Paradoxy kvantové mechaniky

Rozměr: px
Začít zobrazení ze stránky:

Download "Paradoxy kvantové mechaniky"

Transkript

1 Paradoxy kvantové mechaniky Karel molek Ústav technické a experimentální fyziky, ČVUT

2 Bezinterakční měření Mějme bombu, která je aktivována velmi citlivým mechanismem v podobě zrcátka, které je propojeno s roznětkou. Celý mechanismus je citlivý na sebemenší dotyk, po odrazu i jediného fotonu od zrcátka je roznětka aktivována. Máme na skladě velké množství bomb, u některých z nich je však spouštěcí mechanismus poškozený: poškození Potřebujeme vybrat bombu, která je určitě funkční. Jak to udělat, aby nám při testování bomba nevybuchla? 2/11

3 Bezinterakční měření Uvedený (zdánlivě neřešitelný) problém publikovali v roce 1993 i s řešením A. Elitzur a L. Vaidman. Využije se modifikace Machova-Zehnderova interferometru. poškození detektor D1 registruje všechny fotony nefunkční bomba 3 4 polopropustné zrcadlo D2 detektor neregistruje žádný foton polopropustné zrcadlo 2 1 zdroj fotonů 5 obyč. zrcadlo Pokud je bomba nefunkční, zrcátko 3 na jejím spouštěcím mechanismu se chová jako normální zrcátko - za druhým polopropustným zrcátkem 4 nastane interference a foton zaregistruje pouze detektor D1. 3/11

4 Bezinterakční měření funkční bomba polopropustné zrcadlo 3 4 polopropustné zrcadlo 2 1 zdroj fotonů detektor D1 5 obyč. zrcadlo detektor D2 může zaregistrovat foton Vyšleme do aparatury foton. Pokud je bomba funkční, funguje jako měřící přístroj na registraci průchodu fotonu ramenem. Pokud bomba vybuchne, víme, že foton prošel horním ramenem (50% všech případů). Pokud bomba nevybuchne, foton prošel spodním ramenem (50% všech případů). Pokud nám bomba vybuchla, pokus zopakujeme. Předpokládejme dále, že nám bomba nevybuchla. Foton se tedy pohybuje ve spodním ramenu interferometru. a horním polopropustném zrcadle se foton s pravděpodobností 50% odrazí do detektoru D2 a s pravděpodobností 50% se neodrazí a projde do detektoru D1. 4/11

5 Bezinterakční měření Pokud detektor D2 zaregistruje foton, víme, že bomba musí být funkční (jinak by se celý přístroj choval jako klasický M.-Z. interferometr a díky interferenci by byl foton vždy zaregistrován detektorem D1 a nikdy detektorem D2). Pokud detektor D1 zaregistruje foton, o funkčnosti bomby nemůžeme nic říct. Díky uvedenému postupu můžeme vybrat bombu, která je určitě funkční a která nám při testu nevybuchne. Z celkového počtu funkčních bomb se nám podaří takto otestovat a nepřivést k výbuchu ¼ bomb. ½ funkčních bomb nám při testování vybuchne a ¼ sice nevybuchne, ale nedokážeme nic říct o jejich funkčnosti. Existuje modifikace uvedeného postupu, která způsobí výbuch libovolně malé části testovaných funkčních bomb. Byl proveden reálný experiment, který prokázal, že uvedený postup je správný. 5/11

6 pin Obdoba k rotaci (momentu hybnosti) makroskopických těles je v mikrosvětě veličina nazývaná spin. Můžeme si představovat, že např. elektron se chová jako malý rotující setrvačník. V důsledku spinu má elektron vlastní magnetický moment - chová se jako malý magnet orientovaný ve směru spinu elektronu. Pomocí nehomogenního magnetického pole můžeme změřit spin elektronu vzhledem k ose určené orientací použitého magnetického pole. V prvém případě byl elektron ve stavu s průmětem spinu do svislého směru +1/2 (nahoru), ve druhém případě -1/2 (dolů). Toto zařízení na měření spinu elektronu v daném směru se říká ternův- Gerlachův přístroj. 6/11

7 Vlastnosti spinu elektronu nadno se lze přesvědčit, že.-g. přístroj provádí opakovatelné měření: Výběrem správně odkloněného elektronu za.-g. přístrojem si můžeme připravit elektron v námi zvoleném spinovém stavu: proud elektronů 7/11

8 Vlastnosti spinu elektronu Vyrobíme si elektron ve stavu se spinem nahoru a postavíme mu do cestu.-g. Přístroj otočený o 90 podél vodorovné osy. 50% pravděpodobností se nám elektron odchýlí doleva a s 50% pravděpodobností doprava. Původní stav elektronu se spinem nahoru se nám překlopil do stavu se spinem doleva nebo doprava. 8/11

9 EPR paradox Myšlenkový pokus, kterým se snažil Einstein, Podolsky a Rosen ukázat, že kvantová mechanika je neúplná, provizorní teorie a ve skutečnosti se náš svět chová klasicky, deterministicky, bez kvantových skoků. Opublikován v roce Mějme částici, která je v klidu a má nulový spin. Tato částice je nestabilní a rozpadne se na dva elektrony, které mají spin 1/2. Platí zákon zachování momentu hybnosti, tedy celkový spin soustavy dvou elektronů je nulový. Pokud tedy změříme ternovým-gerlachovým přístrojem velikost spinu obou elektronů ve svislém směru, musíme naměřit opačné hodnoty průmětu spinu (elektrony se vychýlí na opačnou stranu). Pokus několikrát zopakujeme. Hodnota průmětu spinu levého elektronu do svislé osy bude nabývat náhodně hodnot nahoru a dolů. U elektronu vpravo však vždy naměříme opačnou hodnotu. ikdy nenaměříme u obou elektronů stejnou hodnotu. 9/11

10 EPR paradox Vypadá to, jakoby pár elektronů vznikal ve stavu s průmětem spinu do svislé osy (nahoru,dolů) či (dolů,nahoru). Po vzniku páru se však rozhodneme neměřit spin vzhledem ke svislé ose, ale vzhledem k vodorovné ose ještě než elektrony dorazí k přístrojům,.-g. přístroj vlevo i vpravo otočíme o 90. Oba měřicí přístroje jsou daleko od sebe a měření obou elektronů provádíme prakticky současně, vzhledem k vodorovné ose. Výsledek měření levého elektronu bude opět náhodný spin doleva nebo doprava. Protože spin neměříme vzhledem ke svislé ose, tak naměřený spin pravého elektronu vzhledem k vodorovné ose by měl být zcela náhodný - doleva nebo doprava. Kupodivu však vždy obdržíme pouze výsledek (doprava,doleva) nebo (doleva, doprava). Jakoby se oba elektrony na dálku okamžitě domluvily, jak se budou při měření, které jsme jim připravili, chovat. 10/11

11 Interpretace EPR paradoxu Podle kvantové mechaniky oba elektrony tvoří jednotný provázaný systém, který lze popsat jedním vektorem z příslušného vektorového prostoru všech dvouelektronových stavů. Při změření jednoho z elektronů se celý stav obou elektronů naráz překlopí do příslušného stavu s opačnými spiny vzhledem k měřené ose nastane tzv. kolaps vlnové funkce systému. Podle E. P. a R. je toto chování vzdálených individuálních objektů fyzikálně nepřijatelné, ve skutečnosti mají elektrony již při svém vzniku další, tzv. skryté, parametry, ze kterých lze jednoznačně a deterministicky určit, jak dopadne měření průmětu spinu do libovolné osy. K žádnému kvantovému skoku tedy nedochází. Byly provedeny důmyslné experimenty (měřil se průmět spinu obou částic do navzájem různých směrů a zkoumaly se korelace mezi naměřenými výsledky), ze kterých jednoznačně plyne, že žádné skryté parametry neexistují, naměřené výsledky lze vysvětlit pouze pomocí kvantových principů. 11/11

Nástin formální stavby kvantové mechaniky

Nástin formální stavby kvantové mechaniky Nástin formální stavby kvantové mechaniky Karel Smolek Ústav technické a experimentální fyziky, ČVUT Komplexní čísla Pro každé reálné číslo platí, že jeho druhá mocnina je nezáporné číslo. Např. 3 2 =

Více

Vlnově částicová dualita

Vlnově částicová dualita Vlnově částicová dualita Karel Smolek Ústav technické a experimentální fyziky, ČVUT Vlnění Vlněním rozumíme šíření změny nějaké veličiny prostorem. Příklady: Vlny na moři šíření změny výšky hladiny Zvukové

Více

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti. 6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové

Více

Do nekonečné potenciálové díry umístíme dva elektrony. Napiš jejich vlnové funkce, pokud se soustava nachází ve stavu s minimální energií.

Do nekonečné potenciálové díry umístíme dva elektrony. Napiš jejich vlnové funkce, pokud se soustava nachází ve stavu s minimální energií. 6..9 pin, interpretační problémy kvantové fyziky Předpoklady: 06008 Princip nerozlišitelnosti částic: Všechny mikročástice stejného typu jsou naprosto stejné, není možné je očíslovat, odlišit, identifikovat

Více

6.2.7 Princip neurčitosti

6.2.7 Princip neurčitosti 6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem

Více

H = 1 ( ) 1 1. dostaneme bázi označovanou často znaménky plus a minus:

H = 1 ( ) 1 1. dostaneme bázi označovanou často znaménky plus a minus: Propletené stavy Standardní bázi kubitu máme ve zvyku značit symboly a. Existuje ovšem nekonečně mnoho jiných ortonormálních bází které vzniknou ze standardní báze vždy nějakou unitární transformací. Použijeme-li

Více

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

6.2.6 Dvojštěrbinový experiment

6.2.6 Dvojštěrbinový experiment 66 Dvojštěrbinový eperiment Předpoklady: 06005 Pedagogická poznámka: Následující dvě hodiny jsou z převážné části převyprávěním dvou kapitol z Feynmanových přednášek z fyziky V klasických učebnicích nic

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Komerční výrobky pro kvantovou kryptografii

Komerční výrobky pro kvantovou kryptografii Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu

Více

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se

Více

Kvantová mechanika ve 40 minutách

Kvantová mechanika ve 40 minutách Stručný průvodce konečněrozměrnou kvantovou mechanikou České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Úvod do kryptologie 6. 5. 2010 Program 1 Od klasické mechaniky k mechanice

Více

Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.20 Autor Mgr. Jiří Neuman Vytvořeno Základy relativistické dynamiky

Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.20 Autor Mgr. Jiří Neuman Vytvořeno Základy relativistické dynamiky Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.5.20 Autor Mgr. Jiří Neuman Vytvořeno 12.3.2013 Předmět, ročník Fyzika, 1. ročník Tematický celek Fyzika 1. Téma Druh učebního materiálu Prezentace Anotace

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Zeemanův jev. 1 Úvod (1)

Zeemanův jev. 1 Úvod (1) Zeemanův jev Tereza Gerguri (Gymnázium Slovanské náměstí, Brno) Stanislav Marek (Gymnázium Slovanské náměstí, Brno) Michal Schulz (Gymnázium Komenského, Havířov) Abstrakt Cílem našeho experimentu je dokázat

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY HISTORIE ATOMU M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Historie atomu (modely) Mgr. Robert Pecko Období bez modelu pojetí hmoty

Více

Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message.

Stavba atomu. Created with novapdf Printer (www.novapdf.com). Please register to remove this message. Stavba atomu Atom je v chemii základní stavební částice, jeho průměr je přibližně 10-10 m. Je složen z jádra a obalu. Atomové jádro obsahuje protony p + (kladný náboj) a neutrony n 0 (neutrální částice).

Více

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Pravděpodobnostní charakter jaderných procesů

Pravděpodobnostní charakter jaderných procesů Pravděpodobnostní charakter jaderných procesů Při převážné většině jaderných pokusů je jaderné záření registrováno jako proud nabitých částic respektive kvant γ, které vznikají v důsledku rozpadu atomových

Více

4.5.3 Magnetická síla

4.5.3 Magnetická síla 4.5.3 Magnetická síla Předpoklady: 4501, 4502 Okolo vodiče s proudem vzniká magnetické pole ( stává se z něj magnet ) pokud vodič s proudem dáme k magnetu bude na něj působit magnetická síla. Pokus: Podkovovitý

Více

Martin Feigl Matematicko-Fyzikální soustředění v Nekoři, 2005. Dopplerův jev

Martin Feigl Matematicko-Fyzikální soustředění v Nekoři, 2005. Dopplerův jev 1. Prolog 2. Dopplerův efekt & teorie relativity 3. Náš pokus 4. Teorie 5. Vzorečky 6. Závěr 7. Epilog Dopplerův jev 1. Prolog Pokud se zdroj a přijímač akustického či elektromagnetického vlnění pohybují

Více

SCLPX 11 1R Zákon zachování mechanické energie

SCLPX 11 1R Zákon zachování mechanické energie Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

Stacionární magnetické pole

Stacionární magnetické pole Stacionární magnetické pole Magnetické pole se nachází v okolí planety Země, v okolí permanentních magnetů a také v okolí vodičů s proudem. Všechna tato pole budeme v laboratorní práci studovat za pomoci

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Geometrická přesnost Schlesingerova metoda

Geometrická přesnost Schlesingerova metoda TECHNIKU A TECHNOLOGII České vysoké učení technické v Praze, fakulta strojní Horská 3, 128 00 Praha 2, tel.: +420 221 990 900, fax: +420 221 990 999 www.rcmt.cvut.cz metoda Pavel Bach 2009 2 Příklad měření

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

3. Optoelektronický generátor náhodných čísel

3. Optoelektronický generátor náhodných čísel 3 Optoelektronický generátor náhodných čísel Fyzikální generátor náhodných čísel může být založen na nejrůznějších fyzikálních procesech Jde přitom o to, aby proces samotný byl náhodný ve smyslu nepředpověditelnosti

Více

1.1.13 Poskakující míč

1.1.13 Poskakující míč 1.1.13 Poskakující míč Předpoklady: 1103, 1106 Pedagogická poznámka: Tato hodina je zvláštní tím, že si na začátku nepíšeme její název. Nový druh pohybu potřebujeme nový pokus Zatím jsme stále na začátku

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

Podmínky pro hodnocení žáka v předmětu fyzika

Podmínky pro hodnocení žáka v předmětu fyzika Podmínky pro hodnocení žáka v předmětu fyzika Obecná pravidla: Při klasifikaci písemných prací bude brán jako zaklad tento klasifikační systém: pro stupeň výborný 100% až 90% chvalitebný do 70% dobrý do

Více

hlavolamy III. Hledání hranice mezi kvantovým a klasickým světem 272 VESMÍR 77, květen 1998 l

hlavolamy III. Hledání hranice mezi kvantovým a klasickým světem 272 VESMÍR 77, květen 1998 l Kvantové hlavolamy III. Hledání hranice mezi kvantovým a klasickým světem PAVEL CEJNAR MILOSLAV DUŠEK PRO ČTENÁŘE S HLUBŠÍM ZÁJMEM O KVANTOVOU TEORII V důsledku principu superpozice se kvantové částice

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

4.5.3 Magnetická síla

4.5.3 Magnetická síla 4.5.3 Magnetická síla Předpoklady: 4501, 4502 Okolo vodiče s proudem vzniká magnetické pole ( stává se z něj magnet ) pokud vodič s proudem dáme k magnetu bude na něj působit magnetická síla. Pokus: Podkovovitý

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014

3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014 3 pokusy z termiky Vojtěch Jelen Fyzikální seminář LS 2014 Obsah 1. Pokus online 2. Měření teploty cihly 3. Vypařování střely 1. Kalorimetrie Zabývá se měřením tepla a studuje vlastnosti látek a jejich

Více

Podmínky pro hodnocení žáka v předmětu fyzika

Podmínky pro hodnocení žáka v předmětu fyzika Podmínky pro hodnocení žáka v předmětu fyzika Obecná pravidla: Při klasifikaci písemných prací bude brán jako zaklad tento klasifikační systém pro stupeň: výborný 100% až 90% chvalitebný do 70% dobrý do

Více

Kvantová fyzika a náš svět

Kvantová fyzika a náš svět Kvantová fyzika a náš svět Miloslav Dušek Motto: Mě velmi těší, že se musíme uchýlit k tak podivným pravidlům a bizarnímu způsobu uvažování, abychom pochopili Přírodu, a baví mě o tom lidem vykládat.

Více

Vznik vztlaku a Aerodynamika rotoru větrné elektrárny

Vznik vztlaku a Aerodynamika rotoru větrné elektrárny Vznik vztlaku a Aerodynamika rotoru větrné elektrárny Ing.Jiří Špičák ČSVE - Stránka 1 - Vznik vztlaku Abychom si mohli vysvětlit vznik vztlakové síly, musíme si připomenout fyzikální podstatu proudění.

Více

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus Kapitola 3 Magnetické vlastnosti látky Velká část magnetických projevů je zejména u paramagnetických a feromagnetických látek způsobena především spinovým magnetickým momentem. Pokud se po sečtení všech

Více

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU Pomůcky: čidlo polohy Go!Motion, čidlo magnetického pole MG-BTA, magnet, provázek (gumička, izolepa), vhodný stativ na magnet, LabQuest, program LoggerPro Postup:

Více

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II. Předmět: Technická fyzika III.- Jaderná fyzika Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY Jméno:Martin Fiala Obor:MVT Ročník:II. Datum:16.5.2003 OBECNÁ TEORIE RELATIVITY Ekvivalence

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20

Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20 Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.

Více

Vlnění, optika a atomová fyzika (2. ročník)

Vlnění, optika a atomová fyzika (2. ročník) Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Wilsonova mlžná komora byl první přístroj, který dovoloval pozorovat okem dráhy elektricky

Wilsonova mlžná komora byl první přístroj, který dovoloval pozorovat okem dráhy elektricky Mlžná komora Kristína Nešporová, G. Boskovice Tomáš Pikálek, G. Boskovice Martin Valko, SPŠE a VOŠ Olomouc Abstrakt Tato práce se zabývá problematikou detekce ionizujícího záření pomocí difúzní mlžné komory.

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

M. Odstrčil, T. Odstrčil FJFI - ČVUT, Břehová 7, 115 19 Praha 1 michal@qmail.com, tom@cbox.cz. Abstrakt

M. Odstrčil, T. Odstrčil FJFI - ČVUT, Břehová 7, 115 19 Praha 1 michal@qmail.com, tom@cbox.cz. Abstrakt Supravodiče M. Odstrčil, T. Odstrčil FJFI - ČVUT, Břehová 7, 115 19 Praha 1 michal@qmail.com, tom@cbox.cz Abstrakt V článku je popsán náš experiment, jehož cílem bylo určit kritickou teplotu vysokoteplotních

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t 7.3 Odpory při valení Valení je definováno tak, že dotykové body valícího se tělesa a podložky jsou v relativním klidu. Je zaručeno příkladně tak, že těleso omotáme dvěma vlákny, která jsou upevněna na

Více

Experimenty s demonstračním zdrojem záření DZZ GAMA 300 kbq

Experimenty s demonstračním zdrojem záření DZZ GAMA 300 kbq Experimenty s demonstračním zdrojem záření DZZ GAMA 300 kbq PETER ŽILAVÝ Katedra didaktiky fyziky MFF UK Praha Příspěvek představuje nový demonstrační zdroj gama záření DZZ GAMA 300 kbq určený pro provádění

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

Komerční výrobky pro kvantovou kryptografii

Komerční výrobky pro kvantovou kryptografii Komerční výrobky pro kvantovou kryptografii Miroslav Dobšíček Katedra počítačů, Fakulta elektrotechnická, České vysoké učení technické v Praze, Karlovo náměstí 13, 121 35 Praha 2, Česká republika dobsicm@fel.cvut.cz

Více

Úvod do moderní fyziky. lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky

Úvod do moderní fyziky. lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky Úvod do moderní fyziky lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky Hmota a záření v klasické fyzice jsou hmota a záření popsány zcela odlišným způsobem (Newtonovy

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)

OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla

Více

Speciální teorie relativity IF

Speciální teorie relativity IF Speiální teorie relativity IF Speiální teorie relativity Newtonovy pohybové zákony umožňují popis hování těles pohybujííh se nízkými ryhlostmi. Při ryhlosteh, kterýh dosahují částie v uryhlovačíh, však

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.E... Pechschnitte 12 bodů; (chybí statistiky) Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2) 1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního

Více

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar

Více

Zrod speciální teorie relativity

Zrod speciální teorie relativity Zrod speciální teorie relativity Karel Smolek Ústav technické a experimentální fyziky, ČVUT Aristotelovy představy Aristoteles ve svém spisu Fyzika předkládá názor, že pohybující se tělesa se časem sama

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Počátky kvantové mechaniky. Petr Beneš ÚTEF

Počátky kvantové mechaniky. Petr Beneš ÚTEF Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl

Více

Role experimentu ve vědecké metodě

Role experimentu ve vědecké metodě Role experimentu ve vědecké metodě Erika Mechlová Ostravská univerzita v Ostravě Obsah Úvod 1. Pozorování, sbírání informací 2. Formulace problému 3. Stanovení hypotéz řešení problému 4. Provedení experimentu

Více

LET Z KULOVNICE. Petr Lenhard

LET Z KULOVNICE. Petr Lenhard LET Z KULOVNICE Petr Lenhard OBSAH Balistika Vnější balistika Síly a momenty Aerodynamické síly a momenty Výsledný rotační pohyb Shrnutí a literatura BALISTIKA ROZDĚLENÍ BALISTIKY Obor mechaniky zabývající

Více

4.2.5 Měření elektrického napětí a proudu (cvičení)

4.2.5 Měření elektrického napětí a proudu (cvičení) 4.2.5 Měření elektrického napětí a proudu (cvičení) Předpoklady: 4204 Pedagogická poznámka: Tuto hodinu učím jako dvouhodinové cvičení s polovinou třídy. Dělení je opět nutné, multimetry i samotné měření

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

Chemické repetitorium. Václav Pelouch

Chemické repetitorium. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Chemické repetitorium Václav Pelouch kapitola ve skriptech - 1 Anorganická a obecná chemie Stavba atomu Atom je nejmenší částice hmoty, která obsahuje jádro (složené

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

EXPERIMENTEM K POZNÁNÍ A SPOLUPRÁCI - I

EXPERIMENTEM K POZNÁNÍ A SPOLUPRÁCI - I Pozvánka na netradiční vzdělávací akci EXPERIMENTEM K POZNÁNÍ A SPOLUPRÁCI - I Milí přátelé, srdečně Vás zveme na netradiční víkendovou prakticky orientovanou vzdělávací akci, kterou pořádají Hvězdárna

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více