Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5"

Transkript

1 Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt totální diferenciál d (h) pro h=(h,h ) v bodu =1; pro funkci (,)= cos Totální diferenciál v je dle definice d (h)= ()h + ()h Vypočteme parciální derivace = cos = sin Vypočteme hodnoty parciálních derivací v bodu =1; ()= cos= 1 ( 1)=1 ()= sin= 1 0=0 Tyto parciální derivace dosadíme do totálního diferenciálu a dostáváme výsledek d (h)= 1 h +0h = 1 h Pomocí standardních proměnných můžeme tento diferenciál vyjádřit jako d (h)= 1 +0=1 Řešení 1b Máme nalézt totální diferenciál d (h) pro h=(h,h ) v bodu =2; 0 pro funkci (,)=ln( + ) Totální diferenciál v je dle definice d (h)= ()h + ()h 1

2 Vypočteme parciální derivace = 2 + = 2 + Vypočteme hodnoty parciálních derivací v bodu =2; ()= += 2 +0 =4 4 = ()= += 2 +0 =0 4 =0 Tyto parciální derivace dosadíme do totálního diferenciálu a dostáváme výsledek d (h)=1h +0h =h Pomocí standardních proměnných můžeme tento diferenciál vyjádřit jako d (h)=1+0= Řešení 1c Máme nalézt totální diferenciál d (h) pro h=(h,h ) v bodu =1; 0 pro funkci (,)=arctg() Totální diferenciál v je dle definice d (h)= ()h + ()h Vypočteme parciální derivace = 1+ = 1+ Vypočteme hodnoty parciálních derivací v bodu =1; 0 ()= = 1+0 =0 1 =0 ()= = 1+0 =1 1 =1 Tyto parciální derivace dosadíme do totálního diferenciálu a dostáváme výsledek d (h)=0h +1h =h Pomocí standardních proměnných můžeme tento diferenciál vyjádřit jako d (h)=0+1= Řešení 1d Máme nalézt totální diferenciál d (h) pro h=(h,h ) v bodu =1; 1 pro funkci 1 (,)= + Totální diferenciál v je dle definice 2

3 d (h)= ()h + ()h Vypočteme parciální derivace = 1 2 ( + ) 2= ( + ) = 1 2 ( + ) 2= ( + ) Vypočteme hodnoty parciálních derivací v bodu =1; 1 ()= 1 1 (1 +( 1) ) = (1+1) = 1 2 = ()= 1 1 (1 +( 1) ) = (1+1) = 1 2 = Tyto parciální derivace dosadíme do totálního diferenciálu a dostáváme výsledek d (h)= h h = (h h ) Pomocí standardních proměnných můžeme tento diferenciál vyjádřit jako d (h)= ( ) 3

4 Příklad 2 Určete hodnotu směrové derivace v bodě 0,0 pro obecný vektor =(, ), =1 : a) (,)= + b) (,)= Řešení 2a Máme určit hodnotu směrové derivace v bodě 0,0 pro obecný vektor =(, ), =1 a funkci: (,)= + Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě tedy ()= (0,0)+ (0,0) Vypočteme parciální derivace nejprve obecně =1 3 ( + ) 3 Nyní dosadíme souřadnice bodu =1 3 ( + ) 3 (0,0)=1 3 (0 +0 ) 3 0, (0,0)=1 3 (0 +0 ) 3 0, Obě parciální derivace nejsou spojité v bodě 0,0. Hodnotu směrové derivace tedy není možné tímto způsobem zjistit. Zkusíme tedy výpočet podle definice (+h ) +(+h ) (,)=lim h Konkrétně pro bod 0,0 dostáváme po úpravách výsledek + (0+h ) +(0+h ) 0 +0 h +h 0+0 (0,0)= lim =lim h h h + 0 h + = lim =lim =lim h h + = + 4

5 Řešení 2b Máme určit hodnotu směrové derivace v bodě 0,0 pro obecný vektor =(, ), =1 a funkci: (,)= Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě tedy ()= (0,0)+ (0,0) Vypočteme parciální derivace nejprve obecně =1 2 pro 0, = 1 2 pro <0 =1 2 pro 0, = 1 2 pro <0 Nyní dosadíme souřadnice bodu (0,0)= , (0,0)= , Obě parciální derivace nejsou spojité v bodě 0,0. Hodnotu směrové derivace tedy není možné tímto způsobem zjistit. Zkusíme tedy výpočet podle definice (+h )(+h ) (,)=lim h Konkrétně pro bod 0,0 dostáváme po úpravách výsledek (0+h )(0+h ) 0 0 h h 0 h 0 (0,0)= lim =lim = lim h h h h = lim = lim h = 5

6 Příklad 3 Určete, zda funkce (,) v bodě ve směru vektoru roste či klesá a určete rychlost změny, je-li následující funkce: a) (,)=ln( +1), =1; 2, =(1; 1) 1 roste rychlostí 2 b) (,)= 2, =3; 4, =(1; 1) klesá rychlostí 10 2 c) (,)= , =2; 0, =(2; 3) klesá rychlostí Řešení 3a Máme určit, zda funkce (,) v bodě ve směru vektoru roste či klesá a určit rychlost změny, je-li: (,)=ln( +1), =1; 2, =(1; 1) Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě vidíme, že velikost směrového vektoru není normovaná, upravíme ho tedy. Nejprve zjistíme velikost našeho směrového vektoru. =(1; 1), =1 +( 1) = 1+1= 2 Nyní z něj odvodíme směrový vektor stejného směru, ale normované velikosti. = 1 2 ; 1 2 Tento nový směrový vektor použijeme v dalším výpočtu. Výše uvedený vzorec pro směrovou derivaci v bodě se nám změní (změna označení vektoru) na ()= () V našem konkrétním případě tedy ()= (1,2)+ (1,2) Vypočteme parciální derivace nejprve obecně = 2 +1 = +1 Nyní dosadíme souřadnice bodu (1,2)= =4 3 6

7 (1,2)= =1 3 Obě parciální derivace nejsou spojité v bodě 1,2. Hodnotu směrové derivace tedy zjistíme dosazením do vzorce. ()= = = = 1 2 Tato hodnota udává hledanou rychlost změny. Současně z toho, že je kladná, vidíme, že naše funkce v daném bodě při zadaném směru je rostoucí. Řešení 3b Máme určit, zda funkce (,) v bodě ve směru vektoru roste či klesá a určit rychlost změny, je-li: (,)= 2, =3; 4, =(1; 1) Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě vidíme, že velikost směrového vektoru není normovaná, upravíme ho tedy. Nejprve zjistíme velikost našeho směrového vektoru. =(1; 1), =1 +1 = 1+1= 2 Nyní z něj odvodíme směrový vektor stejného směru, ale normované velikosti. = 1 2 ; 1 2 Tento nový směrový vektor použijeme v dalším výpočtu. Výše uvedený vzorec pro směrovou derivaci v bodě se nám změní (změna označení vektoru) na ()= () V našem konkrétním případě tedy ()= (3,4)+ (3,4) Vypočteme parciální derivace nejprve obecně =2 = 4 Nyní dosadíme souřadnice bodu (3,4)=2 3=6 (3,4)= 4 4= 16 Obě parciální derivace nejsou spojité v bodě 3,4. Hodnotu směrové derivace tedy zjistíme dosazením do vzorce. 7

8 ()= ( 16)= = 10 2 Tato hodnota udává hledanou rychlost změny. Současně z toho, že je záporná, vidíme, že naše funkce v daném bodě při zadaném směru je klesající. Řešení 3c Máme určit, zda funkce (,) v bodě ve směru vektoru roste či klesá a určit rychlost změny, je-li: (,)= 2+3 5, =2; 0, =(2; 3) +2 Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě vidíme, že velikost směrového vektoru není normovaná, upravíme ho tedy. Nejprve zjistíme velikost našeho směrového vektoru. =(2; 3), =2 +( 3) = 4+9= 13 Nyní z něj odvodíme směrový vektor stejného směru, ale normované velikosti. = 2 13 ; 3 13 Tento nový směrový vektor použijeme v dalším výpočtu. Výše uvedený vzorec pro směrovou derivaci v bodě se nám změní (změna označení vektoru) na ()= () V našem konkrétním případě tedy ()= (2; 0)+ (2; 0) Vypočteme parciální derivace nejprve obecně =2( +2) (2+3 5)1 ( +2) = ( +2) =3( +2) (2+3 5)( 1) ( +2) = ( +2) = Nyní dosadíme souřadnice bodu (2; 0)= 9 9 (2 0+2) = 4 = (2; 0)= (2 0+2) =11 = = 5+9 ( +2) 5+1 ( +2) Obě parciální derivace nejsou spojité v bodě 1,2. Hodnotu směrové derivace tedy zjistíme dosazením do vzorce. ()= = =

9 Tato hodnota tedy udává rychlost změny. Současně z toho, že je záporná, vidíme, že naše funkce v daném bodě při zadaném směru je klesající. 9

10 Příklad 4 Pro funkci (,) určete směr ve kterém funkce v bodě nejvíce roste a určete rychlost růstu: a) (,)=2 3+5, =1; 2 = 1 (4; 3),rychlost je 5 5 b) (,)=, =1; 1 = 1 5 (2; 1),rychlost je 5 c) (,)=arcsin(2+), = 1 2 ; = (2; 1),rychlost je Řešení 4a Máme pro funkci (,) určit směr ve kterém funkce v bodě nejvíce roste a určit rychlost růstu: (,)=2 3+5, =1; 2 Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě tedy ()= (1; 2)+ (1; 2) Vypočteme parciální derivace nejprve obecně =4 = 3 Nyní dosadíme souřadnice bodu (1; 2)=4 1=4 (1; 2)= 3 Dosadíme do vzorce pro směrovou derivaci ()= 4+ ( 3)=4 3 Nyní je třeba najít =(, ), =1 tak, aby ()=4 3 bylo maximální. Podmínka normovanosti směrového vektoru vyjadřuje vztah Odtud postupně vyjádříme + =1 + =1 =1 =±1 Dosadíme do naší funkce pro směrovou derivaci. Přitom máme dvě možnosti použití znaménka. Je třeba uvažovat oba případy. 10

11 ()=4 31 Máme hledat největší růst neboli maximum. Budeme tedy hledat takové, že derivace této funkce je nulová. Tedy Tuto rovnici vyřešíme postupnými úpravami 4 31 = ( 2 )= ( 2 )= ±6 =0 1 = 3 4 Umocníme a oba případy zvažování různého znaménka se nám zase sejdou v jediný 1 = = = = =± 4 5 Nalezli jsme první složku směrového vektoru. Opět má dvě možnosti dané různými znaménky. Dosadíme a získáme druhou složku =±1 ± 4 5 =± =± 9 25 =±3 5 Pro i jsme získali po dvou hodnotách. Nalezli jsme tedy celkem čtyři možné kombinace. Vybereme dle zadání tu, pro kterou naše funkce více roste pomocí námi již výše odvozeného vztahu pro směrovou derivaci. ()=4 3 Jednotlivé případy pro přehlednost uspořádáme do tabulky. Případ () Pro úplnost uvedeme výpočty pro jednotlivé případy zvlášť, neb v tabulce působí poněkud nepatřičně: 11

12 = = = = += = = = = = + = Jasně vidíme, že druhý případ dává nejvyšší hodnotu, která současně udává rychlost růstu. Proto hledaný směr je =, a rychlost růstu je 5. Řešení 4b Máme pro funkci (,) určit směr ve kterém funkce v bodě nejvíce roste a určit rychlost růstu: (,)=, =1; 1 Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě tedy ()= (1; 1)+ (1; 1) Vypočteme parciální derivace nejprve obecně =2 = Nyní dosadíme souřadnice bodu (1; 1)=2 1 () =2 (1; 1)= () = Dosadíme do vzorce pro směrovou derivaci ()= 2 + ( )=2 Nyní je třeba najít =(, ), =1 tak, aby ()=2 bylo maximální. Podmínka normovanosti směrového vektoru vyjadřuje vztah Odtud postupně vyjádříme + =1 + =1 =1 =±1 Dosadíme do naší funkce pro směrovou derivaci. Přitom máme dvě možnosti použití znaménka. Je třeba uvažovat oba případy. ()=2 ±

13 Máme hledat největší růst neboli maximum. Budeme tedy hledat takové, že derivace této funkce je nulová. Tedy Tuto rovnici vyřešíme postupnými úpravami 2 1 = ( 2 )= ( )=0 2± 1 =0 2 1 ± = ± =0 1 = 1 2 Umocníme a oba případy zvažování různého znaménka se nám zase sejdou v jediný 1 = 1 4 1= = 5 4 = 4 5 =± 4 5 =±2 1 5 Nalezli jsme první složku směrového vektoru. Opět má dvě možnosti dané různými znaménky. Dosadíme a získáme druhou složku =±1 ± 4 5 =±1 4 5 =± 1 5 Pro i jsme získali po dvou hodnotách. Nalezli jsme tedy celkem čtyři možné kombinace. Vybereme dle zadání tu, pro kterou naše funkce více roste pomocí námi již výše odvozeného vztahu pro směrovou derivaci. ()=2 = (2 ) Jednotlivé případy pro přehlednost uspořádáme do tabulky. Případ

14 () Pro úplnost uvedeme výpočty pro jednotlivé případy zvlášť, neb v tabulce působí poněkud nepatřičně: = = = = 3 Jasně vidíme, že druhý případ dává nejvyšší hodnotu, která současně udává rychlost růstu. Proto hledaný směr je =2, a rychlost růstu je 5 = 5. Řešení 4c Máme pro funkci (,) určit směr ve kterém funkce v bodě nejvíce roste a určit rychlost růstu: (,)=arcsin(2+), = 1 2 ; 1 2 Pro počítání směrové derivace v bodě za předpokladu, že jsou parciální derivace v tomto bodě spojité a je dán směr =(, ), =1, platí: ()= () V našem konkrétním případě tedy ()= 1 2 ; ; 1 2 Vypočteme parciální derivace nejprve obecně = 2 1 (2+) = 1 1 (2+) Nyní dosadíme souřadnice bodu 1 2 ; 1 2 = 2 2 = = 2 = = = =

15 1 2 ; 1 2 = 1 1 = = 1 = = Dosadíme do vzorce pro směrovou derivaci 4 ()= = 2 3 (2 + ) Nyní je třeba najít =(, ), =1 tak, aby ()= (2 + ) bylo maximální. Podmínka normovanosti směrového vektoru vyjadřuje vztah Odtud postupně vyjádříme + =1 + =1 =1 = = 2 3 =±1 Dosadíme do naší funkce pro směrovou derivaci. Přitom máme dvě možnosti použití znaménka. Je třeba uvažovat oba případy. ()= ±1 Máme hledat největší růst neboli maximum. Budeme tedy hledat takové, že derivace této funkce je nulová. Tedy Tuto rovnici vyřešíme postupnými úpravami ±1 = ± ( 2 )=0 2± ( 2 )=0 2 1 =0 2 1 = =0 1 =± 1 2 Umocníme a oba případy zvažování různého znaménka se nám zase sejdou v jediný 1 = 1 4 1= =

16 = 4 5 =± 4 5 =±2 1 5 Nalezli jsme první složku směrového vektoru. Opět má dvě možnosti dané různými znaménky. Dosadíme a získáme druhou složku =±1 ± 4 5 =±1 4 5 =± 1 5 Pro i jsme získali po dvou hodnotách. Nalezli jsme tedy celkem čtyři možné kombinace. Vybereme dle zadání tu, pro kterou naše funkce více roste pomocí námi již výše odvozeného vztahu pro směrovou derivaci. ()= 2 3 (2 + ) Jednotlivé případy pro přehlednost uspořádáme do tabulky. Případ () Pro úplnost uvedeme výpočty pro jednotlivé případy zvlášť, neb v tabulce působí poněkud nepatřičně: =5 = = =3 = = = 3 = 2 = = 5 = = 2 Jasně vidíme, že první případ dává nejvyšší hodnotu, která současně udává rychlost růstu. Proto hledaný směr je =2, a rychlost růstu je 2. 16

17 Příklad 5 Určete všechny parciální derivace druhého řádu funkce v obecném bodě a vyčíslete je v daných bodech a) (,)=ln( + ),=1; 0 =2( ) ( + ), b) (,)= +,= 2; 3 = ( +), c) (,)=arctg(),=1; 1 2 = (1+ ), = 4 ( + ), = 2( +), = 1 (1+ ), ) =2( ( + ) 1 = 4( +) = 2 (1+ ) Poznámka Obecně lze v těchto případech (pracujeme v prostoru ) uvažovat čtyři typy parciální derivace druhého řádu. Jedná se o tyto situace: 1. poprvé derivujeme podle, podruhé derivujeme podle, tedy počítáme 2. poprvé derivujeme podle, podruhé derivujeme podle, tedy počítáme 3. poprvé derivujeme podle, podruhé derivujeme podle, tedy počítáme 4. poprvé derivujeme podle, podruhé derivujeme podle, tedy počítáme Protože pořadí parciálních derivací můžeme zaměňovat, je nutně druhý a třetí případ stejný dává stejný výsledek. Proto se v našich výpočtech omezíme na tři případy. Řešení 5a Máme určit všechny parciální derivace druhého řádu funkce v obecném bodě a vyčíslit je v daném bodě pro (,)=ln( + ), =1; 0 Nejprve si připravíme parciální derivace prvního řádu v obecném bodě. = = + Nyní dalším derivováním těchto derivací vypočteme parciální derivace druhého řádu v obecném bodě. + ) 22 =2( ( + ) = ( + ) + ) 22 =0( ( + ) = ( + ) + ) 22 =2( ( + ) = ( + ) Nyní můžeme vyčíslit tyto parciální derivace v daném bodě (1;0)=2 (1 +0 ) =2(1+0) =2 1 = = 2 17 =2 ( + ) = 4 ( + ) =2 ( + ) (1;0)= (1 +0 ) = (1+0) = 0 1 =0 1 =0

18 (1;0)=2 (1 +0 ) =2(1+0) =2 1 =21 1 =2 Řešení 5b Máme určit všechny parciální derivace druhého řádu funkce v obecném bodě a vyčíslit je v daném bodě pro (,)= +, = 2; 3 Nejprve si připravíme parciální derivace prvního řádu v obecném bodě. = = + = = Nyní dalším derivováním těchto derivací vypočteme parciální derivace druhého řádu v obecném bodě = + = + = + = + = = = + + = = ( +) = = = = 2 + = 2( +) = 4( +) Nyní můžeme vyčíslit tyto parciální derivace v daném bodě. ( 2; 3)= (( 2) +3) = (4+3) = 7 ( 2) 2 ( 2; 3)= 2 1 2(( 2) +3) = 2(4+3) = 2 7 = ( 2; 3)= 4(( 2) +3) = 4(4+3) = 4 7 Řešení 5c Máme určit všechny parciální derivace druhého řádu funkce v obecném bodě a vyčíslit je v daném bodě pro (,)=arctg(), =1; 1

19 Nejprve si připravíme parciální derivace prvního řádu v obecném bodě. = 1+() = 1+ = 1+() = 1+ Nyní dalším derivováním těchto derivací vypočteme parciální derivace druhého řádu v obecném bodě. ) 2 =0(1+ (1+ ) = 2 (1+ ) ) 2 =1(1+ (1+ ) = 1 (1+ ) ) 2 =0(1+ (1+ ) = 2 (1+ ) Nyní můžeme vyčíslit tyto parciální derivace v daném bodě. 2 1 ( 1) (1; 1)= (1+1 ( 1) ) =( 2) 1 ( 1) (1+1 1) = 2 2 =1 2 (1; 1)= 1 1 ( 1) (1+1 ( 1) ) = (1+1 1) = 2 =0 2 1 ( 1) (1; 1)= (1+1 ( 1) ) =( 2) 1 ( 1) (1+1 1) = 2 2 =1 2 19

20 Příklad 6 Najděte diferenciál druhého řádu d (h) pro h=(h,h ) v příslušných bodech pro funkci: 2 = (+2+1) 2 2 a) (,)= +ln(+2+1), =0; 0 = 2 2 (+2+1) 2 2 = 4 2 (+2+1) 2 d (h)= 4 4 Řešení 6a Máme najít diferenciál druhého řádu d (h) pro h=(h,h ) v příslušných bodech pro funkci (,)= +ln(+2+1), =0; 0 Diferenciál druhého řádu v je dle definice d (h)= ()h + ()h h + ()h Vypočteme první parciální derivace v obecném bodě = = Z prvních parciálních derivací vypočteme druhé parciální derivace v obecném bodě 1 =2 (+2+1) =2 2 (+2+1) 4 = (+2+1) Vypočteme hodnoty druhých parciálních derivací v bodu =0; (0;0)=2 0 ( ) =0 (0+0+1) = 1 = 1 (0;0)= ( ) =0 (0+0+1) = 1 = (0;0)= ( ) = (0+0+1) = 1 = 4 Tyto parciální derivace dosadíme do vzorce diferenciálu druhého řádu a dostáváme výsledek d (h)= h 2h h 4h Pomocí standardních proměnných můžeme tento diferenciál druhého řádu vyjádřit jako d (h)=

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7 Příklad 1 Pomocí l Hôpitalova pravidla spočtěte následující limity. Poznámka a) lim b) lim c) lim d) lim e) lim f) lim g) lim h) lim i) lim j) lim k) lim l) lim cotg Všechny limity uvedené v zadání vedou

Více

= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1

= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad 1 Vypočtěte integrály a) b) c) d) e) f) g) h) i) j),, = 0,1 1,3 je oblast ohraničená přímkami =,=,=0 1+, :=0,=1,=1,= +3, :=0,=,=0,=1 sin+, 3,,,, :=0,=,= : + 4 : =4+,+3=0

Více

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0. Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d. ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2, 4. Parciální derivace a diferenciál. řádu 0-a3b/4dvr.tex Příklad. Určete parciální derivace druhého řádu funkce f v obecném bodě a v daných bodech. Napište obecný tvar. diferenciálu, jeho hodnotu v daných

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

4.3.3 Základní goniometrické vzorce I

4.3.3 Základní goniometrické vzorce I 4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

Diferenciální rovnice separace proměnných verze 1.1

Diferenciální rovnice separace proměnných verze 1.1 Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1 1 Úvod Vázané extrémy funkcí více proměnných verze 1. Následující text popisuje hledání vázaných extrémů funkcí více proměnných. Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

úloh pro ODR jednokrokové metody

úloh pro ODR jednokrokové metody Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x

1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x .cvičení 0..009 Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje lim h 0 f(a + h) f(a), h pak tuto limitu nazýváme derivací funkce f v bodě a. Značíme f f(a + h) f(a) (a) := lim. h 0 h

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Neurčitý integrál. Robert Mařík. 4. března 2012

Neurčitý integrál. Robert Mařík. 4. března 2012 Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

CVIČENÍ Z MATEMATIKY II

CVIČENÍ Z MATEMATIKY II VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ CVIČENÍ Z MATEMATIKY II Řešené úlohy (Učební tet pro kombinovanou formu studia) RNDr. JIŘÍ KLAŠKA, Dr. ÚSTAV MATEMATIKY FAKULTA STROJNÍHO INŽENÝRSTVÍ BRNO PŘEDMLUVA Učební

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b, Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Sedmé cvičení bude vysvětlovat tuto problematiku:

Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε. LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro

Více

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4. ..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více