nejistota; nepřesně (odhadnutá) chyba/nejistota, standardní/směrodatná odchylka (rozumí se aritmetického průměru či jiné statistiky) Obvyklá notace: ± (5) Jistota začíná na ±5σ X (hladina významnosti ) Biologie, ekonomie, inženýrství: hladina významnosti (confidence level) 95 % (data jsou s pravděpodobností 95 % uvnitř mezí). V případě Gaussova rozdělení: σ biologie X 2 σ fyzika X Chemie: často ignorováno; pokud udáno, tak nikdo neví, zda σ chemie X 2σ X Vždy nutno udat typ chyby/nejistoty = σ X nebo
12 [cd simul; corelrnd.sh 2000] 12/16 Analýza časové řady a odhad náhodných chyb Problém: korelace (ukázka: +1 = r + Gauss ) bloková metoda: X j = 1 B B =1 X +(j 1)B analýza korelací m =1 σ X = ΔX2 (1 + 2τ) τ = m(m 1) k=1 c k c k = ΔX 0ΔX k (ΔX) 2 MC: c k monotonně klesá [přesně: c k = λ =1 c λλ k, λ ( 1, 1)] MD: c k c(t) (časová autokorelační funkce): tlumené oscilace lépe = kombinace: mírně zblokovat a pak τ c 1 running average ( 10 bloků): σ X 0.6[m x 2. půlka (X) min 2. půlka (X)] nebo pro jistotu (vzorec je nepřesný): chyba m x 2. půlka (X) min 2. půlka (X) pak X (X chyba, X + chyba ) s pravděpodobností 85% (pro dlouhé časové řady)
13 Cvičení/ukázka [simul/errplot.sh ] 13/16 Vygenerujte korelovaná náhodná data (proces 1. řádu) X k+1 = qx k + kde = [0,1) nebo Gauss apod. a q < 1. Vypočtěte aritmetický průměr i chybu různými metodami. Pozn.: analytický výsledek je σ X = 1 + q 1 q V r X m = 1 1 q kde variance (fluktuace) je Var X = (X X) 2 V r m
14 Časová autokorelační funkce + 14/16 Rychlostní časová autokorelační funkce (velocity-velocity autocorrelation function) kapalného argonu: 150 K, 1344 kg m 3, 120 K, 1680 kg m 3. Výsledky trajektorie dlouhé 100 ps pro 216 Lennard-Jonesových částic c v (t) t/ps Typické chování (MC i MD): tekutina: lim t c(t) = konst t 3/2 (hydrodynamic tail) přeskoky mezi stavy (vysoká bariéra): c(t) λ t (λ těsně pod 1)
15 Analýza chyb 15/16 Součet nezávislých měření: dvojmoci standardních odchylek jsou aditivní Příklad. Počítáme = 1 0 = ƒ ( )d přibližně Simpsonovým vzorcem, 1 0 ƒ ( )d 1 6 [ƒ (0) + 4ƒ (0.5) + ƒ (1)] Pro ƒ ( ) máme následující data se standardními chybami: Vypočtěte včetně odhadu chyb ƒ ( ) 1.34(5) 1.57(3) 1.77(6) = 1 6 [ ] = σ( ) 2 = (0.05/6) 2 + (0.03 4/6) 2 + (0.06/6) 2 = σ( ) = = 1.565(24) Pro násobení a dělení platí to samé pro relativní chyby Příklad. Vypočtěte 3.46(7)/ 0.934(13). 3.70(9)
16 Analýza chyb Chyba funkce ƒ proměnné s chybou je (linearizovaný vztah, tj.pro malé σ): 16/16 ƒ ( ± σ ) = ƒ ( ) ± ƒ ( )σ ln( ± σ ) = ln ± σ, exp( ± σ ) = exp ± σ exp, Příklad. Vypočtěte aktivitu H + z ph = 2.125(5). 1 ± σ = 1 ± σ 2 (H + ) = (9)
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
Lekce 4 Statistická termodynamika
Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty
Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.
Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.
Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Lekce 9 Metoda Molekulární dynamiky III. Technologie
Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
Mˇ eˇren ı ˇ cetnost ı (Poissonovo rozdˇ elen ı) 1 / 56
Měření četností (Poissonovo rozdělení) 1 / 56 Měření četností (Poissonovo rozdělení) Motivace: měření aktivity zdroje Geiger-Müllerův čítac: aktivita: 1 Bq = 1 částice / 1 s = s 1 Jaká je přesnost měření?
SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,
SPC v případě autokorelovaných dat Jiří Michálek, Jan Král OSSM, 2.6.202 Pojem korelace Statistická vazba mezi veličinami Korelace vs. stochastická nezávislost Koeficient korelace = míra lineární vazby
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics
Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Počítačové simulace a statistická mechanika
Počítačové simulace a statistická mechanika Model = soubor aproximaci přijatých za účelem popisu určitého systému okrajové podmínky mezimolekulové interakce Statistické zpracování průměrování ve fázovém
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Chemie a fyzika pevných látek p3
Chemie a fyzika pevných látek p3 strukturní faktor, monokrystalové a práškové difrakční metody Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:
Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk
České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Vazby v pevných látkách
Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.
1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality RNDr. Alena Mikušková FN Brno Pracoviště dětské medicíny, OKB amikuskova@fnbrno.cz Analytické znaky laboratorní metody
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Nejistota měření. Thomas Hesse HBM Darmstadt
Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo
PRINCIPY ZABEZPEČENÍ KVALITY
(c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna
Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných
4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?
A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Měřicí přístroje a měřicí metody
Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny
Pokročilé simulace ve fyzice mnoha částic:
Pokročilé simulace ve fyzice mnoha částic: Simulace složitých, nerovnovážných a kvantových jevů Miroslav Kotrla & Milan Předota FZÚ AV ČR, Praha 8 oddělení teorie kondenzovaných látek JU České Budějovice
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie
Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základním předmětem výzkumu prováděného ústavem je chemická termodynamika a její aplikace pro popis vybraných vlastností chemických systémů
Gymnázium, Český Krumlov
Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Detailní porozumění podstatě měření
Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval
Zákony hromadění chyb.
Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním