Funkce jedné proměnné

Rozměr: px
Začít zobrazení ze stránky:

Download "Funkce jedné proměnné"

Transkript

1 Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf nakreslete V případě b) napište rovnici funkce na jejímž grafu leží body AB zjistěte zda je funkce rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf nakreslete a) f : y = 4 3 x f : y = 3x + 4 f 3 : y = 3x + 4 f 4 : y = 4 3 x 5 3 b) f 5 : A[ ] B[3] f 6 : A[] B[ ] f 7 : A[ 3] B[33] f 8 : A[ ] B[ 3] Příklad 3-4 Nakreslete soustavu křivek pro celočíselné parametry: a) y = x + b b b) y = ax + 3 a Příklad 5 Konečný kapitál K n je přímo úměrný počátečnímu kapitálu K o s koeficientem (úročitelem) + in kde i je roční úroková míra a n počet let úročení Vypočítejte K při počátečním kapitálu 7-Kč při 6% úroku Příklad 6 Budoucí spotřeba C je lineární funkcí současné spotřeby C : C = Y + ( + r)(y C ) Y je očekávaný budoucí důchod Y současný důchod r reálná úroková míra Vypočítejte: budoucí spotřebu při nulové současné spotřebě současnou spotřebu při nulové budoucí spotřebě celý příjem na spotřebu tj pro C = Y Příklad 7-9 V následujících příkladech pro funkce dané rovnicí určete definiční obor a obor hodnot intervaly na kterých je funkce rostou či klesající maximum a minimum průsečíky grafu s osami a graf načrtněte a) f: y = 3 + x x b) f: y = x 4x + 4 c) f: y = x 4x + 6 Příklad - V následujících příkladech pro funkce dané body grafu určete rovnici definiční obor a obor hodnot intervaly na kterých je funkce rostoucí či klesající maximum a minimum průsečíky grafu s osami a graf načrtněte a) A[3] B[ 5] C[4] b) A[ 9] B[] C[3] c) A[ ] B[3] C[33] Příklad 3 Vzhledem k parametrům a b kvadratické funkce y = ax ax + b určete definiční obor a obor hodnot a soustavu křivek pro zvolené parametry nakreslete Příklad 4 Množství vybraných daní při sazbě r je dáno Lafferovou funkcí T(r) = r r Vypočítejte sazbu daně pro maximální příjem Načrtněte graf funkce T

2 Příklad 5 Nákladová funkce na produkci Q výrobků je dána rovnicí N(Q) = Q 4Q + 3 Poptávková funkce je dána rovnicí P(Q) = 4Q Vypočítejte pro které množství výrobků nastane na trhu rovnováha (tj N(Q) = P(Q)) Příklad 6- V následujících příkladech najděte základní tvar rovnice pro dané funkce definiční obor a obor hodnot načrtněte graf vyznačte střed a průsečíky grafu s osami souřadnic a) f: y = x x 3 b) f: y = 3x+5 x+3 c) f: y = x x d) f: y = x x+ e) f: y = (x+) x +x Příklad - Přirozená míra u nezaměstnanosti která je dána rovnicí u = na míře σ ztráty práce a na míře φ nalezení práce Nakreslete průběh funkce míry nezaměstnanosti a) pro konstantní míru σ b) pro konstantní míru φ Příklad 3 Vypočítejte průsečíky grafů funkcí y = x b x + y = k parametru b 3 x σ σ+φ je závislá Příklad 4 Vypočítejte průsečíky tří grafů funkcí y = ax kde a = a = a = x Grafy nakreslete Příklad 5-8 Vypočítejte průsečíky grafů funkcí daných rovnicemi jejich průsečíky s osami souřadnic a grafy nakreslete: a) x y = y = x 6x + 8 b) x y + = y = 5 x c) xy = y = x d) xy = y = x + 3x 3 Příklad 9-3 Určete definiční obor obor hodnot průsečíky grafu s osami a nakreslete graf funkcí a) f: y = + x 4 b) f: y = x 4 Příklad 3-3 Určete hodnoty parametrů a b R tak aby graf funkce f procházel body AB:

3 a) f: y = (a + )3 x + b A[ 5] B[] b) f: y = b + log /3 (x + a) A[] B[8] Příklad Určete definiční obor funkce f a průsečíky grafu s osami souřadnic: a) f: y = /x /(3 x 7) b) f: y = log(6x x 8) Příklad Stav kapitálu při době splatnosti n počátečním (současném) kapitálu K o a úroku p% připisovanému na konci roku se počítá podle vzorce K n = K o ( + i) n (i = p/) Vypočítejte a) K n je-li K o = Kč p =5% n =4 roky b) Dobu splatnosti n je-li K o = Kč K n = Kč p =% Současná hodnota kapitálu se počítá podle vzorce K o = K n /( + i) n Příklad 37 Vypočítejte kolik musíme uložit při roční sazbě 6% abychom za 3 roky měli na účtu -Kč Příklad Vypočítejte diferenci posloupnosti nakreslete část grafu: a) a n = n 4 b) a n = 7 + 3n Příklad 4-4 Vypočítejte kvocient posloupnosti nakreslete část grafu: a) a n = /( ) n b) a n = n 3 n Příklad 4 Vkladatel uloží na počátku úrokovacího období K o Kč a pak ukládá pravidelně na konci každého úrokovacího období stejnou sumu K o po dobu n let Jak vysokou částku uspoří je-li roční úroková míra p% a daň z úroků 5%? (První vložená částka je postupně úročena n krát) Konečná částka bude K n = K o ( + 85 p n ) + K o ( + 85 p ) n + + K o ( + 85 p ) + K o Vypočítejte součet geometrické posloupnosti pro K o = 5 p =% Příklad 43 Po dobu šesti let investujeme tak dobře že získáváme 5 -Kč pravidelně každý rok s úrokem 3% Jaký bude náš finální kapitál? Spojité úročení: Počet úrokových období pro připisování úroků roste neomezeně délka období klesá k nule Pro efektivní úrokovou sazbu i a úrokovou intenzitu i e platí +i e = lim ( + i n + n )n = e i i e = e i i = ln( + i e )

4 Pro spojité úročení pro hodnotu kapitálu platí K n = K o e in pro hodnotu počátečního kapitálu pak K o = K n e in Příklad 44 Vypočítejte úrokovou sazbu i odpovídající efektivní úrokové sazbě 3% Příklad 45 Vypočítejte hodnotu kapitálu při spojitém úročení za 5 let je-li počáteční kapitál -Kč a úrok 5% Příklad 46 Vypočítejte současnou (počáteční) hodnotu kapitálu při spojitém úročení aby za 3 roky hodnota kapitálu vzrostla na 5 -Kč při úroku 5% Příklad 47-5 Vypočítejte limity posloupností: a) lim n + b) lim (n+)(n 3)(5 3n) n 3 +n+5 n 4 + n + 3+n n 3 n c) lim 3 n +4 n + n 4 d) lim n + ( + n )n+3 Příklad 5-54 Vypočítejte limity funkce f v krajních bodech definičního oboru a v bodech ve kterých funkce není definovaná: a) f(x) = x 3 9 x b) f(x) = x x+5 3x 4x 5 c) f(x) = x3 8 x d) f(x) = x x Příklad Vypočítejte derivaci funkce f v bodě a určete definiční obor funkce f i f : a) f(x) = x + x 5 3 a = x b) f(x) = x a = 5 c) f(x) = e x (x + x ) a = d) f(x) = log(x + x ) a = Příklad 59-6 Napište rovnici tečny grafu funkce f v bodě P : a) f(x) = x + 4x + P[? ] b) f(x) = x P[5? ] c) f(x) = 3x 4 P[? ] x 3 d) f(x) = ln(x + ) P[? ]

5 Příklad Napište rovnici tečny v průsečíku grafů funkcí: a) f: y = x + 3x + g: y = x + 4 b) f: y = 8 x g: y = x c) f: y = x x g: y = Příklad Najděte intervaly na kterých je funkce f rostoucí a intervaly kde je klesající: a) f(x) = x 3 x b) f(x) = x + x c) f(x) = x ln x Příklad 69-7 Určete intervaly na kterých je funkce f konvexní a intervaly kde je funkce konkávní: a) f(x) = 5x + x + 7 b) f(x) = x 3 + x c) f(x) = ln(x 9) Příklad Najděte všechny lokální extrémy funkce f : a) f (x) = x (x 6) b) f(x) = x + x c) f(x) = 6x x d) f(x) = x ln x Příklad Vypočítejte maximum a minimum funkce f na uzavřeném intervalu: a) f(x) = x 6x + 5 b) f(x) = x ln x e c) f(x) = x + x 4 Příklad 8-8 Denní výstup výrobků firmy je dán produkční funkcí kde L je spotřebovaná práce v hodinách na den Vypočítejte pro jaké L je produkce firmy nulová maximální rostoucí a klesající Křivku produkce načrtněte a) Q = 4L + 4L L 3 b) Q = L 3 36L + 6L Příklad 8 Funkce celkových transakčních nákladů TC = r N Y N + tn závisí na počtu N návštěv banky (Y je důchod r N úroková míra t ztráta času v bance) Vypočítejte N pro které jsou celkové náklady minimální Do jednoho grafu zakreslete funkci transakčních nákladů Y TN = tn funkci obětovaného úroku OU = r N a funkci TC N

6 Příklad Zákon růstu odpovídající jevu daného statistickými daty je znázorněn demografickou křivkou logistikou V následujících příkladech vyšetřete průběh logistiky v zjednodušeném tvaru a) y = +e x b) y = +e x Příklad 85 Gaussovo rozdělení pravděpodobnosti je dáno funkcí φ(x) = π e x / Určete definiční obor limity v krajních bodech definičního oboru intervaly konvexity extrémy a inflexní body graf načrtněte Funkce dvou proměnných Příklad 86 Pro funkci f: z = min(x y) kde x y určete vrstevnice a graf Příklad 87-9 Pro funkci f danou rovnicí určete definiční obor obor hodnot vrstevnice a graf a) f: z = x + y b) f: U = X + 4Y 5X 5Y c) f: U = 5X + X 5X Y d) f: z = + xy e) f: z = xy Příklad 9-94 Pro funkci f danou rovnicí určete definiční obor obor hodnot vrstevnice a graf a) f: z = x 3y b) f: z = + x + 3y c) f: z = x + 3y Příklad Pro funkci f danou rovnicí vypočítejte parciální derivace v bodě A a) f: z = x 3y A[] b) f: z = + x + 3y A[] c) f: z = + x + 3y A[] d) f: z = x + 3y A[] Příklad 99 Mezní míra substituce ve spotřebě funkce užitku je rovna poměru jejích parciálních derivací Vypočítejte mezní míru pro funkci užitku U(X Y) = X + 4Y 5X 5Y vzhledem k oběma proměnným Příklad -3 Vypočítejte obalovou křivku jednoparametrické soustavy křivek a) (x c) + y = 4 c R

7 b) (x c) + y = c c R c) y = c(x c) c R d) y = c (x c) c R Příklad 4-8 Pro funkci f vypočítejte druhé parciální derivace a) f: U = X + 4Y 5X 5Y b) f: U = 5X + X 5X Y c) f: z = + xy d) f: z = xy e) f: U = X + 4Y + 5X 5Y Příklad 9-3 Vypočítejte lokální extémy funkce f a) f: U = X + 4Y 5X 5Y b) f: U = 5X + X 5X Y c) f: U = X + 4Y + 5X 5Y d) f: z = 9x 7x + 4x y y e) f: z = 5x 5x + y y Příklad 4 Vypočítejte maximum funkce užitku U = X + 4Y 5X 5Y s linií rozpočtu (vazba) X 3Y = Příklad 5 Vypočítejte extrémy produkční funkce Q = KL při funkci nákladů L + K 3 = (vazba) Příklad 6 Vypočítejte minimum Cobb-Douglasovy produkční funkce Q = KL závislé na kapitálu K a na práci L pro náklady dané vazbou K + L 3 = Příklad 7 Vypočítejte minimální náklady Cobb-Douglasovy produkční funkce Q = KL pro Q = 4 jednotek nákladové funkce C(K L) = K + L Příklad 8 Vypočítejte minimální náklady pro KL = 9 jednotek (vazba) výstupu nákladové funkce C(L K) = 3L + 6K Určitý integrál Příklad 9- Lichoběžníkovým vzorcem pro n = aproximujte obsah rovinného obrazce určeného danou funkcí na daném intervalu a) f(x) = e x na b) f(x) = e x na 4 x Příklad -8 Určete primitivní funkci a potom podle Newtonova-Leibnizova vzorce vypočítejte určitý integrál:

8 4 a) x+ dx x dx x 3 e x dx e x +3 4 x b) x( x )dx c) x d) (x 3) dx e) x (3 x + 4 x )dx f) ex 9 g) 3x 6 3 x dx h) (x )(4x 3)dx Příklad 9-33 Počítejte metodou per partes a) x ln x dxdx b) x 5 x dx c) (x + 5)e x dx d) ln x dx e) (ln x) dx Příklad Počítejte substitucí integrály 3 a) x 5x + 4 dx b) xe x dx c) e (ln x)3 x d) e dx /x dx x 3 Příklad Počítejte integrály: 6 a) 9x 5 dx b) 5 3x dx c) 6 dx 3 (9x 5) 5 /5 d) e 5x dx 3 4x 3 e) dx

9 f) dx (x+) 5 Příklad Počítejte integrály: dx x +4 x 3 x dx x 4 4x +7 dx e x + e dx x(ln x+) dx x( x+) a) x b) c) ex d) e) Příklad Počítejte nevlastní integrály a) b) + dx x + dx x + c) e x dx + d) x x dx e) + dx e x ln x Příklad Vypočítejte obsah rovinné oblasti ohraničené křivkami: a) 4y = 8x x 4y = x + 6 b) xy = 6 x + y = 7 c) y = x + 4x x y + 4 = d) y = e x y = e x x = e) y = ln x y = x = e

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Matematika B 2. Úvodní informace

Matematika B 2. Úvodní informace Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel. Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce

Více

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body: Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1.

JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1. JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1. Monotonie (1) Dostaneme zadanou např. funkci y = sin x. (2) Když si funkci

Více

Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A

Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21 Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí. Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)

Více

Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště

Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště Funkce Logaritmická funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-1 Obsah Logaritmická funkce 1 Logaritmická funkce předpis funkce a ukázky grafů srovnání grafů

Více

Derivace vyšších řádů, aplikace derivací

Derivace vyšších řádů, aplikace derivací Derivace vyšších řádů, aplikace derivací Značení derivací vyšších řádů Máme funkci f: y = f x f x druhá derivace funkce y = f x f k x k-tá derivace funkce y = f x Derivace vyšších řádů počítáme opakovaným

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo. Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

Matematika I: Pracovní listy do cvičení

Matematika I: Pracovní listy do cvičení Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.

Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5. Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti

Více

Přijímací zkoušky z matematiky pro akademický rok 2017/18 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2017/18 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 7/8 NMgr. studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 5 Celkem Body Ke každému příkladu uved te podrobný,

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Ohraničená Hessova matice ( bordered hessian ) je. Sestrojíme posloupnost determinantů (minorů):

Ohraničená Hessova matice ( bordered hessian ) je. Sestrojíme posloupnost determinantů (minorů): Ohraničená Hessova matice ( bordered hessian ) je matice 2. parc. derivací L vzhledem k λ λ r x x n v tomto pořadí: g 0 0 g x n g 0 0 2 g 2 x n g 0 0 r g x HB = r x n g g r 2 L 2 L. x 2 x x n g g x 2 r

Více

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu: Průběh funkce Průběh funkce Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:. Určení definičního oboru. 2. Rozhodnutí, jestli je funkce sudá, lichá, periodická nebo nemá ani

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

y H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0

y H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0 1 Urcete vsechna maximalni reseni: y + 4y + 4y = e 2x x + 1 Definicni obor: x 1, tj. resim na intervalech (, 1) a ( 1, ) Charakteristicky polynom λ 2 + 4λ + 4 ma dvojnasobny koren -2, tedy tvar homogenniho

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Základy vyšší matematiky arboristika Zadání písemek ze školního roku

Základy vyšší matematiky arboristika Zadání písemek ze školního roku Základy vyšší matematiky arboristika Zadání písemek ze školního roku 20 202 Robert ařík 9. ledna 203 Níže najdete zadání písemek předmětu ZVTA. Za některými písemkami je vloženo i řešení. Písemná část

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr. Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina

Více