DETERMINANTY EKONOMICKÉHO

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "DETERMINANTY EKONOMICKÉHO"

Transkript

1 MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA Studijní obor: Matematické a statistické metody v ekonomii DETERMINANTY EKONOMICKÉHO RŮSTU - MEZINÁRODNÍ STUDIE Determinants of Economic Growth - International Survey Diplomová práce Vedoucí práce: Ing. Miroslav Hloušek Autor: Bc. Michaela Stehlíková Brno 2010

2 Jméno a příjmení autora: Michaela Stehlíková Název diplomové práce: Determinanty ekonomického růstu - mezinárodní studie Název práce v angličtině: Determinants of Economic Growth - International Survey Katedra: ekonomie Vedoucí diplomové práce: Ing. Miroslav Hloušek Rok obhajoby: 2010 Anotace Cílem práce je pomocí ekonometrického přístupu kvantifikovat zdroje ekonomického růstu v mezinárodním měřítku. K tomu je využito dvou přístupů, a to tzv. Barro regressions a přístupu vycházejícího ze studie Mankiwa, Romera a Weila (1992). Model pro Barro regressions je složen pouze z proměnných, u kterých se předpokládá, že mohou ovlivňovat úroveň ustáleného stavu. Přístup Mankiwa, Romera a Weila (1992) oproti tomu vychází čistě z teoretických předpokladů Solowova-Swanova modelu. Výsledky obou přístupů jsou také porovnávány s vybranými studiemi zabývajícími se ekonomickým růstem. Odhady modelů jsou provedeny pomocí programu Gretl. Anotation The aim of the thesis is to quantify the resources of economic growth in the international scale using econometric approach. There are two approaches used, the so-called Barro regressions and approach based on study of Mankiw, Romer and Weil (1992). The model for Barro regressions is compound only from variables, which are expected to be able to influence the level of steady state. The approach of Mankiw, Romer and Weil (1992) is in contrast based on pure theoretical assumptions of Solow-Swan model. The results of both approaches are also compared with selected studies dealing with the economical growth. The estimates of the models are made with use of Gretl program. Klíčová slova ekonomický růst, ekonometrická analýza, Solowův-Swanův model, Barro regressions, konvergence Keywords economic growth, econometrics analysis, Solow-Swan model, Barro regressions, convergence

3 Čestné prohlášení Prohlašuji, že jsem diplomovou práci Determinanty ekonomického růstu - mezinárodní studie vypracovala samostatně pod vedením Ing. Miroslava Hlouška a uvedla v ní všechny použité literární a jiné odborné zdroje v souladu s právními předpisy, vnitřními předpisy Masarykovy univerzity a vnitřními akty řízení Masarykovy univerzity a Ekonomickosprávní fakulty MU. V Brně, dne Michaela Stehlíková

4 Poděkování Na tomto místě bych ráda poděkovala Ing. Miroslavu Hlouškovi za cenné rady, připomínky a čas, který mi věnoval. Také bych zde ráda poděkovala své rodině a to především za trpělivost, kterou mi věnovala během psaní této práce.

5 Obsah Úvod 7 1 Solowův-Swanův model Předpoklady modelu Řešení modelu Model s technologickým pokrokem Model s lidským kapitálem Růst a konvergence v datech Cobbova-Douglasova produkční funkce Ekonometrická analýza modelu Data Výsledky pro model bez lidského kapitálu Výsledky pro rozšířený model s lidským kapitálem Růst a konvergence Výsledky testování konvergence Barro regressions Výsledky regrese Dílčí výsledky regrese Zhodnocení výsledků Závěr 52 Literatura 53 Seznam obrázků 55 Seznam tabulek 56 A Tabulka: Data pro model typu MRW 57 B Tabulky: Data pro Barro regressions 61

6

7 ÚVOD Úvod Cílem této diplomové práce je kvantifikovat determinanty ekonomického růstu v mezinárodním měřítku za pomocí ekonometrického přístupu. Bude se tedy jednat o odhad modelu (v našem případě dvou modelů) sestaveného pro určitou skupinu zemí s různými vysvětlujícími proměnnými. K samotnému způsobu odhadu a především k sestavování modelu v práci využijeme dvou zcela odlišných přístupů. První přístup bude vycházet z práce Mankiwa, Romera a Weila (1992) a bude založen pouze na konkrétních teoretických předpokladech Solowova-Swanova modelu. Cílem pak bude, mimo samotného ověření teoretického vlivu předpokládaných zdrojů ekonomického růstu na růst, ověření i teoretických závěrů tohoto modelu týkajících se konvergence a její rychlosti. Odhad modelu provedeme pomocí metody nejmenších čtverců a s využitím programu Gretl. Druhý přístup bude založen na tzv. Barro regressions. V tomto případě již nebudeme vycházet přímo z nějakého konkrétního modelu, který nám přesně určí podobu odhadovaného modelu, ale budeme si ho vytvářet sami. Za vysvětlující proměnné zde budeme dosazovat takové proměnné, u kterých budeme předpokládat, že by mohli mít vliv na úroveň ustáleného stavu. Vzhledem k možné endogenitě proměnných v tomto případě využijeme dvoustupňovou metodu nejmenších čtverců, namísto jednoduché OLS, a opět s využitím programu Gretl. Součástí práce bude také jak samotné porovnání jednotlivých výsledků obou přístupů navzájem, tak jejich porovnání s několika významnými studiemi jako jsou např. Mankiw, Romer a Weil (1992), Barro a Sala-i-Martin (2003), Easterly a Levin (2001), nebo Przeworski a Limongi (1993). 7

8 Předpoklady modelu Kapitola 1 Solowův-Swanův model Již dlouhá léta můžeme pozorovat značné odlišnosti mezi zeměmi. To nás samozřejmě přivádí k řadě otázek, na které bychom chtěli znát odpovědi. A jednou z nejčastěji diskutovaných otázek je bezesporu tato: Proč jsou některé země chudé a jiné bohaté? Jak víme z historie, tak téměř každá ekonomická škola si vytvořila svůj vlastní pohled na to, co ve skutečnosti ovlivňuje ekonomický růst. At už to byla klasická škola, která kladla důraz na dělbu práce a akumulaci kapitálu, nebo např. novější endogenní růstové modely, všechny poskytly alespoň minimální možné vysvětlení zdrojů růstu. A o něco podobného se pokusíme i my. Abychom mohli dobře kvantifikovat determinanty ekonomického růstu, tak je dobré si za výchozí model zvolit takový model, který je vystavěn na poměrně silném teoretickém základě. Jedním z takovýchto modelů je i Solowův-Swanův model, který budeme v této práci využívat. Nyní si tedy uvedeme jeho základní předpoklady, pomocí nichž si pak odvodíme ty nejdůležitější vlastnosti modelu. V celém textu pak budeme vycházet z děl Barroa a Sala-i-Martina (2003) a Acemoglua (2009). 1.1 Předpoklady modelu Mezi základní předpoklady Solowova-Swanova modelu patří to, že můžeme agregátní produkční funkci vyjádřit jako Y (t) = F [K(t), L(t), t], (1.1) kde Y (t) je tok výstupu vyprodukovaný za čas, K(t) fyzický kapitál, L(t) práce a t čas. Dále se předpokládá pouze jednosektorová produkce homogenního zboží, které můžeme bud spotřebovat C(t), nebo investovat I(t) k vytvoření nové jednotky fyzického kapitálu K(t). Navíc se předpokládá, že ekonomika je uzavřená, tedy že platí S(t) = I(t) = Y (t) C(t). (1.2) Jak jsme již uvedli, tak model předpokládá to, že investice slouží k růstu kapitálu. Jde ale pouze o hrubý růst kapitálu, protože fyzický kapitál podléhá opotřebení. Proto musíme při výpočtu čistého růstu kapitálové zásoby ještě odečíst velikost δ, která nám udává míru depreciace. 8

9 Předpoklady modelu K(t) = I(t) δk(t) (1.3) Navíc zde předpokládáme dvě exogenní veličiny n a s, které označují míru přírůstku obyvatelstva a míru úspor. Platí tedy pro ně, že n = L/L a s = S(t)/Y (t). (1.4) Posledním a možná nejdůležitějším předpokladem je to, že uvažujeme pouze tzv. neoklasickou produkční funkci, která splňuje následující podmínky. 1. Pro každé K > 0 a L > 0, je F (.) kladná a platí: F (K, L) K F (K, L) L > 0, > 0, 2 F (K, L) < 0, K 2 2 F (K, L) < 0. L 2 (1.5) 2. F (.) má konstantní výnosy z rozsahu: F (λk, λl) = λf (K, L) pro každé λ, (1.6) 3. a pro mezní produkt kapitálu a práce platí: ( ) ( ) F (K, L) F (K, L) lim = lim = K 0 K L 0 L ( ) ( ) F (K, L) F (K, L) lim = lim = 0. K K L L (1.7) Tyto poslední podmínky jsou často označovány jako tzv. Inadovy podmínky. Z těchto tří základních podmínek také vyplývá to, že každý vstup je pro produkci nezbytný. Tzn., že F (0, L) = F (K, 0) = 0, což lze jednoduše dokázat. Nejprve si všimněme, že jestli Y a K, pak lim (Y/K) = lim ( Y/ K) = 0. K K Z podmínky o konstantních výnosech z rozsahu také plyne, že pro nějaké konečné L můžeme předcházející limitu zapsat jako lim (Y/K) = lim [F (1, L/K)] = F (1, 0). K K A pokud podmínku konstantních výnosů z rozsahu využijeme ještě jednou, a to v následující podobě F (K, 0) = K F (1, 0), 9

10 Řešení modelu tak dostáváme, že a tedy lim (Y/K) = F (1, 0) = 0, K F (K, 0) = K F (1, 0) = 0 pro každé konečné K. Analogicky také můžeme dokázat, že F (0, L) = 0 pro každé konečné L. Konstantních výnosů z rozsahu se ještě využívá při jednom důležitém odvozování, a to při odvozování tzv. intenzivního vyjádření produkční funkce. V tomto vyjádření si totiž produkční funkci vyjádříme jako produkci na pracovníka, neboli Y/L. K tomu nám poslouží následující značení. Necht y = Y/L označuje produkci na pracovníka, k = K/L podíl kapitálu na pracovníka a f(k) je definována jako F (k, 1). Pak si jenom stačí uvědomit, že platí a tedy Y = F (K, L) = L F (K/L, 1) = L f(k), (1.8) Y/L = y = f(k). (1.9) Nyní si již můžeme odvodit základní dynamickou rovnici pro kapitál. 1.2 Řešení modelu Jak jsme si uvedli dříve, tak platí K(t) = I(t) δk(t). Odtud si pak můžeme vyjádřit i K(t)/L(t) jako K(t)/L(t) = I(t)/L(t) δk(t)/l(t) = s Y (t)/l(t) δk = s f(k) δk. (1.10) Tento výraz pak využijeme v následující rovnici pro funkci k. Funkce k je totiž definovaná jako derivace k podle času a proto platí k = d(k/l) dt = K/L L/L k = K/L nk, (1.11) a pokud za výraz K/L dosadíme vyjádření z předcházející rovnice, tak dostaneme k = s f(k) δk nk = s f(k) (n + δ)k. (1.12) Takto jsme tedy získali tzv. fundamentální rovnici Solowova-Swanova modelu, kde vidíme, že k závisí pouze na k, a výraz (n + δ) můžeme chápak jako tzv. efektivní míru depreciace pro k. Tím je myšleno to, že k se snižuje nejen díky samotnému opotřebení δ, ale také částečně kvůli růstu L rychlostí n. Pokud se nyní podíváme na obrázek 1.1 znázorňující Solowův-Swanův model, tak dospějeme k jednoduchému závěru, a to k tomu, že celý systém konverguje do stavu, kde k = 0. Tento stav se nazývá ustálený stav a platí pro něj, 10

11 Řešení modelu že v něm různé veličiny rostou ve stálých poměrech. Říkáme, že model vykazuje tzv. vyvážený růst. Tomuto stavu odpovídá v gafu průsečík přímky (n + δ)k s křivkou s f(k), tedy platí s f(k ) = (n + δ)k, (1.13) kde k označuje hodnotu k v ustáleném stavu. Pokud se tedy nacházíme v ustáleném stavu, pak musí platit, že nejen k, ale i y a c = C/L jsou konstanty, které mají následující podobu: y = f(k ) c = (1 s) f(k ). Obrázek 1.1: Solowův-Swanův model V tomto okamžiku si také můžeme odvodit některé poměrně významné závěry vyplývající ze Solowova-Swanova modelu. Hned ten první, a možná nejdůležitější, nám říká, že v dlouhém období nejsme schopni vysvětlit růst výstupu na pracovníka. Dalším důležitým poznatkem je to, že to co nám způsobuje konvergenci k ustálenému stavu, je klesající mezní produkt kapitálu. Dále vidíme, že i když nám míra úspor nemůže dlouhodobě zvýšit růst, protože má svoji určitou hranici a tou je jednička, neboli 0 s 1, 11

12 Řešení modelu tak krátkodobě to způsobit může. A posledním důležitým zjištěním je to, že v našem modelu nemá dlouhodobě žádný efekt na růst ani hospodářská politika. Poslední věc, kterou si ještě v této části ukážeme, je vykreslení míry růstu v závislosti na podílu kapitálu a práce. Pokud si chceme vyjádřit míru růstu, označme ji γ k, tak si vlastně chceme spočítat podíl k/k. Stačí nám tedy dopočítat, čemu se tento podíl rovná a jsme hotovi. Tedy což se po dosazení za k z rovnice (1.12) rovná γ k = k k, (1.14) γ k = s f(k)/k (n + δ). (1.15) Obrázek 1.2: Dynamika Solowova-Swanova modelu Pokud se nyní podíváme na obrázek 1.2 pozorně, tak dospějeme k jednomu důležitému závěru. Budeme-li totiž předpokládat, že dvě různé ekonomiky mají stejný ustálený stav a v současnosti se nacházejí pod tímto ustáleným stavem, tak pro ně platí, že ta chudší bude ke svému ustálenému stavu konvergovat rychleji než ta bohatší. Ale jak tomu bude, pokud uvolníme předpoklad o stejných ustálených stavech obou zemí, tedy dovolíme jim, aby se lišily např. v míře úspor? Tuto situaci máme znázorněnu na obrázku

13 Model s technologickým pokrokem Zde máme dvě ekonomiky s různými ustálenými stavy a vidíme, že už nemusí platit, že chudší země, tedy země s menším k(0), vždy konvergují ke svému ustálenému stavu rychleji než ty bohatší. Dospěli jsme tedy k závěru, že v Solowově-Swanově modelu platí pouze tzv. podmíněná konvergence, tedy že chudší ekonomika konverguje ke svému ustálenému stavu rychleji než bohatší, pouze pokud se obě ekonomiky nacházejí pod svými ustálenými stavy, které jsou pro obě ekonomiky stejné. Pokud bychom uvažovali situaci, kdy se alespoň jedna z ekonomik nenachází pod svým ustáleným stavem, tak bychom řekli, že rychleji konverguje ta ekonomika, která je dále od svého ustáleného stavu. Samozřejmě opět platí podmínka stejných ustálených stavů pro obě ekonomiky. Obrázek 1.3: Podmíněná konvergence 1.3 Model s technologickým pokrokem K obdobným závěrům, ke kterým jsme došli v předcházející části, bychom dospěli i u modelu s technologickým pokrokem. Protože se při odvozování používá prakticky stejný postup jaký jsme použili již dříve, tak si v této části ukážeme pouze výsledné řešení modelu. Nyní tedy uvažujeme produkční funkci Y, pro kterou platí, že Y (t) = F [K(t), L(t), T (t)], (1.16) 13

14 Model s technologickým pokrokem kde Y je produkční funkce, K je kapitál, L práce a T je technologický pokrok. Navíc předpokládáme, že technologický pokrok je tzv. labor-augmenting, 1 což znamená, že pro produkční funkci platí následující vyjádření: Y (t) = F (K, T L). (1.17) Tento předpoklad je poměrně důležitý, protože nám zajišt uje, aby model vykazoval vyvážený růst. A stejně jako jsme předpokládali růst u práce, tak jej předpokládáme i u technologického pokroku, kde jej budeme značit jako x = T /T. Řešení modelu je pak následující: kde ˆk = K/(T L) a ŷ = Y/(T L). Pro ustálený stav pak platí což si opět můžeme vyjádřit i graficky. dˆk dt = s ŷ (n + x + δ)ˆk, (1.18) s ŷ = (n + x + δ)ˆk, (1.19) Obrázek 1.4: Solowův-Swanův model s technologickým pokrokem 1 rozšiřující práci 14

15 Model s lidským kapitálem 1.4 Model s lidským kapitálem O něco komplikovanější je to ovšem pokud do Solowova-Swanova modelu zahrneme také lidský kapitál. Předpokládejme, že nyní máme produkční funkci vyjádřenou jako funkci závislou nejen na fyzickém kapitále, práci a technologickém pokroku, ale že také závisí na kapitále lidském. Tedy platí Y (t) = F [K(t), H(t), T (t)l(t)], (1.20) kde H(t) označuje lidský kapitál. Vidíme, že v tomto případě už nebude vyjádření tak jednoduché jako v předcházejících příkladech a bude záviset na dvou proměnných. Těmito proměnnými budou k = K/(T L) a h = H/(T L) a výsledným řešením bude systém rovnic d k dt = s k ỹ (n + x + δ k ) k d h dt = s h ỹ (n + x + δ h ) h, (1.21) kde s k je část úspor, která je pak investována do fyzického kapitálu, s h je část úspor investovaných do lidského kapitálu, δ k a δ h označují opotřebení příslušného kapitálu a ỹ značí stejně jako v modelu s technologickým pokrokem výstup na efektivního pracovníka. 2 Nyní již můžeme snadno odvodit systém rovnic, které nám budou určovat ustálený stav. Tyto rovnice mají následující podobu: s k ỹ = (n + x + δ k ) k s h ỹ = (n + x + δ h ) h. (1.22) 2 výstup na efektivního pracovníka můžeme zapsat jako ỹ = Y/(T L). 15

16 Cobbova-Douglasova produkční funkce Kapitola 2 Růst a konvergence v datech V této kapitole se již podrobněji podíváme na to, jak těsně nám předcházející modely sedí na datech. K tomu si ovšem nevystačíme pouze s teoretickým vyjádřením modelu, ale budeme potřebovat nějaké konkrétní vyjádření. Přesněji, budeme potřebovat konkrétní podobu neoklasické produkční funkce. A právě k tomu využijeme tzv. Cobbovu-Douglasovu produkční funkci. Při odhadování modelů pak využijeme stejný přístup jako Mankiw, Romer a Weil (1992), 1 ale na novějších datech. 2.1 Cobbova-Douglasova produkční funkce Jednou z nejběžnějších a nejčastěji využívaných neoklasických produkčních funkcí je Cobbova-Douglasova produkční funkce, která má pro model s technologickým pokrokem následující podobu: Y = K α (T L) 1 α, (2.1) kde Y je výstup, K je kapitál, T je technologický pokrok, L je práce a α je konstanta, pro kterou platí 0 < α < 1. Pokud nyní využijeme teoretické odvození řešení Solowova-Swanova modelu s technologickým pokrokem, tak si můžeme vyjádřit i konkrétní podobu řešení pro model s Cobbovou-Douglasovou produkční funkcí. Stačí si odvodit čemu se rovná výstup na efektivního pracovníka a ten pak dosadit do řešení. Pomocí jednoduchých úprav pak dostaneme, že Y/(T L) = K α (T L) 1 α /(T L) = K α (T L) α = ˆk α, (2.2) a po dosazení do rovnice (1.18) obdržíme dˆk dt = s ˆk α (n + x + δ)ˆk. (2.3) Nyní si také můžeme vyjádřit i hodnotu ˆk v ustáleném stavu. Víme totiž, že musí platit 1 v dalším textu značeno pouze jako MRW s ˆk α = (n + x + δ)ˆk, (2.4) 16

17 Cobbova-Douglasova produkční funkce odkud plyne, že a tedy a konečně ˆk α = [(n + x + δ)ˆk ]/s, (2.5) ˆk (α 1) = (n + x + δ)/s, (2.6) ˆk 1 = [s/(n + x + δ)] (1 α). (2.7) Takto jsme si tedy odvodili ustálenou stavovu hodnotu pro ˆk a vidíme, že nám pozitivně závisí na míře úspor a negativně na růstu populace, technologického pokroku a depreciaci kapitálu, samozřejmě za předpokladu, že 0 < α < 1. Obdobným způsobem bychom dospěli i k řešení Solowova-Swanova modelu s lidským kapitálem. Jen by se nám změnila podoba Cobbovy-Douglasovy produkční funkce a to do tvaru Y = K α H β (T L) 1 α β, (2.8) kde H je lidský kapitál, α a β jsou konstanty, pro které platí α +β < 1, 2 a ostatní veličiny jsou definovány jako v předcházející části. Nyní bychom si opět vyjádřili čemu se rovná ustálený stav, a to bychom opět provedli díky dosazení ỹ, které se v tomto případě rovná k α h β, do soustavy rovnic (1.22). A pomocí jednoduchých úprav bychom následně získali ( n + x + δ k = s k s h ) 1 α 1 h β 1 α ( ) 1 (2.9) n + x + δ h β 1 = k α 1 β. Tento zápis ale můžeme ještě mírně upravit, kdy k celému odvození využijeme pouze obě předcházející rovnice, které do sebe navzájem dosadíme. Např. u k dosadíme do první rovnice ze soustavy rovnic (2.9) rovnici druhou a poté pomocí standardních matematických úprav upravíme. Dostaneme tedy, že odkud ( n + x + δ k = s k ( n + x + δ = s k ) 1 ) 1 α 1 [ (n + x + δ s h α 1 ( n + x + δ 2 díky této podmínce uvažujeme klesající výnosy z kapitálu s h ) ] β 1 1 α β 1 k α 1 β ) β = (2.10) (β 1)(1 α) αβ k (1 β)(1 α), 17

18 Ekonometrická analýza modelu a konečně k 1 α β (1 β)(1 α) ( ) 1 n + x + δ = s k α 1 ( n + x + δ s h ) β (β 1)(1 α), (2.11) k = [ (n + x + δ s k ) 1 α 1 ( n + x + δ s h Obdobným způsobem bychom získali i h = ) β ] (1 β)(1 α) 1 α β (β 1)(1 α) [ s 1 β k s β h = n + x + δ ] 1 1 α β. (2.12) [ s α k s 1 α ] 1 1 α β h. (2.13) n + x + δ Vidíme tedy, že jak pro model s technologickým pokrokem, tak i pro rozšířený model s lidským kapitálem, jsme schopni poměrně jednoduše vyjádřit jejich ustálené stavy. 2.2 Ekonometrická analýza modelu V předcházejících částech jsme si ukázali, které veličiny nám mohou ovlivnit naše hodnoty v ustáleném stavu. A my bychom rádi zjistili, jak přesně nám tyto teoretické závěry sedí na datech. K tomuto účelu využijeme základní ekonometrické nástroje. Jak jsme si mohli všimnout, tak Solowův-Swanův model nám předpovídá větší reálný důchod v zemích s vyšší mírou úspor nebo s nižší hodnotou výrazu n + x + δ. Tuto skutečnost si můžeme ověřit, pokud využijeme některé již dříve odvozené závěry modelů. Nejprve předpokládejme pouze model bez lidského kapitálu. Pokud si produkční funkci vyjádříme tak, abychom dostali výstup na hlavu, tedy Y/L, a dosadíme do ní ustálenou stavovou hodnotu pro ˆk z rovnice (2.7), tak zjistíme, že Y (t) L(t) = K(t)α T (t) 1 α L(t) α = ˆk(t) [ ] α 1 α T (t) = (s/(n + x + δ)) (1 α) T (t). (2.14) Hodnotu T (t) pak můžeme nahradit výrazem T (0) e xt, protože jak jsme si již řekli dříve, technologický pokrok roste tempem x, a celou rovnici (2.14) pak zlogaritmovat. ( ) Y (t) ln = ln T (0) + xt + α L(t) 1 α ln(s) α ln(n + x + δ) (2.15) 1 α Takto upravený zápis modelu pak můžeme odhadnout pomocí metody nejmenších čtverců. Při odhadu předpokládáme, že jak tempo růstu technologického pokroku, tak míra depreciace, jsou ve všech zemích stejné. 3 Stejný předpoklad ovšem není příliš vhodný pro veličinu T (0). Ta totiž v sobě minimálně ukrývá i velikost počátečních možností země, dané 3 u technologie vycházíme z poměrně logického předpokladu volně šiřitelného know-how mezi zeměmi a u depreciace jsme nenašli žádný důvod pro to, abychom očekávali nějaké výrazné rozdíly mezi zeměmi. Navíc nemáme ani žádná data, pomocí nichž bychom se o tom mohli přesvědčit. 18

19 Výsledky pro model bez lidského kapitálu např. přírodním bohatstvím nebo zavedenými institucemi v této zemi. Proto budeme předpokládat, že ln (T (0)) = a + ɛ, (2.16) kde a je konstanta a ɛ je šok specifický pro každou zemi. Náš odhadovaný model tedy bude mít pro konkrétní stanovený čas, např. t = 0, následující podobu: ( ) Y ln = a + α L 1 α ln(s) α ln(n + x + δ) + ɛ, (2.17) 1 α kdy vycházíme z předpokladu nezávislosti s a n na ɛ stejně jako MRW Data K tomu, abychom si mohli model odhadnout, ovšem potřebujeme i příslušná data. Ty jsme z větší části získali z databáze PWT 4 a doplnili jsme je o data z databází GGDC, 5 SourceOECD 6 a UN 7. Tato sesbíraná data jsme pak dali dohromady a vytvořili jsme si vzorek pro 118 zemí zahrnující roční data, která pokrývají období mezi lety 1960 až Pro každou zemi jsme si tedy obdobně jako u MRW vyjádřili Y/L jako reálné HDP v roce 2000 vydělené počtem tzv. working-age populace, 8 s jako průměrný podíl reálných investic na reálném HDP, a n jako průměrný růst working-age populace. Pro pozdější potřeby během naší analýzy jsme si také data rozdělili do tří skupin. Do skupiny zahrnující pouze země OECD, která obsahuje 30 zemí OECD, do skupiny tzv. non-oil zemí, 9 která obsahuje 93 zemí, a konečně do skupiny tzv. intermediate zemí, 10 ve které je 78 států. Pro míru růstu technologického pokroku a velikost depreciace jsme si poté zvolili stejné konstanty jako MRW, a to x = 0.02 a δ = Výsledky pro model bez lidského kapitálu Ještě předtím, než se podíváme na samotné výsledky, si uvedeme jednu důležitou poznámku ohledně parametru α. Ten je totiž v Solowově-Swanově modelu chápán jako podíl kapitálu na důchodu. Stačí si totiž uvědomit, že v konkurenční ekonomice je kapitál odměněn pomocí mezního produktu, tedy R = f (ˆk) = αt 1 αˆkα 1, (2.18) kde R je nájemní cena kapitálu, a odtud si jen vyjádřit, čemu se rovná α. Pak dostaneme 4 Penn World Table, <http://pwt.econ.upenn.edu/php site/pwt index.php> 5 The Groningen Growth and Development Centre, <http://www.ggdc.net/databases/ted.htm> 6 The OECD s Online Library of Statistical Databases, Books and Periodicals, <http://oberon.sourceoecd.org/vl= /cl=19/nw=1/rpsv/home.htm> 7 United Nations, <http://www.un.org/en/databases/ > 8 populace ve věku let 9 nejsou zahrnuty země, pro které je dominantní naftový průmysl 10 země, které mají v databázi PWT grade score nejvýše D. Toto skóre ohodnocuje kvalitu dat, a proto jsme vyřadili ty země, u kterých se nemůžeme spolehnout na pravdivost poskytnutých dat. 11 vychází přibližně z U.S. dat 19

20 Výsledky pro model bez lidského kapitálu α = Rk Rˆk = T α 1ˆk α ŷ = RK Y. (2.19) Díky tomuto zjištění si také můžeme vyjádřit i přibližnou hodnotu parametru α. Podíl kapitálu na důchodu je totiž všeobecně uvažován jako 1/3, a proto budeme tuto hodnotu uvažovat i my jako hodnotu našeho parametru α. Pokud bychom se tedy nyní vrátili k našemu odhadovanému modelu, daného rovnicí (2.17), tak vidíme, že nejemon, že jsme schopni dopředu určit znaménka koeficientů, ale také jejich velikost, kdy očekáváme, že první koeficient bude přibližně 0.5 a druhý 0.5. Nyní se pojd me podívat na samotné výsledky regrese, které máme uvedené v tabulce 2.1. Jak můžeme vidět, tak znaménka nám souhlasí u všech koeficientů ve všech třech sledovaných skupinách. Potvrdil se nám jak pozitivní vliv úspor na důchodu, tak negativní vliv růstu populace. V tomto směru nám odhad přesně korespoduje s teoretickým modelem. Dalším důležitým prvkem je statistická významnost jednotlivých koeficientů. S tou jsme také spokojeni, protože až na skupinu zemí OECD nám vyšla u všech koeficientů silná statistická významnost. Ale ani u zemí OECD nemůžeme být zklamáni, protože i zde můžeme mluvit o statistické významnosti na 5% hladině významnosti, což je stále dobrý výsledek. Co nás jako další zajímalo, byly hodnoty koeficientů determinace. Ty mají naše skupiny zemí poměrně vysoké, opět až na skupinu zemí OECD. Můžeme tedy říci, že naše odhady mají dostatečně vysokou vysvětlovací schopnost. Např. u skupiny zemí non-oil je to téměř 71%. Problém ovšem nastal u velikostí koeficientů. Ty jsou totiž oproti předpokládaným hodnotám větší. Např. u skupiny zemí intermediate nám vyšel koeficient u ln(s k ) roven a u ln(n + x + δ) , ale my jsme očekávali hodnoty 0.5 a 0.5. Vidíme tedy, že v tomto ohledu je náš modelem s empirickým pozorováním v rozporu. Celkově však můžeme být s odhadem spokojeni, protože až na zmiňovaný rozdíl ve velikostech koeficientů, nám odhad vyšel přesně tak, jak jsme očekávali. A díky vysoké vysvětlovací schopnosti tak můžeme řící, že model dostatečně vysvětluje většinu nerovností v důchodech mezi zeměmi. Neměli bychom ale zapomínat na to, že model nepodporuje všechny skutečnosti, které z něj vyplývají, jak se můžeme znovu přesvědčit níže. Při našem odhadování jsme totiž také provedli tzv. omezený odhad našeho modelu, který vychází z předpokladu rovnosti absolutních velikostí našich koeficientů. 12 Tento odhad jsme provedli především proto, abychom se přesvědčili o platnosti tohoto tvrzení, a také proto, abychom byli schopni dopočítat velikost našeho parametru α. Jak můžeme vidět v tabulce 2.2, tak nám výsledky testové statistiky nevyšly moc přesvědčivě. Správně bychom měli u zemí non-oil i intermediate zamítnou náš předpoklad, že jsou koeficienty u ln(s k ) a ln(n+x+δ) až na znaménka stejné. V tomto směru náš model selhal. Dále nám náš odhadovaný parametr α vyšel ve všech případech přibližně 0.5. Opět se tedy dostáváme ke stejnému problému jako u velikostí koeficientů při neomezeném odhadování, a to k tomu, že nám samotná velikost přesně nesedí na datech. Celkově pak musíme být s výsledkem omezeného odhadu vzhledem k modelu nespokojeni. 12 stačí nahlédnout do zápisu modelu v rovnici (2.17) 20

21 Výsledky pro model bez lidského kapitálu Model pro Non-oil: OLS, za použití pozorování 1 93 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 11,5199 1, ,7093 9,71e 18 ln s k 1, , ,2318 9,44e 17 ln n x d 2, , ,0686 3,00e 8 Střední hodnota závisle proměnné S.O. závisle proměnná Součet čtverců reziduí S.CH. regrese R Adjustované R F (2, 90) P-hodnota(F ) 1.70e 24 Logaritmus věrohodnosti Akaikovo kritérium Schwarzovo kritérium Hannan Quinn Model pro Intermediate: OLS, za použití pozorování 1 78 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 11,1048 1, ,8073 4,40e 15 ln s k 1, , ,2059 4,84e 12 ln n x d 2, , ,7761 1,64e 7 Střední hodnota závisle proměnné 9, S.O. závisle proměnná 0, Součet čtverců reziduí 23,83943 S.CH. regrese 0, R 2 0, Adjustované R 2 0, F (2, 75) 81,12259 P-hodnota(F ) 1,76e 19 Logaritmus věrohodnosti 64,44785 Akaikovo kritérium 134,8957 Schwarzovo kritérium 141,9658 Hannan Quinn 137,7260 Model pro OECD: OLS, za použití pozorování 1 30 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 9, , ,9753 3,25e 05 ln s k 1, , ,3624 0,0256 ln n x d 1, , ,4894 0,0193 Střední hodnota závisle proměnné 10,34978 S.O. závisle proměnná 0, Součet čtverců reziduí 4, S.CH. regrese 0, R 2 0, Adjustované R 2 0, F (2, 27) 7, P-hodnota(F ) 0, Logaritmus věrohodnosti 13,10421 Akaikovo kritérium 32,20842 Schwarzovo kritérium 36,41201 Hannan Quinn 33,55318 Tabulka 2.1: Odhad modelu bez lidského kapitálu 21

22 Výsledky pro rozšířený model s lidským kapitálem Model pro Non-oil Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 90) = 11,3127, s p-hodnotou = 0, Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 7, , ,05 4,69e 82 ln s k 1, , ,48 2,05e 23 ln n x d 1, , ,48 2,05e 23 Standardní chyba regrese = 0, Odpovídající α = 0, Model pro Intermediate Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 75) = 8,12871, s p-hodnotou = 0, Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 7, , ,65 9,26e 63 ln s k 1, , ,87 5,54e 19 ln n x d 1, , ,87 5,54e 19 Standardní chyba regrese = 0, Odpovídající α = 0, Model pro OECD Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 27) = 0,527019, s p-hodnotou = 0, Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 8, , ,17 2,14e 16 ln s k 1, , ,747 0,0008 ln n x d 1, , ,747 0,0008 Standardní chyba regrese = Odpovídající α = 0, Tabulka 2.2: Odhad omezeného modelu bez lidského kapitálu Výsledky pro rozšířený model s lidským kapitálem Jak jsme si uvedli v předcházející části, tak Solowův-Swanův model bez lidského kapitálu má s určitými částmi modelu problém. Proto se nyní podíváme na to, zda nám rozšíření tohoto modelu o lidský kapitál pomůže tyto problémy odstranit. 22

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Investiční výdaje (I)

Investiční výdaje (I) Investiční výdaje Investiční výdaje (I) Zkoumáme, co ovlivňuje kolísání I. I = výdaje (firem) na kapitálové statky (stroje, budovy) a změna stavu zásob. Firmy si kupují (pronajímají) kapitálové statky.

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Krátkodobá rovnováha na trhu peněz

Krátkodobá rovnováha na trhu peněz Makroekonomická analýza přednáška 9 1 Krátkodobá rovnováha na trhu peněz Funkce poptávky po penězích Poptávka po penězích je úměrná cenové hladině (poptávka po penězích je poptávka po reálných penězích).

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Matematicky lze ekonomický růst vyjádřit jako změna (růst, pokles) reálného produktu ekonomiky za určité období (1 rok):

Matematicky lze ekonomický růst vyjádřit jako změna (růst, pokles) reálného produktu ekonomiky za určité období (1 rok): Ekonomie 1 RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz 5. Ekonomický růst 5.1 Základní terminologie Každá ekonomika má za cíl svůj růst, tj. produkovat

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete!

Tento seminář pro Vás připravuje vzdělávací agentura. Kurzy-Fido.cz. ...s námi TSP zvládnete! Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení páté série (27.4.2009) 13. Hlavní myšlenka: efektivní porovnávání zlomků a desetinných čísel Postup: V

Více

13 Specifika formování poptávky firem po práci a kapitálu

13 Specifika formování poptávky firem po práci a kapitálu 13 Specifika formování poptávky firem po práci a kapitálu Na rozdíl od trhu finálních statků, kde stranu poptávky tvořili jednotlivci (domácnosti) a stranu nabídky firmy, na trhu vstupů vytvářejí jednotlivci

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

produktu. Na mysli přitom máme reálný růst, tj., kdy se zvyšuje množství

produktu. Na mysli přitom máme reálný růst, tj., kdy se zvyšuje množství Hospodářský růst Definice Pokud hovoříme o hospodářském růstu, hovoříme o růstu hrubého domácího produktu. Na mysli přitom máme reálný růst, tj., kdy se zvyšuje množství vyprodukovaných statků, nikoliv

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Jedná se o podíl spotřebních výdajů domácností a výdajů neziskových institucí na HDP v %.

Jedná se o podíl spotřebních výdajů domácností a výdajů neziskových institucí na HDP v %. 3.kapitola Výdaje a rovnovážný hrubý domácí produkt V této kapitole se seznámíte: s faktory, které ovlivňují spotřebu a investice s tím, jak je konstituován rovnovážný produkt jak je rovnovážný produkt

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

0 z 25 b. Ekonomia: 0 z 25 b.

0 z 25 b. Ekonomia: 0 z 25 b. Ekonomia: 1. Roste-li mzdová sazba,: nabízené množství práce se nemění nabízené množství práce může růst i klesat nabízené množství práce roste nabízené množství práce klesá Zvýšení peněžní zásoby vede

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

5. kapitola Agregátní poptávka a agregátní nabídka

5. kapitola Agregátní poptávka a agregátní nabídka 5. kapitola Agregátní poptávka a agregátní nabídka V této kapitole se seznámíte - s tím, co je to agregátní poptávka a jaké faktory ji ovlivňují - podrobně s tím, jak délka časového období ovlivňuje agregátní

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA

Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA Agregátní poptávka (AD): agregátní poptávka vyjadřuje různá množství statků a služeb (reálného produktu), která chtějí spotřebitelé, firmy, vláda a zahraniční

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let?

Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let? Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let? Vědecký seminář doktorandů VŠFS, 30. ledna 2013, VŠFS, Estonská 500, Praha 10 Jana Kotěšovcová Vysoká škola

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1

HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1 HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1 Ivana Staňková, Tomáš Volek Jihočeská univerzita v Českých Budějovicích, Zemědělská

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Semestrální práce z předmětu MAB

Semestrální práce z předmětu MAB Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu MAB Modely investičního rozhodování Helena Wohlmuthová A07148 16. 1. 2009 Obsah 1 Úvod... 3 2 Parametry investičních

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

Gravitační model vnitřní migrace v ČR

Gravitační model vnitřní migrace v ČR WORKING PAPER č. 13/2010 Gravitační model vnitřní migrace v ČR Tomáš Paleta Monika Jandová prosinec 2010 Řada studií Working Papers Centra výzkumu konkurenční schopnosti české ekonomiky je vydávána s podporou

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Model výkonnosti hokejových reprezentačních týmů

Model výkonnosti hokejových reprezentačních týmů www.pwc.com/cz Model výkonnosti hokejových reprezentačních týmů Duben 5 Poradenská společnost analyzovala předpoklady jednotlivých zemí pro úspěch na mistrovství světa v hokeji, které začíná. května v

Více

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky Minulá přednáška - podstatné Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Typologie nákladů firmy Náklady v krátkém období Náklady v dlouhém období Důležité vzorce TC = FC + VC AC =

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ústav stavební ekonomiky a řízení Fakulta stavební VUT Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ing. Dagmar Palatová dagmar@mail.muni.cz Agregátní nabídka a agregátní poptávka cena

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY

KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY KAPITOLA 3 KOUPENÉ A PRODANÉ OPCE VERTIKÁLNÍ SPREADY Vertikální spread je kombinace koupené a prodané put nebo call opce se stejným expiračním měsícem. Výraz spread se používá proto, že riziko je rozložené

Více

Seminární práce ze Základů firemních financí

Seminární práce ze Základů firemních financí Seminární práce ze Základů firemních financí Téma: Analýza vývoje zisku Zpracovaly: Veronika Kmoníčková Jana Petrčková Dominika Sedláčková Datum prezentace: 24.3. 2004...... V Brně dne...... P o d p i

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ DIPLOMOVÁ PRÁCE Diplomant: Vedoucí diplomové práce: Zdeněk ŽELEZNÝ RNDr. Libuše Samková,

Více

Obsah ODDÍL A ZÁKLADNÍ SOUVISLOSTI MAKROEKONOMICKÉ ANALÝZY 3 ODDÍL B: ANALÝZA VNITŘNÍ A VNĚJŠÍ EKONOMICKÉ ROVNOVÁHY 63. Úvod 1

Obsah ODDÍL A ZÁKLADNÍ SOUVISLOSTI MAKROEKONOMICKÉ ANALÝZY 3 ODDÍL B: ANALÝZA VNITŘNÍ A VNĚJŠÍ EKONOMICKÉ ROVNOVÁHY 63. Úvod 1 iv Úvod 1 ODDÍL A ZÁKLADNÍ SOUVISLOSTI MAKROEKONOMICKÉ ANALÝZY 3 1. Ekonomický systém, ekonomický model a makroekonomická analýza 5 1.1 Ekonomické modelování a makroekonomická analýza 6 1.1.1 Nástin historického

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Maximální počet dosažitelných bodů: 100. Minimální počet bodů znamenající splnění testu: 50.

Maximální počet dosažitelných bodů: 100. Minimální počet bodů znamenající splnění testu: 50. Pozorně si pročtěte každou z 20 testovacích otázek. Každá otázka má pouze jedno správné řešení. Toto řešení si můžete zapsat do tohoto zadání. V každém případě nezapomeňte svoje řešení zapsat do oficiálního

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více