Kvantová mechanika ve 40 minutách

Rozměr: px
Začít zobrazení ze stránky:

Download "Kvantová mechanika ve 40 minutách"

Transkript

1 Stručný průvodce konečněrozměrnou kvantovou mechanikou České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Úvod do kryptologie

2 Program 1 Od klasické mechaniky k mechanice kvantové 2 3

3 Program 1 Od klasické mechaniky k mechanice kvantové 2 3

4 Stavy systému Klasická mechanika Stavovým prostorem je konfigurační nebo fázový prostor. Stav systému je určen hodnotou všech poloh a rychlostí (hybností).

5 Stavy systému Klasická mechanika Stavovým prostorem je konfigurační nebo fázový prostor. Stav systému je určen hodnotou všech poloh a rychlostí (hybností). Kvantová mechanika Stavový prostorem je komplexní Hilbertův prostor H. Stavu systému odpovídá paprsek tj. jednorozměrný podprostor v H. Charakterizujeme ho jako třídu ekvivalence obyčejně jednotkovým vektorem.

6 Pozorovatelné (veličiny) Klasická mechanika Pozorovatelné veličiny jsou reprezentovány funkcemi na stavovém prostoru.

7 Pozorovatelné (veličiny) Klasická mechanika Pozorovatelné veličiny jsou reprezentovány funkcemi na stavovém prostoru. Kvantová mechanika Každé pozorovatelné přísluší jeden samosdružený lineární operátor na H.

8 Realizace měření Mějme pozorovatelnou A a stav ϕ. 1 Naměřit lze pouze čísla λ σ(a) R.

9 Realizace měření Mějme pozorovatelnou A a stav ϕ. 1 Naměřit lze pouze čísla λ σ(a) R. 2 Číslo λ naměříme s pravděpodobností P(ϕ, λ) = (ϕ, E λ ϕ) = E λ ϕ 2 < 0, 1 >.

10 Realizace měření Mějme pozorovatelnou A a stav ϕ. 1 Naměřit lze pouze čísla λ σ(a) R. 2 Číslo λ naměříme s pravděpodobností P(ϕ, λ) = (ϕ, E λ ϕ) = E λ ϕ 2 < 0, 1 >. 3 Stav ϕ po naměření přejde na stav ψ = E λϕ E λ ϕ.

11 Realizace měření Mějme pozorovatelnou A a stav ϕ. 1 Naměřit lze pouze čísla λ σ(a) R. 2 Číslo λ naměříme s pravděpodobností P(ϕ, λ) = (ϕ, E λ ϕ) = E λ ϕ 2 < 0, 1 >. 3 Stav ϕ po naměření přejde na stav 4 Střední hodnota < A > ϕ = ψ = λ σ(a) E λϕ E λ ϕ. λ (ϕ, E λ ϕ) = (ϕ, Aϕ).

12 Příklad 1 Mějme stav ϕ = ( ) 3 a pozorovatelnou A = 4 ( ) 1 i. i 1

13 Příklad 1 Mějme stav ϕ = ( ) 3 a pozorovatelnou A = 4 ( ) 1 i. i 1 Jaká je střední hodnota < A > ϕ? Jaká je pravděpodobnost, že naměříme 0?

14 Příklad 1 Mějme stav ϕ = ( ) 3 a pozorovatelnou A = 4 ( ) 1 i. i 1 Jaká je střední hodnota < A > ϕ? Jaká je pravděpodobnost, že naměříme 0? ( ) Nápověda 1: Vlastní vektory jsou ϕ 0 = 1 i 2 a 1 ( ) ϕ 2 = i

15 Příklad 1 Mějme stav ϕ = ( ) 3 a pozorovatelnou A = 4 ( ) 1 i. i 1 Jaká je střední hodnota < A > ϕ? Jaká je pravděpodobnost, že naměříme 0? ( ) Nápověda 1: Vlastní vektory jsou ϕ 0 = 1 i 2 a 1 ( ) ϕ 2 = i Nápověda 2: (ϕ, E 0 ϕ) = (ϕ, (ϕ 0, ϕ)ϕ 0 ) = (ϕ, ϕ 0 ) 2.

16 Příklad 1 Mějme stav ϕ = ( ) 3 a pozorovatelnou A = 4 ( ) 1 i. i 1 Jaká je střední hodnota < A > ϕ? Jaká je pravděpodobnost, že naměříme 0? ( ) Nápověda 1: Vlastní vektory jsou ϕ 0 = 1 i 2 a 1 ( ) ϕ 2 = i Nápověda 2: (ϕ, E 0 ϕ) = (ϕ, (ϕ 0, ϕ)ϕ 0 ) = (ϕ, ϕ 0 ) 2. Výsledek: < A > ϕ = 1 a P(ϕ, 1) = 1 2.

17 Kompatibilní pozorovatelné Mějme nyní pozorovatelné A 1 a A 2. Kdy neovlivní měření A 1 výsledek měření A 2?

18 Kompatibilní pozorovatelné Mějme nyní pozorovatelné A 1 a A 2. Kdy neovlivní měření A 1 výsledek měření A 2? Stav ϕ po naměření A i přejde na stav ψ = E (A i ) λ ϕ E (A i ) λ ϕ.

19 Kompatibilní pozorovatelné Mějme nyní pozorovatelné A 1 a A 2. Kdy neovlivní měření A 1 výsledek měření A 2? Stav ϕ po naměření A i přejde na stav ψ = E (A i ) λ ϕ E (A i ) λ ϕ. Musí být jedno, v jakém pořadí je měřím. [E (A 1) t, E (A 2) t ] = 0 [A 1, A 2 ] = 0.

20 Program 1 Od klasické mechaniky k mechanice kvantové 2 3

21 Definice Máme-li vektor, charakterizovaný vlastností k zapisujeme ho k a říkáme mu ket. Pomocí tohoto vektoru a skalárního součinu zkonstruujeme funkcionál (bra) k. Teď dává smysl bra-ket. k l := ( k, l ).

22 Bra-ketová gymnastika S bra-kety lze snadno pracovat, aniž člověk musí příliš přemýšlet, co dělá. Projektor na { ϕ } lin : Relace úplnosti pro bázi { n }: E ϕ = ϕ ϕ. 1 = n n. n=1

23 Stavový prostor více částic Mějme 2 částice, každá se stavovým prostorem H i. Stavový prostor systému dvou částic je H 1 H 2. Vektory jsou lineární kombinací objektů ϕ 1 ψ 2 =: ϕ 1 ψ 2 = ϕ, ψ

24 Program 1 Od klasické mechaniky k mechanice kvantové 2 3

25 Pauliho matice σ 1 := Vlastnosti: ( ) 0 1, σ := ( ) 0 i i 0 1 σ j = σ j, det σ j = 1 a Tr σ j = 0. 2 Spolu s 1 tvoří bázi C 2. a σ 3 := ( ) σ j σ k = δ jk 1 + iɛ jkl σ l. 4 [ 1 2 σ j, 1 ] 2 σ 1 k = iɛ jkl 2 σ l

26 Měření spinu Mám-li elektron, a zajímá-li mě pouze jeho spin, je pro mě důležitý H = C 2. Měříme projekci spinu ( ± 1 2) do jedné z os (nejčastěji osa z = x 3 ) pomocí operátorů S i. S i = 1 2 σ i. S i nejsou kompatibilní pozorovatelné, protože [S j, S k ] = iɛ jkl S l.

27 Entanglement Mějme dvoučásticový stav ψ = 1 2 ( ).

28 Entanglement Mějme dvoučásticový stav ψ = 1 2 ( ). Změřme spin na první částici. A naměřme třeba Jak se změní stav ψ? ( ( ψ E ) ψ = 2 ( ) = Do tohoto stavu přejde systém okamžitě! ) ( ) ( ) = 1 0.

29 Entanglement Mějme dvoučásticový stav ψ = 1 2 ( ). Změřme spin na první částici. A naměřme třeba Jak se změní stav ψ? ( ( ψ E ) ψ = 2 ( ) = Do tohoto stavu přejde systém okamžitě! ) ( ) ( ) = 1 0. Pokud se nyní pokusíme měřit spin na druhé částici, 100% naměříme spin 1 2.

30 No-clone teorém Ve kvantové mechanice nejde naklonovat částici.

31 No-clone teorém Ve kvantové mechanice nejde naklonovat částici. Neexistuje lineární operátor U s vlastností a, X H U( a X ) = a a.

32 No-clone teorém Ve kvantové mechanice nejde naklonovat částici. Neexistuje lineární operátor U s vlastností a, X H U( a X ) = a a. Selže to kvůli linearitě U.

33 Děkuji za pozornost.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti. 6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na 4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Nástin formální stavby kvantové mechaniky

Nástin formální stavby kvantové mechaniky Nástin formální stavby kvantové mechaniky Karel Smolek Ústav technické a experimentální fyziky, ČVUT Komplexní čísla Pro každé reálné číslo platí, že jeho druhá mocnina je nezáporné číslo. Např. 3 2 =

Více

Algoritmus pro hledání vlastních čísel kvaternionových matic

Algoritmus pro hledání vlastních čísel kvaternionových matic Úvod Algoritmus pro hledání vlastních čísel kvaternionových matic Bc. Martin Veselý Fakulta jaderná a fyzikálně inženýrská Katedra softwarového inženýrství v ekonomii Skupina aplikované matematiky a stochastiky

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)

Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1) 14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový

Více

rozumíme obdélníkovou tabulku

rozumíme obdélníkovou tabulku Přednáška : Matice Matice poskytují velmi účinný způsob jak úsporně zapisovat mnoho lineárních problémů. Navíc je tento způsob velmi vhodný pro jejich zadání do počítačových programů, které dokáží tyto

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

Kvantová fyzika a náš svět

Kvantová fyzika a náš svět Kvantová fyzika a náš svět Miloslav Dušek Motto: Mě velmi těší, že se musíme uchýlit k tak podivným pravidlům a bizarnímu způsobu uvažování, abychom pochopili Přírodu, a baví mě o tom lidem vykládat.

Více

H = 1 ( ) 1 1. dostaneme bázi označovanou často znaménky plus a minus:

H = 1 ( ) 1 1. dostaneme bázi označovanou často znaménky plus a minus: Propletené stavy Standardní bázi kubitu máme ve zvyku značit symboly a. Existuje ovšem nekonečně mnoho jiných ortonormálních bází které vzniknou ze standardní báze vždy nějakou unitární transformací. Použijeme-li

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Komerční výrobky pro kvantovou kryptografii

Komerční výrobky pro kvantovou kryptografii Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Paradoxy kvantové mechaniky

Paradoxy kvantové mechaniky Paradoxy kvantové mechaniky Karel molek Ústav technické a experimentální fyziky, ČVUT Bezinterakční měření Mějme bombu, která je aktivována velmi citlivým mechanismem v podobě zrcátka, které je propojeno

Více

Základy kvantové mechaniky

Základy kvantové mechaniky Ústav teoretické fyziky a astrofyziky Přírodovědecká fakulta Masarykovy univerzity Základy kvantové mechaniky Tomáš Tyc Brno 006 Tento text je určen jako pomůcka pro porozumění přednáškám z předmětu Základy

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Kvantová mechanika I & II

Kvantová mechanika I & II Kvantová mechanika I & II JSF094 akademický rok 015-016 Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: Trója

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

D - Přehled předmětů studijního plánu

D - Přehled předmětů studijního plánu D - Přehled předmětů studijního plánu Vysoká škola: Součást vysoké školy: Název studijního programu: Název studijního oboru: Slezská univerzita v Opavě Matematický ústav v Opavě Matematika Obecná matematika

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

3 Posunovací operátory, harmonický oscilátor

3 Posunovací operátory, harmonický oscilátor 3 Posunovací operátory, harmonický oscilátor 3.1 Jednoduchý algebraický systém Mějme operátor  a operátor  k němu sdružený, které mezi sebou splňují komutační relace 1 [Â, = m, m R +. (3.1.1) Definujme

Více

Operátory a maticové elementy

Operátory a maticové elementy Operátory a matice Operátory a maticové elementy operátory je výhodné reprezentovat maticemi maticové elementy operátorů jsou dány vztahy mezi Slaterovými determinanty obsahujícími ortonormální orbitaly

Více

18. První rozklad lineární transformace

18. První rozklad lineární transformace Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

PLANCK EINSTEIN BOHR de BROGLIE

PLANCK EINSTEIN BOHR de BROGLIE KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Slabikář kvantové mechaniky

Slabikář kvantové mechaniky Slabikář kvantové mechaniky Ladislav Hlavatý 19. září 2012 Obávám se, že není možno se naučit kvantovou mechaniku pořádně a jednou provždy, nýbrž že se jedná o postupný proces. Cílem tohoto textu je především

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Akustické aplikace pro IB

Akustické aplikace pro IB Akustické aplikace pro IB Ondřej Jiříček jiricek@fel.cvut.cz Marek Brothánek, Vojtěch Jandák Akustické aplikace pro IB p.1/22 Aktivní snižování hluku Akustické aplikace pro IB p.2/22 Obsah Princip Historie

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Podmínky pro hodnocení žáka v předmětu fyzika

Podmínky pro hodnocení žáka v předmětu fyzika Podmínky pro hodnocení žáka v předmětu fyzika Obecná pravidla: Při klasifikaci písemných prací bude brán jako zaklad tento klasifikační systém: pro stupeň výborný 100% až 90% chvalitebný do 70% dobrý do

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Podmínky pro hodnocení žáka v předmětu fyzika

Podmínky pro hodnocení žáka v předmětu fyzika Podmínky pro hodnocení žáka v předmětu fyzika Obecná pravidla: Při klasifikaci písemných prací bude brán jako zaklad tento klasifikační systém pro stupeň: výborný 100% až 90% chvalitebný do 70% dobrý do

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Numerické modelování v aplikované geologii

Numerické modelování v aplikované geologii Numerické modelování v aplikované geologii David Mašín Ústav hydrogeologie, inženýrské geologie a užité geofyziky Přírodovědecká fakulta Karlova Univerzita v Praze Přednášky pro obor Geotechnologie David

Více

Vlastnosti lineárních zobrazení a velikost vektorů

Vlastnosti lineárních zobrazení a velikost vektorů Drsná matematika I 8. přednáška Vlastnosti lineárních zobrazení a velikost vektorů Jan Slovák Masarykova univerzita Fakulta informatiky 15. 11. 2010 Obsah přednášky 1 Literatura 2 Matice zobrazení 3 Vlastní

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

vztažný systém obecné napětí předchozí OBSAH další

vztažný systém obecné napětí předchozí OBSAH další p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Úvod do moderní fyziky. lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky

Úvod do moderní fyziky. lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky Úvod do moderní fyziky lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky Hmota a záření v klasické fyzice jsou hmota a záření popsány zcela odlišným způsobem (Newtonovy

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Předmět: MA04 Vyučující: Jan Chleboun, místnost B-305, linka 3866 (jan.chleboun@cvut.cz) Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Sledovat informace na webových stránkách vyučujícího (o zkoušce,

Více

Kvantová mechanika bez prostoročasu

Kvantová mechanika bez prostoročasu Natura 30. listopadu 2002 Kvantová mechanika bez prostoročasu zpracoval: Jiří Svršek 1 podle článku T. P. Singha Abstract Pravidla kvantové mechaniky pro svoji formulaci vyžadují časovou souřadnici. Pojem

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Hallův jev. stud. skup. FMUZV (73) dne 5.12.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Hallův jev. stud. skup. FMUZV (73) dne 5.12. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. 10 Název: Hallův jev Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 5.12.2013 Odevzdal dne: Možný počet

Více

Úvod do kvantového počítání

Úvod do kvantového počítání Osnova Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 10. března 2005 O přednáškách Osnova Přehled k přednáškám Proč kvantové počítání a počítače 1 Úvod do kvantového počítaní

Více

4 Lineární zobrazení. 4.1 Definice lineárního zobrazení

4 Lineární zobrazení. 4.1 Definice lineárního zobrazení 4 Lineární zobrazení Motivace. Diferenciální rovnice jsou partií matematiky, která má uplatnění ve fyzice, ekonomii, biologii, chemii atd. Prostě a jednoduše, vymyslete si jakýkoliv jev a je pravděpodobné,

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

Úlohy k přednášce Kvantová mechanika (UFY100)

Úlohy k přednášce Kvantová mechanika (UFY100) Úlohy k přednášce Kvantová mechanika (UFY100) Určeno pro 2. ročník učitelství fyziky pro SŠ Poslední úpravy: 12. března 2014 Následující text obsahuje stručná zadání úloh k přednášce, z části řešená na

Více

9 Měření na jednofázovém transformátoru při různé činné zátěži

9 Měření na jednofázovém transformátoru při různé činné zátěži 9 Měření na jednofázovém transformátoru při různé činné zátěži 9. Zadání úlohy a) změřte, jak se mění účiník jednofázového transformátoru se změnou zatížení sekundárního vinutí, b) u všech měření vyhodnoťte

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

1 Mechanika hmotného bodu a soustav hmotných bodů

1 Mechanika hmotného bodu a soustav hmotných bodů 1 Mechanika hmotného bodu a soustav hmotných bodů Základní kinematické veličiny, Newtonovy pohybové zákony, inerciální soustavy, I. a II. impulzová věta. Keplerovy zákony, harmonický oscilátor (tlumený

Více

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura emi - nalévárna pavel.fibich@prf.jcu.cz 4. října 2012 Obsah emi 1 2 3 emi 4 5 6 emi Proč povídat o ích v kurzu? ové modely se používají v populační ekologii téměř nejčastěji bude snažší porozumět práci

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více