DETERMINANTY EKONOMICKÉHO

Rozměr: px
Začít zobrazení ze stránky:

Download "DETERMINANTY EKONOMICKÉHO"

Transkript

1 MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA Studijní obor: Matematické a statistické metody v ekonomii DETERMINANTY EKONOMICKÉHO RŮSTU - MEZINÁRODNÍ STUDIE Determinants of Economic Growth - International Survey Diplomová práce Vedoucí práce: Ing. Miroslav Hloušek Autor: Bc. Michaela Stehlíková Brno 2010

2 Jméno a příjmení autora: Michaela Stehlíková Název diplomové práce: Determinanty ekonomického růstu - mezinárodní studie Název práce v angličtině: Determinants of Economic Growth - International Survey Katedra: ekonomie Vedoucí diplomové práce: Ing. Miroslav Hloušek Rok obhajoby: 2010 Anotace Cílem práce je pomocí ekonometrického přístupu kvantifikovat zdroje ekonomického růstu v mezinárodním měřítku. K tomu je využito dvou přístupů, a to tzv. Barro regressions a přístupu vycházejícího ze studie Mankiwa, Romera a Weila (1992). Model pro Barro regressions je složen pouze z proměnných, u kterých se předpokládá, že mohou ovlivňovat úroveň ustáleného stavu. Přístup Mankiwa, Romera a Weila (1992) oproti tomu vychází čistě z teoretických předpokladů Solowova-Swanova modelu. Výsledky obou přístupů jsou také porovnávány s vybranými studiemi zabývajícími se ekonomickým růstem. Odhady modelů jsou provedeny pomocí programu Gretl. Anotation The aim of the thesis is to quantify the resources of economic growth in the international scale using econometric approach. There are two approaches used, the so-called Barro regressions and approach based on study of Mankiw, Romer and Weil (1992). The model for Barro regressions is compound only from variables, which are expected to be able to influence the level of steady state. The approach of Mankiw, Romer and Weil (1992) is in contrast based on pure theoretical assumptions of Solow-Swan model. The results of both approaches are also compared with selected studies dealing with the economical growth. The estimates of the models are made with use of Gretl program. Klíčová slova ekonomický růst, ekonometrická analýza, Solowův-Swanův model, Barro regressions, konvergence Keywords economic growth, econometrics analysis, Solow-Swan model, Barro regressions, convergence

3 Čestné prohlášení Prohlašuji, že jsem diplomovou práci Determinanty ekonomického růstu - mezinárodní studie vypracovala samostatně pod vedením Ing. Miroslava Hlouška a uvedla v ní všechny použité literární a jiné odborné zdroje v souladu s právními předpisy, vnitřními předpisy Masarykovy univerzity a vnitřními akty řízení Masarykovy univerzity a Ekonomickosprávní fakulty MU. V Brně, dne Michaela Stehlíková

4 Poděkování Na tomto místě bych ráda poděkovala Ing. Miroslavu Hlouškovi za cenné rady, připomínky a čas, který mi věnoval. Také bych zde ráda poděkovala své rodině a to především za trpělivost, kterou mi věnovala během psaní této práce.

5 Obsah Úvod 7 1 Solowův-Swanův model Předpoklady modelu Řešení modelu Model s technologickým pokrokem Model s lidským kapitálem Růst a konvergence v datech Cobbova-Douglasova produkční funkce Ekonometrická analýza modelu Data Výsledky pro model bez lidského kapitálu Výsledky pro rozšířený model s lidským kapitálem Růst a konvergence Výsledky testování konvergence Barro regressions Výsledky regrese Dílčí výsledky regrese Zhodnocení výsledků Závěr 52 Literatura 53 Seznam obrázků 55 Seznam tabulek 56 A Tabulka: Data pro model typu MRW 57 B Tabulky: Data pro Barro regressions 61

6

7 ÚVOD Úvod Cílem této diplomové práce je kvantifikovat determinanty ekonomického růstu v mezinárodním měřítku za pomocí ekonometrického přístupu. Bude se tedy jednat o odhad modelu (v našem případě dvou modelů) sestaveného pro určitou skupinu zemí s různými vysvětlujícími proměnnými. K samotnému způsobu odhadu a především k sestavování modelu v práci využijeme dvou zcela odlišných přístupů. První přístup bude vycházet z práce Mankiwa, Romera a Weila (1992) a bude založen pouze na konkrétních teoretických předpokladech Solowova-Swanova modelu. Cílem pak bude, mimo samotného ověření teoretického vlivu předpokládaných zdrojů ekonomického růstu na růst, ověření i teoretických závěrů tohoto modelu týkajících se konvergence a její rychlosti. Odhad modelu provedeme pomocí metody nejmenších čtverců a s využitím programu Gretl. Druhý přístup bude založen na tzv. Barro regressions. V tomto případě již nebudeme vycházet přímo z nějakého konkrétního modelu, který nám přesně určí podobu odhadovaného modelu, ale budeme si ho vytvářet sami. Za vysvětlující proměnné zde budeme dosazovat takové proměnné, u kterých budeme předpokládat, že by mohli mít vliv na úroveň ustáleného stavu. Vzhledem k možné endogenitě proměnných v tomto případě využijeme dvoustupňovou metodu nejmenších čtverců, namísto jednoduché OLS, a opět s využitím programu Gretl. Součástí práce bude také jak samotné porovnání jednotlivých výsledků obou přístupů navzájem, tak jejich porovnání s několika významnými studiemi jako jsou např. Mankiw, Romer a Weil (1992), Barro a Sala-i-Martin (2003), Easterly a Levin (2001), nebo Przeworski a Limongi (1993). 7

8 Předpoklady modelu Kapitola 1 Solowův-Swanův model Již dlouhá léta můžeme pozorovat značné odlišnosti mezi zeměmi. To nás samozřejmě přivádí k řadě otázek, na které bychom chtěli znát odpovědi. A jednou z nejčastěji diskutovaných otázek je bezesporu tato: Proč jsou některé země chudé a jiné bohaté? Jak víme z historie, tak téměř každá ekonomická škola si vytvořila svůj vlastní pohled na to, co ve skutečnosti ovlivňuje ekonomický růst. At už to byla klasická škola, která kladla důraz na dělbu práce a akumulaci kapitálu, nebo např. novější endogenní růstové modely, všechny poskytly alespoň minimální možné vysvětlení zdrojů růstu. A o něco podobného se pokusíme i my. Abychom mohli dobře kvantifikovat determinanty ekonomického růstu, tak je dobré si za výchozí model zvolit takový model, který je vystavěn na poměrně silném teoretickém základě. Jedním z takovýchto modelů je i Solowův-Swanův model, který budeme v této práci využívat. Nyní si tedy uvedeme jeho základní předpoklady, pomocí nichž si pak odvodíme ty nejdůležitější vlastnosti modelu. V celém textu pak budeme vycházet z děl Barroa a Sala-i-Martina (2003) a Acemoglua (2009). 1.1 Předpoklady modelu Mezi základní předpoklady Solowova-Swanova modelu patří to, že můžeme agregátní produkční funkci vyjádřit jako Y (t) = F [K(t), L(t), t], (1.1) kde Y (t) je tok výstupu vyprodukovaný za čas, K(t) fyzický kapitál, L(t) práce a t čas. Dále se předpokládá pouze jednosektorová produkce homogenního zboží, které můžeme bud spotřebovat C(t), nebo investovat I(t) k vytvoření nové jednotky fyzického kapitálu K(t). Navíc se předpokládá, že ekonomika je uzavřená, tedy že platí S(t) = I(t) = Y (t) C(t). (1.2) Jak jsme již uvedli, tak model předpokládá to, že investice slouží k růstu kapitálu. Jde ale pouze o hrubý růst kapitálu, protože fyzický kapitál podléhá opotřebení. Proto musíme při výpočtu čistého růstu kapitálové zásoby ještě odečíst velikost δ, která nám udává míru depreciace. 8

9 Předpoklady modelu K(t) = I(t) δk(t) (1.3) Navíc zde předpokládáme dvě exogenní veličiny n a s, které označují míru přírůstku obyvatelstva a míru úspor. Platí tedy pro ně, že n = L/L a s = S(t)/Y (t). (1.4) Posledním a možná nejdůležitějším předpokladem je to, že uvažujeme pouze tzv. neoklasickou produkční funkci, která splňuje následující podmínky. 1. Pro každé K > 0 a L > 0, je F (.) kladná a platí: F (K, L) K F (K, L) L > 0, > 0, 2 F (K, L) < 0, K 2 2 F (K, L) < 0. L 2 (1.5) 2. F (.) má konstantní výnosy z rozsahu: F (λk, λl) = λf (K, L) pro každé λ, (1.6) 3. a pro mezní produkt kapitálu a práce platí: ( ) ( ) F (K, L) F (K, L) lim = lim = K 0 K L 0 L ( ) ( ) F (K, L) F (K, L) lim = lim = 0. K K L L (1.7) Tyto poslední podmínky jsou často označovány jako tzv. Inadovy podmínky. Z těchto tří základních podmínek také vyplývá to, že každý vstup je pro produkci nezbytný. Tzn., že F (0, L) = F (K, 0) = 0, což lze jednoduše dokázat. Nejprve si všimněme, že jestli Y a K, pak lim (Y/K) = lim ( Y/ K) = 0. K K Z podmínky o konstantních výnosech z rozsahu také plyne, že pro nějaké konečné L můžeme předcházející limitu zapsat jako lim (Y/K) = lim [F (1, L/K)] = F (1, 0). K K A pokud podmínku konstantních výnosů z rozsahu využijeme ještě jednou, a to v následující podobě F (K, 0) = K F (1, 0), 9

10 Řešení modelu tak dostáváme, že a tedy lim (Y/K) = F (1, 0) = 0, K F (K, 0) = K F (1, 0) = 0 pro každé konečné K. Analogicky také můžeme dokázat, že F (0, L) = 0 pro každé konečné L. Konstantních výnosů z rozsahu se ještě využívá při jednom důležitém odvozování, a to při odvozování tzv. intenzivního vyjádření produkční funkce. V tomto vyjádření si totiž produkční funkci vyjádříme jako produkci na pracovníka, neboli Y/L. K tomu nám poslouží následující značení. Necht y = Y/L označuje produkci na pracovníka, k = K/L podíl kapitálu na pracovníka a f(k) je definována jako F (k, 1). Pak si jenom stačí uvědomit, že platí a tedy Y = F (K, L) = L F (K/L, 1) = L f(k), (1.8) Y/L = y = f(k). (1.9) Nyní si již můžeme odvodit základní dynamickou rovnici pro kapitál. 1.2 Řešení modelu Jak jsme si uvedli dříve, tak platí K(t) = I(t) δk(t). Odtud si pak můžeme vyjádřit i K(t)/L(t) jako K(t)/L(t) = I(t)/L(t) δk(t)/l(t) = s Y (t)/l(t) δk = s f(k) δk. (1.10) Tento výraz pak využijeme v následující rovnici pro funkci k. Funkce k je totiž definovaná jako derivace k podle času a proto platí k = d(k/l) dt = K/L L/L k = K/L nk, (1.11) a pokud za výraz K/L dosadíme vyjádření z předcházející rovnice, tak dostaneme k = s f(k) δk nk = s f(k) (n + δ)k. (1.12) Takto jsme tedy získali tzv. fundamentální rovnici Solowova-Swanova modelu, kde vidíme, že k závisí pouze na k, a výraz (n + δ) můžeme chápak jako tzv. efektivní míru depreciace pro k. Tím je myšleno to, že k se snižuje nejen díky samotnému opotřebení δ, ale také částečně kvůli růstu L rychlostí n. Pokud se nyní podíváme na obrázek 1.1 znázorňující Solowův-Swanův model, tak dospějeme k jednoduchému závěru, a to k tomu, že celý systém konverguje do stavu, kde k = 0. Tento stav se nazývá ustálený stav a platí pro něj, 10

11 Řešení modelu že v něm různé veličiny rostou ve stálých poměrech. Říkáme, že model vykazuje tzv. vyvážený růst. Tomuto stavu odpovídá v gafu průsečík přímky (n + δ)k s křivkou s f(k), tedy platí s f(k ) = (n + δ)k, (1.13) kde k označuje hodnotu k v ustáleném stavu. Pokud se tedy nacházíme v ustáleném stavu, pak musí platit, že nejen k, ale i y a c = C/L jsou konstanty, které mají následující podobu: y = f(k ) c = (1 s) f(k ). Obrázek 1.1: Solowův-Swanův model V tomto okamžiku si také můžeme odvodit některé poměrně významné závěry vyplývající ze Solowova-Swanova modelu. Hned ten první, a možná nejdůležitější, nám říká, že v dlouhém období nejsme schopni vysvětlit růst výstupu na pracovníka. Dalším důležitým poznatkem je to, že to co nám způsobuje konvergenci k ustálenému stavu, je klesající mezní produkt kapitálu. Dále vidíme, že i když nám míra úspor nemůže dlouhodobě zvýšit růst, protože má svoji určitou hranici a tou je jednička, neboli 0 s 1, 11

12 Řešení modelu tak krátkodobě to způsobit může. A posledním důležitým zjištěním je to, že v našem modelu nemá dlouhodobě žádný efekt na růst ani hospodářská politika. Poslední věc, kterou si ještě v této části ukážeme, je vykreslení míry růstu v závislosti na podílu kapitálu a práce. Pokud si chceme vyjádřit míru růstu, označme ji γ k, tak si vlastně chceme spočítat podíl k/k. Stačí nám tedy dopočítat, čemu se tento podíl rovná a jsme hotovi. Tedy což se po dosazení za k z rovnice (1.12) rovná γ k = k k, (1.14) γ k = s f(k)/k (n + δ). (1.15) Obrázek 1.2: Dynamika Solowova-Swanova modelu Pokud se nyní podíváme na obrázek 1.2 pozorně, tak dospějeme k jednomu důležitému závěru. Budeme-li totiž předpokládat, že dvě různé ekonomiky mají stejný ustálený stav a v současnosti se nacházejí pod tímto ustáleným stavem, tak pro ně platí, že ta chudší bude ke svému ustálenému stavu konvergovat rychleji než ta bohatší. Ale jak tomu bude, pokud uvolníme předpoklad o stejných ustálených stavech obou zemí, tedy dovolíme jim, aby se lišily např. v míře úspor? Tuto situaci máme znázorněnu na obrázku

13 Model s technologickým pokrokem Zde máme dvě ekonomiky s různými ustálenými stavy a vidíme, že už nemusí platit, že chudší země, tedy země s menším k(0), vždy konvergují ke svému ustálenému stavu rychleji než ty bohatší. Dospěli jsme tedy k závěru, že v Solowově-Swanově modelu platí pouze tzv. podmíněná konvergence, tedy že chudší ekonomika konverguje ke svému ustálenému stavu rychleji než bohatší, pouze pokud se obě ekonomiky nacházejí pod svými ustálenými stavy, které jsou pro obě ekonomiky stejné. Pokud bychom uvažovali situaci, kdy se alespoň jedna z ekonomik nenachází pod svým ustáleným stavem, tak bychom řekli, že rychleji konverguje ta ekonomika, která je dále od svého ustáleného stavu. Samozřejmě opět platí podmínka stejných ustálených stavů pro obě ekonomiky. Obrázek 1.3: Podmíněná konvergence 1.3 Model s technologickým pokrokem K obdobným závěrům, ke kterým jsme došli v předcházející části, bychom dospěli i u modelu s technologickým pokrokem. Protože se při odvozování používá prakticky stejný postup jaký jsme použili již dříve, tak si v této části ukážeme pouze výsledné řešení modelu. Nyní tedy uvažujeme produkční funkci Y, pro kterou platí, že Y (t) = F [K(t), L(t), T (t)], (1.16) 13

14 Model s technologickým pokrokem kde Y je produkční funkce, K je kapitál, L práce a T je technologický pokrok. Navíc předpokládáme, že technologický pokrok je tzv. labor-augmenting, 1 což znamená, že pro produkční funkci platí následující vyjádření: Y (t) = F (K, T L). (1.17) Tento předpoklad je poměrně důležitý, protože nám zajišt uje, aby model vykazoval vyvážený růst. A stejně jako jsme předpokládali růst u práce, tak jej předpokládáme i u technologického pokroku, kde jej budeme značit jako x = T /T. Řešení modelu je pak následující: kde ˆk = K/(T L) a ŷ = Y/(T L). Pro ustálený stav pak platí což si opět můžeme vyjádřit i graficky. dˆk dt = s ŷ (n + x + δ)ˆk, (1.18) s ŷ = (n + x + δ)ˆk, (1.19) Obrázek 1.4: Solowův-Swanův model s technologickým pokrokem 1 rozšiřující práci 14

15 Model s lidským kapitálem 1.4 Model s lidským kapitálem O něco komplikovanější je to ovšem pokud do Solowova-Swanova modelu zahrneme také lidský kapitál. Předpokládejme, že nyní máme produkční funkci vyjádřenou jako funkci závislou nejen na fyzickém kapitále, práci a technologickém pokroku, ale že také závisí na kapitále lidském. Tedy platí Y (t) = F [K(t), H(t), T (t)l(t)], (1.20) kde H(t) označuje lidský kapitál. Vidíme, že v tomto případě už nebude vyjádření tak jednoduché jako v předcházejících příkladech a bude záviset na dvou proměnných. Těmito proměnnými budou k = K/(T L) a h = H/(T L) a výsledným řešením bude systém rovnic d k dt = s k ỹ (n + x + δ k ) k d h dt = s h ỹ (n + x + δ h ) h, (1.21) kde s k je část úspor, která je pak investována do fyzického kapitálu, s h je část úspor investovaných do lidského kapitálu, δ k a δ h označují opotřebení příslušného kapitálu a ỹ značí stejně jako v modelu s technologickým pokrokem výstup na efektivního pracovníka. 2 Nyní již můžeme snadno odvodit systém rovnic, které nám budou určovat ustálený stav. Tyto rovnice mají následující podobu: s k ỹ = (n + x + δ k ) k s h ỹ = (n + x + δ h ) h. (1.22) 2 výstup na efektivního pracovníka můžeme zapsat jako ỹ = Y/(T L). 15

16 Cobbova-Douglasova produkční funkce Kapitola 2 Růst a konvergence v datech V této kapitole se již podrobněji podíváme na to, jak těsně nám předcházející modely sedí na datech. K tomu si ovšem nevystačíme pouze s teoretickým vyjádřením modelu, ale budeme potřebovat nějaké konkrétní vyjádření. Přesněji, budeme potřebovat konkrétní podobu neoklasické produkční funkce. A právě k tomu využijeme tzv. Cobbovu-Douglasovu produkční funkci. Při odhadování modelů pak využijeme stejný přístup jako Mankiw, Romer a Weil (1992), 1 ale na novějších datech. 2.1 Cobbova-Douglasova produkční funkce Jednou z nejběžnějších a nejčastěji využívaných neoklasických produkčních funkcí je Cobbova-Douglasova produkční funkce, která má pro model s technologickým pokrokem následující podobu: Y = K α (T L) 1 α, (2.1) kde Y je výstup, K je kapitál, T je technologický pokrok, L je práce a α je konstanta, pro kterou platí 0 < α < 1. Pokud nyní využijeme teoretické odvození řešení Solowova-Swanova modelu s technologickým pokrokem, tak si můžeme vyjádřit i konkrétní podobu řešení pro model s Cobbovou-Douglasovou produkční funkcí. Stačí si odvodit čemu se rovná výstup na efektivního pracovníka a ten pak dosadit do řešení. Pomocí jednoduchých úprav pak dostaneme, že Y/(T L) = K α (T L) 1 α /(T L) = K α (T L) α = ˆk α, (2.2) a po dosazení do rovnice (1.18) obdržíme dˆk dt = s ˆk α (n + x + δ)ˆk. (2.3) Nyní si také můžeme vyjádřit i hodnotu ˆk v ustáleném stavu. Víme totiž, že musí platit 1 v dalším textu značeno pouze jako MRW s ˆk α = (n + x + δ)ˆk, (2.4) 16

17 Cobbova-Douglasova produkční funkce odkud plyne, že a tedy a konečně ˆk α = [(n + x + δ)ˆk ]/s, (2.5) ˆk (α 1) = (n + x + δ)/s, (2.6) ˆk 1 = [s/(n + x + δ)] (1 α). (2.7) Takto jsme si tedy odvodili ustálenou stavovu hodnotu pro ˆk a vidíme, že nám pozitivně závisí na míře úspor a negativně na růstu populace, technologického pokroku a depreciaci kapitálu, samozřejmě za předpokladu, že 0 < α < 1. Obdobným způsobem bychom dospěli i k řešení Solowova-Swanova modelu s lidským kapitálem. Jen by se nám změnila podoba Cobbovy-Douglasovy produkční funkce a to do tvaru Y = K α H β (T L) 1 α β, (2.8) kde H je lidský kapitál, α a β jsou konstanty, pro které platí α +β < 1, 2 a ostatní veličiny jsou definovány jako v předcházející části. Nyní bychom si opět vyjádřili čemu se rovná ustálený stav, a to bychom opět provedli díky dosazení ỹ, které se v tomto případě rovná k α h β, do soustavy rovnic (1.22). A pomocí jednoduchých úprav bychom následně získali ( n + x + δ k = s k s h ) 1 α 1 h β 1 α ( ) 1 (2.9) n + x + δ h β 1 = k α 1 β. Tento zápis ale můžeme ještě mírně upravit, kdy k celému odvození využijeme pouze obě předcházející rovnice, které do sebe navzájem dosadíme. Např. u k dosadíme do první rovnice ze soustavy rovnic (2.9) rovnici druhou a poté pomocí standardních matematických úprav upravíme. Dostaneme tedy, že odkud ( n + x + δ k = s k ( n + x + δ = s k ) 1 ) 1 α 1 [ (n + x + δ s h α 1 ( n + x + δ 2 díky této podmínce uvažujeme klesající výnosy z kapitálu s h ) ] β 1 1 α β 1 k α 1 β ) β = (2.10) (β 1)(1 α) αβ k (1 β)(1 α), 17

18 Ekonometrická analýza modelu a konečně k 1 α β (1 β)(1 α) ( ) 1 n + x + δ = s k α 1 ( n + x + δ s h ) β (β 1)(1 α), (2.11) k = [ (n + x + δ s k ) 1 α 1 ( n + x + δ s h Obdobným způsobem bychom získali i h = ) β ] (1 β)(1 α) 1 α β (β 1)(1 α) [ s 1 β k s β h = n + x + δ ] 1 1 α β. (2.12) [ s α k s 1 α ] 1 1 α β h. (2.13) n + x + δ Vidíme tedy, že jak pro model s technologickým pokrokem, tak i pro rozšířený model s lidským kapitálem, jsme schopni poměrně jednoduše vyjádřit jejich ustálené stavy. 2.2 Ekonometrická analýza modelu V předcházejících částech jsme si ukázali, které veličiny nám mohou ovlivnit naše hodnoty v ustáleném stavu. A my bychom rádi zjistili, jak přesně nám tyto teoretické závěry sedí na datech. K tomuto účelu využijeme základní ekonometrické nástroje. Jak jsme si mohli všimnout, tak Solowův-Swanův model nám předpovídá větší reálný důchod v zemích s vyšší mírou úspor nebo s nižší hodnotou výrazu n + x + δ. Tuto skutečnost si můžeme ověřit, pokud využijeme některé již dříve odvozené závěry modelů. Nejprve předpokládejme pouze model bez lidského kapitálu. Pokud si produkční funkci vyjádříme tak, abychom dostali výstup na hlavu, tedy Y/L, a dosadíme do ní ustálenou stavovou hodnotu pro ˆk z rovnice (2.7), tak zjistíme, že Y (t) L(t) = K(t)α T (t) 1 α L(t) α = ˆk(t) [ ] α 1 α T (t) = (s/(n + x + δ)) (1 α) T (t). (2.14) Hodnotu T (t) pak můžeme nahradit výrazem T (0) e xt, protože jak jsme si již řekli dříve, technologický pokrok roste tempem x, a celou rovnici (2.14) pak zlogaritmovat. ( ) Y (t) ln = ln T (0) + xt + α L(t) 1 α ln(s) α ln(n + x + δ) (2.15) 1 α Takto upravený zápis modelu pak můžeme odhadnout pomocí metody nejmenších čtverců. Při odhadu předpokládáme, že jak tempo růstu technologického pokroku, tak míra depreciace, jsou ve všech zemích stejné. 3 Stejný předpoklad ovšem není příliš vhodný pro veličinu T (0). Ta totiž v sobě minimálně ukrývá i velikost počátečních možností země, dané 3 u technologie vycházíme z poměrně logického předpokladu volně šiřitelného know-how mezi zeměmi a u depreciace jsme nenašli žádný důvod pro to, abychom očekávali nějaké výrazné rozdíly mezi zeměmi. Navíc nemáme ani žádná data, pomocí nichž bychom se o tom mohli přesvědčit. 18

19 Výsledky pro model bez lidského kapitálu např. přírodním bohatstvím nebo zavedenými institucemi v této zemi. Proto budeme předpokládat, že ln (T (0)) = a + ɛ, (2.16) kde a je konstanta a ɛ je šok specifický pro každou zemi. Náš odhadovaný model tedy bude mít pro konkrétní stanovený čas, např. t = 0, následující podobu: ( ) Y ln = a + α L 1 α ln(s) α ln(n + x + δ) + ɛ, (2.17) 1 α kdy vycházíme z předpokladu nezávislosti s a n na ɛ stejně jako MRW Data K tomu, abychom si mohli model odhadnout, ovšem potřebujeme i příslušná data. Ty jsme z větší části získali z databáze PWT 4 a doplnili jsme je o data z databází GGDC, 5 SourceOECD 6 a UN 7. Tato sesbíraná data jsme pak dali dohromady a vytvořili jsme si vzorek pro 118 zemí zahrnující roční data, která pokrývají období mezi lety 1960 až Pro každou zemi jsme si tedy obdobně jako u MRW vyjádřili Y/L jako reálné HDP v roce 2000 vydělené počtem tzv. working-age populace, 8 s jako průměrný podíl reálných investic na reálném HDP, a n jako průměrný růst working-age populace. Pro pozdější potřeby během naší analýzy jsme si také data rozdělili do tří skupin. Do skupiny zahrnující pouze země OECD, která obsahuje 30 zemí OECD, do skupiny tzv. non-oil zemí, 9 která obsahuje 93 zemí, a konečně do skupiny tzv. intermediate zemí, 10 ve které je 78 států. Pro míru růstu technologického pokroku a velikost depreciace jsme si poté zvolili stejné konstanty jako MRW, a to x = 0.02 a δ = Výsledky pro model bez lidského kapitálu Ještě předtím, než se podíváme na samotné výsledky, si uvedeme jednu důležitou poznámku ohledně parametru α. Ten je totiž v Solowově-Swanově modelu chápán jako podíl kapitálu na důchodu. Stačí si totiž uvědomit, že v konkurenční ekonomice je kapitál odměněn pomocí mezního produktu, tedy R = f (ˆk) = αt 1 αˆkα 1, (2.18) kde R je nájemní cena kapitálu, a odtud si jen vyjádřit, čemu se rovná α. Pak dostaneme 4 Penn World Table, <http://pwt.econ.upenn.edu/php site/pwt index.php> 5 The Groningen Growth and Development Centre, <http://www.ggdc.net/databases/ted.htm> 6 The OECD s Online Library of Statistical Databases, Books and Periodicals, <http://oberon.sourceoecd.org/vl= /cl=19/nw=1/rpsv/home.htm> 7 United Nations, <http://www.un.org/en/databases/ > 8 populace ve věku let 9 nejsou zahrnuty země, pro které je dominantní naftový průmysl 10 země, které mají v databázi PWT grade score nejvýše D. Toto skóre ohodnocuje kvalitu dat, a proto jsme vyřadili ty země, u kterých se nemůžeme spolehnout na pravdivost poskytnutých dat. 11 vychází přibližně z U.S. dat 19

20 Výsledky pro model bez lidského kapitálu α = Rk Rˆk = T α 1ˆk α ŷ = RK Y. (2.19) Díky tomuto zjištění si také můžeme vyjádřit i přibližnou hodnotu parametru α. Podíl kapitálu na důchodu je totiž všeobecně uvažován jako 1/3, a proto budeme tuto hodnotu uvažovat i my jako hodnotu našeho parametru α. Pokud bychom se tedy nyní vrátili k našemu odhadovanému modelu, daného rovnicí (2.17), tak vidíme, že nejemon, že jsme schopni dopředu určit znaménka koeficientů, ale také jejich velikost, kdy očekáváme, že první koeficient bude přibližně 0.5 a druhý 0.5. Nyní se pojd me podívat na samotné výsledky regrese, které máme uvedené v tabulce 2.1. Jak můžeme vidět, tak znaménka nám souhlasí u všech koeficientů ve všech třech sledovaných skupinách. Potvrdil se nám jak pozitivní vliv úspor na důchodu, tak negativní vliv růstu populace. V tomto směru nám odhad přesně korespoduje s teoretickým modelem. Dalším důležitým prvkem je statistická významnost jednotlivých koeficientů. S tou jsme také spokojeni, protože až na skupinu zemí OECD nám vyšla u všech koeficientů silná statistická významnost. Ale ani u zemí OECD nemůžeme být zklamáni, protože i zde můžeme mluvit o statistické významnosti na 5% hladině významnosti, což je stále dobrý výsledek. Co nás jako další zajímalo, byly hodnoty koeficientů determinace. Ty mají naše skupiny zemí poměrně vysoké, opět až na skupinu zemí OECD. Můžeme tedy říci, že naše odhady mají dostatečně vysokou vysvětlovací schopnost. Např. u skupiny zemí non-oil je to téměř 71%. Problém ovšem nastal u velikostí koeficientů. Ty jsou totiž oproti předpokládaným hodnotám větší. Např. u skupiny zemí intermediate nám vyšel koeficient u ln(s k ) roven a u ln(n + x + δ) , ale my jsme očekávali hodnoty 0.5 a 0.5. Vidíme tedy, že v tomto ohledu je náš modelem s empirickým pozorováním v rozporu. Celkově však můžeme být s odhadem spokojeni, protože až na zmiňovaný rozdíl ve velikostech koeficientů, nám odhad vyšel přesně tak, jak jsme očekávali. A díky vysoké vysvětlovací schopnosti tak můžeme řící, že model dostatečně vysvětluje většinu nerovností v důchodech mezi zeměmi. Neměli bychom ale zapomínat na to, že model nepodporuje všechny skutečnosti, které z něj vyplývají, jak se můžeme znovu přesvědčit níže. Při našem odhadování jsme totiž také provedli tzv. omezený odhad našeho modelu, který vychází z předpokladu rovnosti absolutních velikostí našich koeficientů. 12 Tento odhad jsme provedli především proto, abychom se přesvědčili o platnosti tohoto tvrzení, a také proto, abychom byli schopni dopočítat velikost našeho parametru α. Jak můžeme vidět v tabulce 2.2, tak nám výsledky testové statistiky nevyšly moc přesvědčivě. Správně bychom měli u zemí non-oil i intermediate zamítnou náš předpoklad, že jsou koeficienty u ln(s k ) a ln(n+x+δ) až na znaménka stejné. V tomto směru náš model selhal. Dále nám náš odhadovaný parametr α vyšel ve všech případech přibližně 0.5. Opět se tedy dostáváme ke stejnému problému jako u velikostí koeficientů při neomezeném odhadování, a to k tomu, že nám samotná velikost přesně nesedí na datech. Celkově pak musíme být s výsledkem omezeného odhadu vzhledem k modelu nespokojeni. 12 stačí nahlédnout do zápisu modelu v rovnici (2.17) 20

21 Výsledky pro model bez lidského kapitálu Model pro Non-oil: OLS, za použití pozorování 1 93 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 11,5199 1, ,7093 9,71e 18 ln s k 1, , ,2318 9,44e 17 ln n x d 2, , ,0686 3,00e 8 Střední hodnota závisle proměnné S.O. závisle proměnná Součet čtverců reziduí S.CH. regrese R Adjustované R F (2, 90) P-hodnota(F ) 1.70e 24 Logaritmus věrohodnosti Akaikovo kritérium Schwarzovo kritérium Hannan Quinn Model pro Intermediate: OLS, za použití pozorování 1 78 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 11,1048 1, ,8073 4,40e 15 ln s k 1, , ,2059 4,84e 12 ln n x d 2, , ,7761 1,64e 7 Střední hodnota závisle proměnné 9, S.O. závisle proměnná 0, Součet čtverců reziduí 23,83943 S.CH. regrese 0, R 2 0, Adjustované R 2 0, F (2, 75) 81,12259 P-hodnota(F ) 1,76e 19 Logaritmus věrohodnosti 64,44785 Akaikovo kritérium 134,8957 Schwarzovo kritérium 141,9658 Hannan Quinn 137,7260 Model pro OECD: OLS, za použití pozorování 1 30 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 9, , ,9753 3,25e 05 ln s k 1, , ,3624 0,0256 ln n x d 1, , ,4894 0,0193 Střední hodnota závisle proměnné 10,34978 S.O. závisle proměnná 0, Součet čtverců reziduí 4, S.CH. regrese 0, R 2 0, Adjustované R 2 0, F (2, 27) 7, P-hodnota(F ) 0, Logaritmus věrohodnosti 13,10421 Akaikovo kritérium 32,20842 Schwarzovo kritérium 36,41201 Hannan Quinn 33,55318 Tabulka 2.1: Odhad modelu bez lidského kapitálu 21

22 Výsledky pro rozšířený model s lidským kapitálem Model pro Non-oil Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 90) = 11,3127, s p-hodnotou = 0, Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 7, , ,05 4,69e 82 ln s k 1, , ,48 2,05e 23 ln n x d 1, , ,48 2,05e 23 Standardní chyba regrese = 0, Odpovídající α = 0, Model pro Intermediate Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 75) = 8,12871, s p-hodnotou = 0, Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 7, , ,65 9,26e 63 ln s k 1, , ,87 5,54e 19 ln n x d 1, , ,87 5,54e 19 Standardní chyba regrese = 0, Odpovídající α = 0, Model pro OECD Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 27) = 0,527019, s p-hodnotou = 0, Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 8, , ,17 2,14e 16 ln s k 1, , ,747 0,0008 ln n x d 1, , ,747 0,0008 Standardní chyba regrese = Odpovídající α = 0, Tabulka 2.2: Odhad omezeného modelu bez lidského kapitálu Výsledky pro rozšířený model s lidským kapitálem Jak jsme si uvedli v předcházející části, tak Solowův-Swanův model bez lidského kapitálu má s určitými částmi modelu problém. Proto se nyní podíváme na to, zda nám rozšíření tohoto modelu o lidský kapitál pomůže tyto problémy odstranit. 22

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Tabulka 1 Rizikové online zážitky v závislosti na místě přístupu k internetu N M SD Min Max. Přístup ve vlastním pokoji 10804 1,61 1,61 0,00 5,00

Tabulka 1 Rizikové online zážitky v závislosti na místě přístupu k internetu N M SD Min Max. Přístup ve vlastním pokoji 10804 1,61 1,61 0,00 5,00 Seminární úkol č. 4 Autoři: Klára Čapková (406803), Markéta Peschková (414906) Zdroj dat: EU Kids Online Survey Popis dat Analyzovaná data pocházejí z výzkumu online chování dětí z 25 evropských zemí.

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Krátkodobá rovnováha na trhu peněz

Krátkodobá rovnováha na trhu peněz Makroekonomická analýza přednáška 9 1 Krátkodobá rovnováha na trhu peněz Funkce poptávky po penězích Poptávka po penězích je úměrná cenové hladině (poptávka po penězích je poptávka po reálných penězích).

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Téma 4 - metodika. Ekonomický vývoj ČR od roku 1995

Téma 4 - metodika. Ekonomický vývoj ČR od roku 1995 Hospodářská politika - VŠFS Jiří Mihola, jiri.mihola@quick.cz, 2010 www.median-os.cz, www.ak-ol.cz Téma 4 - metodika Ekonomický vývoj ČR od roku 1995 Charakteristika metody Výchozí studijní materiál: Analýza

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Základní problémy. 3. Cenová hladina a měnový kurz v dlouhém období. 3.1 Parita kupní síly

Základní problémy. 3. Cenová hladina a měnový kurz v dlouhém období. 3.1 Parita kupní síly Základní problémy 3. Cenová hladina a měnový kurz v dlouhém období Model chování dlouhodobého směnného kurzu znázorňuje soustavu, v níž útníci trhu aktiv předpovídají budoucí směnný kurz. Předpovědi dlouhodobých

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Přehled matematického aparátu

Přehled matematického aparátu Přehled matematického aparátu Ekonomie je směsí historie, filozofie, etiky, psychologie, sociologie a dalších oborů je tak příslovečným tavicím kotlem ostatních společenských věd. Ekonomie však často staví

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Příjmy firmy můžeme rozdělit na celkové, průměrné a mezní.

Příjmy firmy můžeme rozdělit na celkové, průměrné a mezní. 7 Příjmy firmy Příjmy firmy představují sumu peněžních prostředků, které firmě plynou z realizace její produkce, proto někteří autoři používají analogický pojem tržby. Jestliže vycházíme z cíle formy v

Více

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule Klasický termínovaný vklad SLŽENÉ ÚRKVÁNÍ PŘÍKLAD: Podnikatel uložil na klasický termínovaný vklad částku 300 000 Kč. Jaká bude výše kapitálu za 3 roky, jestliže úroková sazba činí 2% p.a. a je a) roční

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

SEMINÁŘ VII. Zákon jedné ceny, parita kupní síly a teorie kurzu. 1. Zákon jedné ceny a parita kupní síly

SEMINÁŘ VII. Zákon jedné ceny, parita kupní síly a teorie kurzu. 1. Zákon jedné ceny a parita kupní síly SEMINÁŘ VII. Zákon jedné ceny, parita kupní síly a teorie kurzu 1. Zákon jedné ceny a parita kupní síly 1) Vysvětlete logiku zákona jedné ceny a parity kupní síly. Jak by měla vypadat prezentovaná tabulka

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Investiční výdaje (I)

Investiční výdaje (I) Investiční výdaje Investiční výdaje (I) Zkoumáme, co ovlivňuje kolísání I. I = výdaje (firem) na kapitálové statky (stroje, budovy) a změna stavu zásob. Firmy si kupují (pronajímají) kapitálové statky.

Více

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ústav stavební ekonomiky a řízení Fakulta stavební VUT Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ing. Dagmar Palatová dagmar@mail.muni.cz Agregátní nabídka a agregátní poptávka cena

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD.

MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD. MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD. V tomto textu bude nejprve vysvětleno, co jsou to modely rozdělených zpoždění a jak se dělí. Pak se zaměříme na Friedmanovu

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 11: Speciální případy použití MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 2. Nelineární funkce

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

4. Křivka nabídky monopolní firmy je totožná s částí křivky mezních nákladů.

4. Křivka nabídky monopolní firmy je totožná s částí křivky mezních nákladů. Firma v nedokonalé konkurenci 1. Zdroji nedokonalé konkurence jsou: - jednak nákladové podmínky podnikání, - jednak. 2. Zapište vzorec Lernerova indexu. K čemu slouží? 3. Zakreslete celkový příjem monopolní

Více

Z metodického hlediska je třeba rozlišit, zda se jedná o daňovou kvótu : jednoduchou; složenou; konsolidovanou.

Z metodického hlediska je třeba rozlišit, zda se jedná o daňovou kvótu : jednoduchou; složenou; konsolidovanou. Daňová kvóta Daňová kvóta (Tax Quota) patří mezi významné ukazatele uplatňované při mezinárodní komparaci. Je poměrovým ukazatelem vyjadřujícím úroveň daňových výnosů ve vztahu k hrubému domácímu produktu

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice MAKROEKONOMIE AGREGÁTNÍ NABÍDKA A POPTÁVKA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

OPTIMÁLNÍ ŘÍZENÍ V EKONOMETRII. METODA CÍLOVÝCH PROMĚNNÝCH A JEJÍ OMEZENÍ.

OPTIMÁLNÍ ŘÍZENÍ V EKONOMETRII. METODA CÍLOVÝCH PROMĚNNÝCH A JEJÍ OMEZENÍ. OPTIMÁLNÍ ŘÍZENÍ V EKONOMETRII. METODA CÍLOVÝCH PROMĚNNÝCH A JEJÍ OMEZENÍ. Ekonometrické modely jsou využívány i na makroúrovni či v podnikové sféře při řešení různých rozhodovacích problémů. Lze pomocí

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Měření výkonu ekonomiky (makroekonomické výstupy)

Měření výkonu ekonomiky (makroekonomické výstupy) Ústav stavební ekonomiky a řízení Fakulta stavební VUT Měření výkonu ekonomiky (makroekonomické výstupy) Ing. Dagmar Palatová dagmar@mail.muni.cz Co považuji za významné z historie pojem spravedlivá cena

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Matematicky lze ekonomický růst vyjádřit jako změna (růst, pokles) reálného produktu ekonomiky za určité období (1 rok):

Matematicky lze ekonomický růst vyjádřit jako změna (růst, pokles) reálného produktu ekonomiky za určité období (1 rok): Ekonomie 1 RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz 5. Ekonomický růst 5.1 Základní terminologie Každá ekonomika má za cíl svůj růst, tj. produkovat

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

8 NEZAMĚSTNANOST. 8.1 Klíčové pojmy

8 NEZAMĚSTNANOST. 8.1 Klíčové pojmy 8 NEZAMĚSTNANOST 8.1 Klíčové pojmy Ekonomicky aktivní obyvatelstvo je definováno jako suma zaměstnaných a nezaměstnaných a míra nezaměstnanosti je definovaná jako procento ekonomicky aktivního obyvatelstva,

Více

Rozpracovaná verze testu z makroekonomie s částí řešení

Rozpracovaná verze testu z makroekonomie s částí řešení Rozpracovaná verze testu z makroekonomie s částí řešení Schéma čtyřsektorového modelu ekonomiky Obrázek 1: Do přiloženého schématu čtyřsektorového modelu ekonomiky doplňte chybějící toky: YD (disponibilní

Více

Přímé přínosy dopravní infrastruktury, Nepřímé přínosy dopravních výkonů ů (procesů).

Přímé přínosy dopravní infrastruktury, Nepřímé přínosy dopravních výkonů ů (procesů). Přínosy dopravní infrastruktury Produkční funkce Faktory růstu Prof. Ing. Petr Moos, CSc Dopravní fórum - Praha 2011 petr.moos@rek.cvut.cz 1 Přínosy dopravní infrastruktury Vymezení a vyjádření hospodářského

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Přednáška č.7 Ing. Sylvie Riederová

Přednáška č.7 Ing. Sylvie Riederová Přednáška č.7 Ing. Sylvie Riederová 1. Aplikace klasifikace nákladů na změnu objemu výroby 2. Modelování nákladů Podstata modelování nákladů Nákladové funkce Stanovení parametrů nákladových funkcí Klasifikační

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919

( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919 .. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více