Funkce základní pojmy a vlastnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Funkce základní pojmy a vlastnosti"

Transkript

1 Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické Goniometrické Cklometrické 5 Transformace grafu funkce 6 Operace s funkcemi Leonard Euler

2 Pojem funkce Definice (funkce) Necht D je neprázdná množina reálných čísel. Pravidlo f, které každému reálnému číslu D přiřazuje právě jedno reálné číslo, se nazývá reálná funkce jedné reálné proměnné (stručně funkce). Zapisujeme = f(). - argument funkce f (nezávisle proměnná). - funkční hodnota funkce f v bodě (závisle proměnná). D - definiční obor funkce f, značí se D(f). Množina všech reálných čísel f(), která dostaneme pro všechna D, se nazývá obor hodnot funkce f a značí se H(f). Příklad (funkce) = cos, D(f) = R, H(f) =, =, D(f) = R \ {} protože, H(f) = R \ {} Obsah kruhu je funkcí jeho poloměru, ted =. D(f) = (, + ), nebot poloměr kruhu je vžd kladné číslo, H(f) = (, + ). Není-li definiční obor pro funkci f zadán, pak jím rozumíme množinu všech reálných čísel, pro které má výraz f() smsl. Příklad (definiční obor) Určete definiční obor funkce = a ted D(f) =, + ) Určete definiční obor funkce = log(5 ) 5 > < 5 a ted D(f) = (, 5 ) Určete definiční obor funkce = a ted D(f) = R \ { 4}

3 Graf funkce Definice (graf funkce) Grafem funkce = f() s definičním oborem D(f) rozumíme množinu všech bodů [, f()] rovin, kde D(f) ve zvolené kartézské souřadnicové soustavě. Definiční obor znázorňujeme na ose, obor hodnot na ose. Libovolná rovnoběžka s osou protíná graf funkce nejvýše v jednom bodě. Příklad (č. graf funkce) Křivka = není grafem funkce, protože jednomu nemohou být přiřazena dvě různá reálná čísla. = Příklad (č. graf funkce) =, grafem je přímka = k + q, směrnice k =, q =. Průsečík s osami: s osou [, ] ( = ): = = [, ] s osou [, ] ( = ): = = [, ] = D(f) = R, H(f) = R

4 Příklad (č. graf funkce) =, grafem je hperbola. D(f) = (, ) (, ), H(f) = (, ) (, ) = Poznámka (zadání funkce) Způsob zadání funkce: eplicitní = f(), ( = vzorec pro ) např. = tg, = 5, =, = + implicitní F (, ) =, ( vzorec pro a = ) např. log() + = tabulka funkčních hodnot graf

5 Vlastnosti funkcí Definice (parita funkce) Funkce f s definičním oborem, který má tu vlastnost, že s každým bodem obsahuje i bod, se nazývá sudá, jestliže pro každé D(f) platí f( ) = f(), lichá, jestliže pro každé D(f) platí f( ) = f(). Graf sudé funkce je souměrný podle os, např. = cos. Graf liché funkce je souměrný podle počátku souřadnic, např. = sin. Nutným předpokladem pro tuto vlastnost je, ab definiční obor bl souměrný podle počátku souřadnic. Obecně nemusí být funkce ani sudá ani lichá. Parita funkce Příklad (sudost, lichost funkce) graf sudé funkce = graf liché funkce = f() f() f() souměrnost podle os souměrnost podle počátku

6 Funkce rostoucí nebo klesající se nazývají rze monotonní, neklesající nebo nerostoucí se nazývají monotonní. Příklad (sudost, lichost funkce) Rozhodněte, zda následující funkce jsou sudé nebo liché. = +, R f( ) = ( ) + = + = + = f() Funkce je ted lichá. = +, R f( ) = ( ) + ( ) = + = f() Funkce je ted sudá. = + D(f) = R \ {} Není splněn předpoklad, že definiční obor s každým obsahuje také, funkce není ani sudá ani lichá. Monotonie funkce Definice (monotonie funkce) Necht f je funkce a M D(f) podmnožina definičního oboru. Řekneme, že funkce f je na množině M rostoucí, jestliže pro každé dvě, M takové, že < platí f( ) < f( ). klesající, jestliže pro každé dvě, M takové, že < platí f( ) > f( ). neklesající, jestliže pro každé dvě, M takové, že < platí f( ) f( ). nerostoucí, jestliže pro každé dvě, M takové, že < platí f( ) f( ).

7 Příklad (rostoucí, klesající funkce) graf rostoucí funkce = e f( ) graf klesající funkce = e f( ) f( ) f( ) < f( ) < f( ) < f( ) > f( ) obě funkce jsou rze monotonní na D(f) = R Příklad (neklesající, nerostoucí funkce) graf neklesající funkce graf nerostoucí funkce f( ) = f( ) f( ) = f( ) < f( ) f( ) < f( ) f( ) obě funkce jsou monotonní na D(f) = R

8 Příklad Funkce = není na celém svém definičním oboru D(f) = R \ {} klesající a ted ani monotonní. f( ) < ale f( ) < f( ) f( ) Je klesající pouze v každém z intervalů (, ) a (, ). Ohraničenost funkce Definice (ohraničenost funkce) Necht f je funkce a M D(f) podmnožina definičního oboru. Řekneme, že funkce f je na množině M zdola ohraničená, jestliže eistuje takové d R, že pro každé M platí f() d. shora ohraničená, jestliže eistuje takové h R, že pro každé M platí f() h. ohraničená, jestliže je na množině M ohraničená shora i zdola. Je-li funkce ohraničená zdola, pak eistuje vodorovná přímka = d taková, že graf funkce leží celý nad touto přímkou. Je-li funkce ohraničená shora, pak eistuje vodorovná přímka = h taková, že graf funkce leží celý pod touto přímkou. Je-li funkce ohraničená, leží celý graf mezi dvěma vodorovnými přímkami.

9 Příklad = je ohraničená zdola = je ohraničená shora h d = sin je ohraničená h d Prostá funkce Definice (prostá funkce) Řekneme, že funkce f je na množině M prostá, jestliže pro každé, M takové, že, platí f( ) f( ). Každá funkční hodnota odpovídá pouze jedinému argumentu. Graf prosté funkce protíná každá vodorovná přímka v nejvýše jednom bodě. Věta Každá rze monotonní funkce na množině M je prostá. Je-li ted funkce na množině M rostoucí nebo klesající, je zde prostá.

10 Příklad funkce = je prostá na D(f) = R funkce = není prostá na D(f) = R f( ) = f( ) na intervalu (, ) je klesající a ted prostá na intervalu (, ) je rostoucí a ted také prostá Periodičnost funkce Definice (periodičnost funkce) Funkce f s definičním oborem, který má tu vlastnost, že s každým bodem obsahuje také bod + p, kde p >, se nazývá periodická s periodou p, jestliže pro všechna D(f) platí f( + p) = f(). Příklad Goniometrické funkce = sin a = cos jsou periodické funkce se základní periodou (jsou ale periodické také s periodou 4, 6 atd.). - Goniometrické funkce = tg a = cotg jsou periodické s periodou.

11 Inverzní funkce Definice (inverzní funkce) Necht f je prostá funkce. Funkce f, která každému číslu H(f) přiřazuje právě to číslo D(f), pro které platí = f(), se nazývá inverzní funkce k funkci f. Značíme ji f, ted = f (). D(f) f H(f) f H(f ) D(f ) Platí D(f ) = H(f), H(f ) = D(f). f je inverzní funkce k funkci f. Graf funkcí f a f jsou smetrické podle přímk =. Je-li funkce f rostoucí (klesající), je i f rostoucí (klesající). Chceme-li k funkci f najít inverzní funkci, zaměníme v zadání funkce = f() proměnné a. Z rovnice = f() pak vjádříme proměnnou. Příklad Určete inverzní funkci k funkci =. f : = je prostá (rostoucí) D(f) = R H(f) = R f : = + = = + D(f ) = R H(f ) = R = = = +

12 Základní elementární funkce Základní elementární funkce mocninné eponenciální logaritmické goniometrické cklometrické Všechn funkce, které ze základních elementárních funkcí získáme konečným počtem operací sčítání, odčítání, násobení, dělení a skládáním těchto funkcí navzájem, se nazývají elementární funkce. Mocninné funkce Mocninná funkce je funkce tvaru = a, kde (, ), mocnitel a R je číslo libovolné, ale pevné. Pro různé mocnitele může mít různé definiční obor, nebot je lze někd rozšířit. Mezi mocninné funkce patří = n, = n = n, D(f) = (, ), D(f) = (, ) (, ), = n = n, D(f) =, ), kde n N. Pro n liché můžeme definiční obor funkce = n rozšířit na množinu (, ) tak, že pro kladné číslo a je n a = n a. Ted např. 8 =. Pro n sudé platí, že n a není v R definována, např. 4.

13 mocninné funkce přímka = parabola = D(f) = R, H(f) = R D(f) = R, H(f) =, ) mocninné funkce kubická parabola = hperbola = D(f) = R, H(f) = R D(f) = R {}, H(f) = R {}

14 mocninné funkce = odmocnina = D(f) = R {}, H(f) = (, ) D(f) =, ), H(f) =, ) Eponenciální funkce eponenciální funkce = a (a >, a ) = a (a > ) = a ( < a < ) a D(f) = R, H(f) = (, ) a > rostoucí pro a > a klesající pro < a < speciální případ = e, kde e =, 788 je tzv. Eulerovo číslo a

15 Příklad (eponenciální funkce) Nakreslete graf funkcí = a = ( ). = ( ) = ( ) je totožný s grafem =. Platí totiž Graf funkce = ( ) = = Logaritmické funkce logaritmické funkce = log a (a > ) = log a ( < a < ) a a D(f) = (, ), H(f) = R rostoucí pro a > a klesající pro < a < a = e, = ln (= log e ), tzv. přirozený logaritmus a =, = log (= log ), tzv. dekadický logaritmus

16 Příklad (logaritmické funkce) Nakreslete graf funkcí = log a = log. = ( ) = = = log = log Logaritmická funkce = log a a eponenciální funkce = a o stejném základu a jsou vzájemně inverzní a platí vztah, = log a = a Pro logaritmickou funkci platí log a a = speciálně log =, ln e =, log a = speciálně log =, ln =, log a = ln ln a speciálně log = ln ln Příklad log = 5 = 5 log = = ln = = e

17 Příklad (logaritmické funkce) Nakreslete graf funkcí = ln a = log. = ln = log e Goniometrické funkce goniometrické funkce = sin - = cos - D(f) = R, H(f) =, funkce jsou periodické se základní periodou p = funkce = cos je sudá, funkce = sin je lichá

18 goniometrické funkce = tg, tg = sin cos = cotg, cotg = cos sin D(f) = R { (k + ), k Z}, H(f) = R D(f) = R {k, k Z}, H(f) = R funkce jsou periodické se základní periodou p =, jsou obě liché Hodnot goniometrických funkcí Hodnot goniometrických funkcí ve vbraných úhlech Stupně Radián sin α cos α tg α - cotg α - -

19 Cklometrické funkce Inverzní funkce k = sin = arcsin = - = sin Inverzní funkce k funkci = sin,,, je funkce = arcsin Inverzní funkce k = cos = arccos = - = cos Inverzní funkce k funkci = cos,,, je funkce = arccos

20 cklometrické funkce = arcsin = arccos 6 D(f) =,, H(f) =, funkce = arcsin je rostoucí a lichá D(f) =,, H(f) =, funkce = arccos je klesající Inverzní funkce k = tg = tg = arctg = Inverzní funkce k funkci = tg, (, ), je funkce = arctg

21 Inverzní funkce k = cotg = arccotg = = cotg Inverzní funkce k funkci = cotg, (, ), je funkce = arccotg cklometrické funkce = arctg = arccotg 4 4 D(f) = R, H(f) = (, ) funkce = arctg je rostoucí a lichá D(f) = R, H(f) = (, ) funkce = arccotg je klesající

22 Příklad (určení funkční hodnot) arcsin = 6, protože sin 6 = ( ) ( ) arcsin = arcsin = 4, protože sin 4 = a funkce = arcsin je lichá ( ) arccos = 6, protože cos 6 = ( ) arccos = 5 6, protože cos 6 = a 6 = 5 6 arctg = ( ), protože tg = Příklad (definiční obor) Určete definiční obor funkce = arccos. Funkce = arccos má definiční obor,, proto musí platit a / 4 Definiční obor je ted D(f) =,

23 Transformace grafu funkce Poznámka (přičtení čísla k argumentu) graf funkce = f( ± c) (posun ve směru os ) = ( + ) = ( ) Poznámka (přičtení čísla k funkční hodnotě) graf funkce = f() ± c (posun ve směru os ) = = +

24 Příklad Nakreslete graf funkce = + log ( + ). Posun, ; a = > rostoucí funkce; + > D(f) = (, ) 4 = + log ( + ) = log průsečík a osami: = = + log = [, ] = = + log ( + ) = log ( + ) = + 4 = 4 = [ 4, ] Poznámka (vnásobení funkční hodnot číslem ) = graf funkce = f() (překlopení kolem os ) e = e = -e = e souměrnost podle os

25 Poznámka (vnásobení argumentu číslem ) graf funkce = f( ) (překlopení kolem os ) = = = ln( ) = ln -e e souměrnost podle os Operace s funkcemi Poznámka (operace s funkcemi) Funkce lze sčítat, odčítat, násobit a dělit: (f + g)() = f() + g() (f g)() = f() g() (f g)() = f() g() ( ) f () = f(), kde g() g g() Definiční obor těchto funkcí je průnikem definičních oborů jednotlivých funkcí s tím, že v případě podílu navíc požadujeme, ab g().

26 Skládání funkcí Definice (složená funkce) Necht je dána funkce u = g() s definičním oborem D(g), oborem hodnot H(g) a funkce = f(u), která je definována na množině D(f) H(g). Složenou funkcí (f g)() rozumíme přiřazení, které každému D(g) přiřadí číslo = f (g()), tj. hodnotu funkce f v čísle g(). Funkce g se nazývá vnitřní složka, funkce f vnější složka složené funkce. D(g) D(f) H(g) H(f) g f g() f(g()) f g Funkce složená vznikne dosazením libovolné funkce za argument jiné funkce. Opakováním postupu skládání funkcí dostaneme vícenásobně složené funkce. Příklad Funkce = log, má vnější složku = u a vnitřní složku u = log. Funkce = sin( ), má vnější složku = sin u a vnitřní složku u =. Funkce = ln cos(), má vnější složku = ln z a vnitřní složk z = v, v = cos u, u =.

27 Určování definičních oborů Poznámka Při určování definičních oborů složených funkcí a podílu funkcí je třeba brát v úvahu následující podmínk: funkce tvaru = f() je definovaná pro g(), g() funkce tvaru = f() je definovaná pro f(), funkce tvaru = log a f() je definovaná pro f() >, funkce tvaru = tg(f()) je definovaná pro f() (k + ), k Z, funkce tvaru = cotg(f()) je definovaná pro f() k, k Z, funkce tvaru = arcsin(f()) a = arccos(f()) jsou definován pro f(). Příklad Určete definiční obor funkce = ln( + ) e 4 + > > ( )( ) (, > <, ) D(f) = (,, 4) (4, )

28 Vzájemně inverzní základní elementární funkce = =, = = = e = a, a, a > = sin,, = cos,, = tg, (, = cotg, (, ) ) = ln = log a = arcsin = arccos = arctg = arccotg Pro vzájemně inverzní funkce f a f platí f (f()) =, f(f ()) = pro všechna, pro která má tento zápis smsl. Příklad Pro všechna, pro která mají uvedené operace smsl, například platí: = ln(e ) = e ln = log a (a ) = a log a = ( ) = = sin(arcsin ) = arcsin(sin ) = tg(arctg ) = arctg(tg )

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

2 Reálné funkce jedné reálné proměnné

2 Reálné funkce jedné reálné proměnné 2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen

Více

Elementární funkce. Polynomy

Elementární funkce. Polynomy Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.

Více

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } ÚVOD DO MATEMATIKY Číselné množin Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } Racionální čísla (Q) Čísla která lze vjádřit

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí. Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně

Více

2. FUNKCE Funkce 31

2. FUNKCE Funkce 31 Základ matematik FUNKCE 0 Základní vlastnosti Ohraničená a neohraničená funkce Monotónnost funkce, funkce rostoucí a klesající Prostá funkce Sudá a lichá funkce 7 Periodická funkce 9 Inverzní funkce 0

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné

1.1 Funkce 1. Tab. 1: Omezující funkce definičního oboru. 1 V tomto textu se pojmem funkce uvažuje funkce jedné proměnné 1.1 Funkce 1 V životě se běžně setkáváme se vztahem závislosti mezi různými proměnnými. Takovým vztahem závislosti může být například cena akciového titulu v závislosti na čase nebo teplota v místnosti

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště

Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště Funkce Logaritmická funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-1 Obsah Logaritmická funkce 1 Logaritmická funkce předpis funkce a ukázky grafů srovnání grafů

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje. Číslo projektu Škola Autor Číslo materiálu Název Téma hodiny Předmět Ročník/y/ Anotace CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Mgr. Renata

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!. 8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně

Více

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4. ..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x.

27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x. Základní elementární funkce Robert Mařík 7. června 00 ln e sin arcsin cos arccos tg arctg Abstrakt V tomto dokumentu jsou uvedeny základní vlastnosti nejdůležitějších základních elementárních funkcí. (Triviální

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Exponenciální funkce teorie

Exponenciální funkce teorie Eponenciální funkce teorie Eponenciální funkce je dána rovnicí f : = a, a ( 0,) (, ) Poznámka: pokud bchom připustili a =, vznikla b funkce konstantní pokud bchom připustili a < 0, nebla b funkce definována

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Reálné funkce 1 / 21 Matematika 1 pro PEF PaE 1. Reálné funkce Přemysl Jedlička Katedra matematiky, TF ČZU funkce Reálné funkce Základní pojmy 2 / 21 Zobrazení z množiny A do množiny B je množina f uspořádaných

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

1 ÚVOD. 1.1 Kontaktní informace. 1.2 Předpokládané znalosti ze střední školy. Mgr. Iveta Cholevová, Ph. D. A829,

1 ÚVOD. 1.1 Kontaktní informace. 1.2 Předpokládané znalosti ze střední školy. Mgr. Iveta Cholevová, Ph. D. A829, 1 ÚVOD 1.1 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 1.2 Předpokládané znalosti ze střední

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ..07/..00/6.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Mocninné funkce Autor: Pomykalová Eva

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i Přednáška č. 6 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 6 29. října 2007 1 / 64 Přehled elementárních funkcí Jde o pojem spíše historický než matematický. Vymezuje se několik (základních)

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212 Matematika I Funkce jedné proměnné Funkce jedné proměnné Matematika I 1 / 212 1. Množiny a zobrazení Funkce jedné proměnné Matematika I 2 / 212 Množiny Definice 1.1.1: Množinou rozumíme soubor prvků se

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Matematická analýza 1. Doc. RNDr. Jaroslav Hančl, CSc. Mgr. Jan Šustek

Matematická analýza 1. Doc. RNDr. Jaroslav Hančl, CSc. Mgr. Jan Šustek Matematická analýza 1 Doc. RNDr. Jaroslav Hančl, CSc. Mgr. Jan Šustek 2009 Obsah Obsah Seznam použitých symbolů.................................................. 2 1. Funkce Teoretické základy.................................................

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Funkce. Vlastnosti funkce. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Funkce. Vlastnosti funkce. Text a příklady. Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Vlastnosti funkce. Tet a příklad. Ročník.

Více

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský

Více

a základ exponenciální funkce

a základ exponenciální funkce Předmět: Ročník: Vtvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 5. červenec 0 Název zpracovaného celku: EXPONENCIÁLNÍ A LOGARIMICKÁ FUNKCE EXPONENCIÁLNÍ FUNKCE Eponenciální unkce o základu a je každá

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

Řešené příklady ze starých zápočtových písemek

Řešené příklady ze starých zápočtových písemek Řešené příklady ze starých zápočtových písemek Úloha. Najděte všechna reálná řešení rovnice log x log x 3 = log 6. Řešení. Nebot logaritmus je definovaný pouze pro kladné hodnoty dostáváme ihned podmínku

Více

4.2. CYKLOMETRICKÉ FUNKCE

4.2. CYKLOMETRICKÉ FUNKCE 4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Matematická analýza 1

Matematická analýza 1 VŠB TECHNICKÁ UNIVERZITA OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY Matematická analýza 1 Cvičení Martina Litschmannová 2015 / 2016 Definice, věty i mnohé příklady jsou převzaty z: KUBEN, Jaromír a

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více