Diferenciální rovnice kolem nás

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Diferenciální rovnice kolem nás"

Transkript

1 Diferenciální rovnice kolem nás Petr Kaplický Den otevřených dveří MFF UK 2012 Praha, Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 1 / 24

2 Plán 1 Let Felixe B. 2 Pád (s odporem prostředí) 3 Newtonův problém optimálního aerodynamického profilu Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 2 / 24

3 Plán Let Felixe B. 1 Let Felixe B. 2 Pád (s odporem prostředí) 3 Newtonův problém optimálního aerodynamického profilu Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 3 / 24

4 Let Felixe B. Video a motivace Experimentální data Skok z výšky 39 km. Doba letu 9:09 min. Z toho volným pádem 4:29 min. Po 33s dosažena rychlost 1130 km h 1 (313 m s 1 ). Motivace Překonat volným pádem rychlost zvuku. Co je to rychlost zvuku a jak je veliká? Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 4 / 24

5 Let Felixe B. Standardní model atmosféry Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 5 / 24

6 Plán Pád (s odporem prostředí) 1 Let Felixe B. 2 Pád (s odporem prostředí) 3 Newtonův problém optimálního aerodynamického profilu Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 6 / 24

7 Pád (s odporem prostředí) Úvod do modelování s(t)... pozice objektu v čase t Jak určit rychlost objektu? Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 7 / 24

8 Pád (s odporem prostředí) Úvod do modelování s(t)... pozice objektu v čase t Jak určit rychlost objektu? Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 7 / 24

9 Pád (s odporem prostředí) Úvod do modelování s(t)... pozice objektu v čase t Jak určit rychlost objektu? Rychlost označíme v = s a zrychlení a = v (derivace). Tyto rovnosti jsou prototypy diferenciálních rovnic, rovnic, ve kterých vystupují derivace. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 7 / 24

10 Pád (s odporem prostředí) Úvod do modelování s(t)... pozice objektu v čase t Jak určit rychlost objektu? Rychlost označíme v = s a zrychlení a = v (derivace). Tyto rovnosti jsou prototypy diferenciálních rovnic, rovnic, ve kterých vystupují derivace. Jak vypočítat pohyb tělesa o hmotnosti m, na které působí síla F? 2. Newtonův pohybový zákon (bilance hybnosti): mv = F Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 7 / 24

11 Pád (s odporem prostředí) Pád ve stratosféře Tíhová síla: F = mg, kde g = 9.8 m s 2 je tíhové zrychlení. Pro rychlost Felixe B. dostáváme diferenciální rovnici v (t) = g pro t > 0 s počáteční podmínkou v(0) = 0, řešení je v(t) = gt. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 8 / 24

12 Pád (s odporem prostředí) Pád ve stratosféře Tíhová síla: F = mg, kde g = 9.8 m s 2 je tíhové zrychlení. Pro rychlost Felixe B. dostáváme diferenciální rovnici v (t) = g pro t > 0 s počáteční podmínkou v(0) = 0, řešení je v(t) = gt. Po 33 s je tedy rychlost 323,4 m s 1 =1164,2 km h 1. Což odpovídá číslu ve zprávě o letu (1130 km h 1 ). Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 8 / 24

13 Pád (s odporem prostředí) Standardní model atmosféry Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 9 / 24

14 Pád (s odporem prostředí) Pád ve stratosféře s odporem prostředí 2. Newtonův pohybový zákon F 1 = mg... tíhová síla F 2... odporová síla prostředí mv = F, kde F = F 1 + F 2 Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 10 / 24

15 Pád (s odporem prostředí) Pád ve stratosféře s odporem prostředí 2. Newtonův pohybový zákon F 1 = mg... tíhová síla F 2... odporová síla prostředí Newtonův odporový vzorec mv = F, kde F = F 1 + F 2 Síla F 2 o velikosti F 2 = 1 2 CSρv 2 působí proti rychlosti pohybu. C... odporový součinitel S... průřez objektu ρ... hustota prostředí Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 10 / 24

16 Pád (s odporem prostředí) Pád ve stratosféře s odporem prostředí 2 Pro rychlost Felixe B. dostáváme diferenciální rovnici v = g CSρv 2 2m pro t > 0 s počáteční podmínkou v(0) = 0. Konstanty určíme následovně: ρ = 0, 02 kg m 3, C = 1, S = 0, 5 m 2, m = 120 kg. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 11 / 24

17 Pád (s odporem prostředí) Pád ve stratosféře s odporem prostředí 2 Pro rychlost Felixe B. dostáváme diferenciální rovnici v = g CSρv 2 2m pro t > 0 s počáteční podmínkou v(0) = 0. Konstanty určíme následovně: ρ = 0, 02 kg m 3, C = 1, S = 0, 5 m 2, m = 120 kg. ( Rovnici lze explicitně vyřešit. Označíme-li K = v(t) = 1 K e 2gKt 1 e 2gKt + 1. CSρ 2mg ) 1 2, platí Po dosazení dostaneme: v(33) = 1123 km h 1 (ve zprávě 1130 km h 1 ). Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 11 / 24

18 Pád (s odporem prostředí) Pád ve stratosféře s odporem prostředí 3 Rychlost letu v čase [0, 40] s Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 12 / 24

19 Pád (s odporem prostředí) Standardní model atmosféry Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 13 / 24

20 Pád (s odporem prostředí) Pád těsně nad mořem Pro rychlost Felixe B. dostáváme diferenciální rovnici s počáteční podmínkou v(0) = 0. 1 g v = 1 K 2 v 2 pro t > 0 Na povrchu Země je hustota vzduchu asi ρ = 1.26 kg m 3. Lze spočítat, že rychlost Felixe B. se s rostoucím časem vždy bĺıží hodnotě v + = 1/K. S konstantami ρ = 1, 26 kg m 3, C = 1, S = 1 m 2, m = 120 kg je v + = 155 km h 1. Použije-li padák o ploše 25 m 2, bude v + = 31 km h 1. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 14 / 24

21 Brždění bez padáku Pád (s odporem prostředí) Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 15 / 24

22 Pád (s odporem prostředí) Modelování celého letu Pohyb se stále řídí rovnicí v = g CSρv 2 2m pro t > 0 s počáteční podmínkou v(0) = 0, ale nyní je hustota vzduchu závislá na pozici Felixe B. Hustotu atmosféry určíme pomocí: ρ(s) = ρ 0 exp((ρ 0 g(s 39000)/p 0 ), kde ρ 0 = 1.26 kg m 3, g = 9.8 m s 2, p 0 = Pa. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 16 / 24

23 Pád (s odporem prostředí) Modelování celého letu Pohyb se stále řídí rovnicí v = g CSρv 2 2m pro t > 0 s počáteční podmínkou v(0) = 0, ale nyní je hustota vzduchu závislá na pozici Felixe B. Hustotu atmosféry určíme pomocí: ρ(s) = ρ 0 exp((ρ 0 g(s 39000)/p 0 ), kde ρ 0 = 1.26 kg m 3, g = 9.8 m s 2, p 0 = Pa. Víme: s = v a dostáváme pro s rovnici s = g CSρ 0 exp((ρ 0 g(s 39000)/p 0 )(s ) 2 2m t > 0 s počáteční podmínkou s(0) = 0, s (0) = 0. Tuto rovnici už neumím řešit analyticky a proto použijeme numerický software. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 16 / 24

24 Průběh celého letu Pád (s odporem prostředí) Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 17 / 24

25 Plán Newtonův problém optimálního aerodynamického profilu 1 Let Felixe B. 2 Pád (s odporem prostředí) 3 Newtonův problém optimálního aerodynamického profilu Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 18 / 24

26 Newtonův problém optimálního aerodynamického profilu Modelování Jak určit odporový součinitel? Newton (1685) řešil následující problém: nalezněte těleso s minimálním odporem vzduchu. Co to je minimální odpor vzduchu? Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 19 / 24

27 Newtonův problém optimálního aerodynamického profilu Modelování Jak určit odporový součinitel? Newton (1685) řešil následující problém: nalezněte těleso s minimálním odporem vzduchu. Co to je minimální odpor vzduchu? Předpoklady: řídká tekutina, elastická srážka, zákon zachování hybnosti Příklady: C = 1 2 pro kouli, C = 1 pro plochou desku Jak asi vypadá optimální tvar? Model Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 19 / 24

28 Newtonův problém optimálního aerodynamického profilu Aplikace Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 20 / 24

29 Newtonův problém optimálního aerodynamického profilu Matematická formulace problému (osová symetrie) Hledáme funkci w tak, aby w(0) 0, w(m) = R, w 0 na (0, M) w(t)w (t) 3 C = M 0 dt + w(0)2 1+w (t) 2 2 byl minimální Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 21 / 24

30 Newtonův problém optimálního aerodynamického profilu Matematická formulace problému (osová symetrie) Hledáme funkci w tak, aby w(0) 0, w(m) = R, w 0 na (0, M) w(t)w (t) 3 C = M 0 dt + w(0)2 1+w (t) 2 2 byl minimální Problém lze převést na řešení diferenciální rovnice na (0, M) Funkce w w (t) 3 w(t) (1 + w (t) 2 ) 2 = c 2 pro vhodné c > 0. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 21 / 24

31 Newtonův problém optimálního aerodynamického profilu Osově symetrická řešení Řešení lze nalézt v parametrickém tvaru: t(z) = c 2 ( 1 + lg z A), z 2 4z 4 (1+z 2 ) 2 z 3. w(z) = c 2 Konstanty c a A jsou určeny požadavky t(1) = 0, w(m) = R. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 22 / 24

32 Newtonův problém optimálního aerodynamického profilu Nesymetrická řešení Pokud vynecháme předpoklad osové symetrie, budeme řešit následující problém. Bud K kruh o poloměru R. Najděme w : K [0, M] tak, že w je konkávní 1 K dx je minimální 1+ w(x) 2 Je optimální řešení osově symetrické? Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 23 / 24

33 Newtonův problém optimálního aerodynamického profilu Nesymetrická řešení Pokud vynecháme předpoklad osové symetrie, budeme řešit následující problém. Bud K kruh o poloměru R. Najděme w : K [0, M] tak, že w je konkávní K 1 1+ w(x) 2 dx je minimální Je optimální řešení osově symetrické? Brock, Ferone, Kawohl (1996)-řešení není nikdy osově symetrické Lachand-Robert, Peletier (2001)-explicitní tvar řešení Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 23 / 24

34 Newtonův problém optimálního aerodynamického profilu Závěr Pomocí Newtonových zákonů jsme modelovali pád v prostředí (s odporem). Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 24 / 24

35 Newtonův problém optimálního aerodynamického profilu Závěr Pomocí Newtonových zákonů jsme modelovali pád v prostředí (s odporem). Našli jsme optimální aerodynamický profil. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 24 / 24

36 Newtonův problém optimálního aerodynamického profilu Závěr Pomocí Newtonových zákonů jsme modelovali pád v prostředí (s odporem). Našli jsme optimální aerodynamický profil. Zjistili jsme, že některá zřejmá fakta nejsou pravdivá. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 24 / 24

37 Newtonův problém optimálního aerodynamického profilu Závěr Pomocí Newtonových zákonů jsme modelovali pád v prostředí (s odporem). Našli jsme optimální aerodynamický profil. Zjistili jsme, že některá zřejmá fakta nejsou pravdivá. I v klasických matematických problémech je možné dosáhnout nových výsledků. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 24 / 24

38 Newtonův problém optimálního aerodynamického profilu Závěr Pomocí Newtonových zákonů jsme modelovali pád v prostředí (s odporem). Našli jsme optimální aerodynamický profil. Zjistili jsme, že některá zřejmá fakta nejsou pravdivá. I v klasických matematických problémech je možné dosáhnout nových výsledků. Diferenciální rovnice jsou kolem nás (na MFF UK). Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 24 / 24

39 Newtonův problém optimálního aerodynamického profilu Závěr Pomocí Newtonových zákonů jsme modelovali pád v prostředí (s odporem). Našli jsme optimální aerodynamický profil. Zjistili jsme, že některá zřejmá fakta nejsou pravdivá. I v klasických matematických problémech je možné dosáhnout nových výsledků. Diferenciální rovnice jsou kolem nás (na MFF UK). Děkuji Vám za pozornost. Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 24 / 24

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Představení partnerů projektu

Představení partnerů projektu OSNOVA 1) Představení partnerů projektu 2) Lety do stratosféry 3) Zemská atmosféra 4) Spolupráce Hvězdárny Valašské Meziříčí a Slovenské organizace pro vesmírné aktivity 5) Společně do stratosféry - úspěchy

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009 Význam vody pro globální chlazení Globe Processes Model Verze pro účastníky semináře Cloud 3.12.2009 Jaromír Horák, jaromir.horak@equica.cz, 2009 Role vody v globálních (klimatických) změnách Dík vodě

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

úč úč ž ů ž Č Č č č ů ž úč č úč ť Ň č ú Ý č č Ú Ú ť ú č ď ů ž š úč ž úč úč ž ť ď ť ď ž ú č č úč š ž Ů č č ú úč ž ů ť úč ž ž ž Ů č ž ú č Š úč č Úč Č Č š ď š Š š Ó Ó ž ůč ú Ď ť ž ů ů č ů Č ů ž úč Ý č ž úč

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5 PŘEDNÁŠKA 5 π n * ρvk * d 4 n [ ] 6 d + s *0 v m [ mg] [ m] Metody stanovení jemnosti (délkové hmotnosti) vláken: Mikroskopická metoda s výpočtem jemnosti z průměru (tloušťky) vlákna u vláken kruhového

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

VZOROVÉ PŘÍKLADY Z FYZIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z FYZIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z FYZIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z fyziky: Prakticky jakákoliv celostátní učebnice

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší. EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t +

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

8. Mechanika kapalin a plynů

8. Mechanika kapalin a plynů 8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět fyzika, který je realizován prostřednictvím

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost).

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). Mechanika teorie srozumitelně www.nabla.cz Druhý Newtonův pohybový zákon Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). 1. úkol: Krabičku uvedeme strčením do pohybu.

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Seriál: Rotor a jeho kopačky

Seriál: Rotor a jeho kopačky Seriál: Rotor a jeho kopačky V minulých dílech jsme se podívali na to, jak numericky integrovat diferenciální rovnice a definovali si chaos. Tento díl bude o něčem trochu jiném; naučíme se, jak vyrobit

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP SKETCHUP SketchUp je program pro tvorbu trojrozměrných modelů. Je to jednoduchý, intuitivní a silný nástroj pro modelování. Není žádný problém

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více