Diskrétní 2D konvoluce

Rozměr: px
Začít zobrazení ze stránky:

Download "Diskrétní 2D konvoluce"

Transkript

1 ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov

2 Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí pro něj {, t = 0 + δ(t) = lim f (t) = t 0 0, t 0, δ(t)dt = v DSP technice se definuje δ-funkce δ(n) jako normalizovaný impulz, který má ve vzorku 0 hotnodu a ostatní vzorky mají hodnotu 0.

3 Popis vzorkovaného signálu A analogový vstup t sample and hold A vzorky analogového signálu n Č n analogově číslicový převodník číslicová data násobení signálu posloupností Diracových impulzů je ekvivalentní vzorkování signálu v okamžicích těchto impulzů jakýkoliv impulz může být reprezentován jako posunutá a škálované δ-funkce.

4 Reprezentaze impulzu Jakýkoliv impulz může být reprezentován jako posunutá a škálované δ-funkce, např x(n) = 2,5δ(n )

5 Odezva systému h(n) na jednotkový impulz Delta funkce [n] Impulzní odezva [n] Lineární systém h[n] Odezvou lineárního systému na Diracův impulz je impulzní odezva (váhová funkce) h(n). Konvolucí impulzní odezvy systému a vstupního signálu je výstupní signál systému.

6 Diskrétní konvoluce Jak rozumět tomu, jak lin. systém mění vstupní signál x(n) na výstupní y(n)? Vstupní signál je dekomponován na množinu impulzů, každý impulz představuje posunutá a škálovaná δ-funkce. Výsledný výstup každého impulzu je škálovaná a posunutá verze impulzní odezvy. x(n) = 2,5δ(n ) y(n) = 2,5h(n ) Znalost impulzní odezvy systému umoňuje stanovit výstup pro libovolný vstupní signál. Pokud je lineární systém koncipován jako filtr, pak impulzní odezva se nazývá konvoluční jádro (convolution kernel), nebo maska.

7 Konvoluce y(n) = x(n) h(n) = h(n) x(n) y(n) = M j 0 h(j) x(i j) x(n) h(n) 4,0,0 2,0,0 0,0,0 2,0 4,0,0 2,0,0 0,0,0 2,0, ,0 0 2

8 Příklad konvoluce I. x 0 5 = {0,0;,0;,2; 2,0;,4;,4} x(0)h(n 0) x()h(n ) x(2)h(n 2) 4,0 4,0 4,0,0,0,0 2,0 2,0 2,0,0,0,0 0,0 0,0 0,0,0,0,0 2,0 2,0 2,0, , , x()h(n ) x(4)h(n 4) x(5)h(n 5) 4,0 4,0 4,0,0,0,0 2,0 2,0 2,0,0,0,0 0,0 0,0 0,0,0,0,0 2,0 2,0 2,0, , ,

9 Příklad konvoluce II. x 6 8 = {0,5; 0,0; 0,6} x(6)h(n 6) x(7)h(n 7) 4,0 4,0 4,0 x(8)h(n 8),0 2,0,0 0,0,0 2,0,0 2,0,0 0,0,0 2,0,0 2,0,0 0,0,0 2,0, , , ,0 Po sečtění všech složek y(n):,0 2,0,0 0,0,0 2,0,

10 aplikace v počítačové grafice a pro zpracování obrazu y(m, n) = y(m, n) = x(m, n) h(m, n) M k=0 ( N l=0 ( ) ) h(m k, n l) x(k, l) pomocí konvolučních jader lze definovat filtry provádějící: vyhlazování (filtr dolní propust) doostřování (filtr horní propust) detekce hran (gradientní operátory)

11 Jak udělat z jednorozměrné 2D Filtr pro klouzavé průměrování Převod do 2D: Binomický fitr H = (,, ) H 2 = (, 4, 6, 4, ) 6 6 h = (,, ) = 9 h 2 = (, 4, 6, 4, ) =

12 Výpočet 2D diskrétní konvoluce /9 79 / / /9 /9 /9 /9 22 /9 2 /9 H = = 2 Postup: Máme vstupní a výstupní bitmapu, konvoluční jádro zpracovává bod po bodu vstup(i, j) a vypočítanou hodnotu zapisuje na odpovídající pozici výstup(i, j).

13 Kde běžný uživatel využije konvoluční jádra Tvorba vlastních filtrů a úpravy obrazu v rastrových editorech: Adobe Photoshop, Paint Shop Pro, GIMP,... Dávkové zpracování obrazu pomocí ImageMagick Podpora v některých vektorových editorech. Úprava vektorových elementů ve formátu SVG

14 Grafické editory a konvoluce Zadávání konvolučních jader v graf. editoru GIMP.

15 Vyhlazovací filtry I. Originál zarušeného snímku.

16 Vyhlazovací filtry II. H = 9

17 Vyhlazovací filtry III. H 2 =

18 Vyhlazovací filtry IV. H =

19 Gaussovo rozostření I. G(x, y) = x 2 +y 2 2πσ 2 e 2σ 2 0, 0,2 0,2 0,2 0, 0, 0, Rozptyl σ = 0,75.

20 Gaussovo rozostření II. H G = =

21 Vyhlazovací filtry závěr H =, H 2 = , H = Průměrovací filtry mají střední hodnotu všech členů, např. pro H 2 je průměr 6 ( ) =. Nevýhodou průměrovacích filtrů je to, že při vyhlazení dojde na ostrých barevných přechodech k mírnému rozmazání a kvůli tomu utrpí i tenké čáry a další detaily.

22 Detekce hran Hrany se v digitálním obrazu nacházejí v místech, kde se prudce mění jas. Vylepšování hran souvisí s doostřováním a dokáže zlepšit vnímání lidksého zraku. Důležité pro předzpracování obrazu v počítačovém vidění: rozeznávání objektů identifikace zpracování otisků prstů, tvarů obličeje určování pozice vzhledem ke kameře Optical Character Recognition (OCR)

23 Princip detekce hran Hrana je v obraze dána obrazovým elementem a jeho okolím, je určena tím, že se náhle změní hodnota obrazové funkce f (x, y). Pro studium změn funkce dvou proměnných se používají parciální derivace a změnu funkce udává její gradient, který určuje směr největšího růstu ψ funkce a strmost tohoto růstu f (x, y) : f (x, y) = ( f x Laplaceův operátor, vychází z 2. derivací: ) 2 ( ) f 2 + y 2 f (x, y) = 2 f x f y 2

24 Princip detekce hran, pokračování Laplaceův operátor 2 f (x, y) = 2 f y 2 V diskrétním obraze aproximujeme derivace pomocí diferencí: x f 2 f x 2 ( f (i, j) f (i, j) ) ( f (i, j) f (i +, j) ) 2 f y 2 ( f (i, j + ) f (i, j) ) ( f (i, j) f (i, j ) ) 2 f x 2 f (i, j) 2f (i, j) + f (i +, j))... (, 2, ) 2 f f (i, j + ) 2f (i, j) + f (i, j )... 2 y 2 H 4 = H 5 = 8

25 Laplacián, filtr typu horní propust H 4 = Laplacián je invariantní vůči otočení. Přičtení 28 slouží k posunutí jasu pixelů.

26 Operátor Prewittové Příklad operátoru, který aproximuje první derivaci (další možnosti např. Sobel, Kirch, Robinson,... ). Slouží pro odhad gradientu v okolí pro osm směrů (ty se získají pootočením matice). H P = 0 0 0, 0 0 H P = 0, H P = Větší matice s vyšším rozlišením může sloužit k vytváření reliéfu v různých směrech.

27 Operátor Prewittové, příklad všechny směry

28 Doostřování Ostrost vidění je pro lidské vnímání velmi důležitou vlastností. Často se stává, že obraz pro sejmutí kamerou, vyfotografování nebo naskenování nemá moc ostré hrany. Tady nám pomůžou filtry pro ostření, které zvýrazní hrany v obrazu. Nevýhoda dále popsaných filtrů je to, že kromě hran zvýrazní v obraze také šum a některé další nechtěné detaily. Pro doostřování využijeme Laplacián jehož hodnotu odečteme od hodnoty původního pixelu: g(i, j) = f (i, j) ( f (i, j) + f (i +, j) + + f (i, j + ) + f (i, j ) 4f (i, j) ) = = 5f (i, j) f (i, j) f (i +, j) f (i, j + ) f (i, j ) H 6 =

29 Příklad pro programátory int sharpen filter[][]={{0,,0}, {,5, }, {0,,0}}; for(x = 0 ; x < PIX WIDTH; x++){ for(y = 0; y < PIX HEIGHT; y++){ for(k = 0; k < ; k++){ for(l = 0; l < ; l++){ y = getpixel (INPUT, (x ) + k, (y ) + l); sum y += y sharpen filter[k][l]; } } putpixel(output, i, j, sum y); } }

30 Doostřování, příklady I. Digitalizovaný videosignál snímku z CCD kamery.

31 Doostřování, příklady II. H 6 =

32 Doostřování, příklady III. H 7 = 9

33 Příklad uživatelského filtru pro vylepšení obrazu Originál

34 Příklad uživatelského filtru pro vylepšení obrazu Detekce hran pomocí jádra H

35 Příklad uživatelského filtru pro vylepšení obrazu Gaussovo rozostření, rozptyl 5 pixelů

36 Příklad uživatelského filtru pro vylepšení obrazu Překrytí Rozostření R Sloučení zrnitosti Detekované hrany D Originál O Sloučení zrnitosti: L S = O + D 28 Překrytí: L P = L S (L S + (2 T (255 L S ))/255)/255

37 Příklad uživatelského filtru pro vylepšení obrazu Výsledek

38 Příklad uživatelského filtru pro vylepšení obrazu Originál

39 Reference Smith, Steven W.: The Scientists and Engineer s Guide to Digital Signal Processing. California Technical Publishing, Goznales, Rafael C.; Woods, E. Richards: Digital Image Processing. Prentice Hall 2002, 2nd edition. Hlaváč, Václav; Sedláček Miloš: Zpracování signálů a obrazů. Vydavatelství ČVUT Dokumentace k programu GIMP

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. 1/35 HLEDÁNÍ HRAN Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac FYZIOLOGICKÁ MOTIVACE 2/35 Výsledky

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

VY_32_INOVACE_INF4_12. Počítačová grafika. Úvod

VY_32_INOVACE_INF4_12. Počítačová grafika. Úvod VY_32_INOVACE_INF4_12 Počítačová grafika Úvod Základní rozdělení grafických formátů Rastrová grafika (bitmapová) Vektorová grafika Základním prvkem je bod (pixel). Vhodná pro zpracování digitální fotografie.

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více

Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze

Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze Hledání hran Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická, katedra kybernetiky

Více

Úpravy rastrového obrazu

Úpravy rastrového obrazu Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha

Více

Analýza a zpracování signálů

Analýza a zpracování signálů Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,

Více

Restaurace (obnovení) obrazu při známé degradaci

Restaurace (obnovení) obrazu při známé degradaci Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky

Více

[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0

[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0 Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?

Více

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)

Více

Analýza a zpracování signálů. 1. Úvod

Analýza a zpracování signálů. 1. Úvod Analýza a zpracování signálů 1. Úvod DSP matematická a algoritmická manipulace s číslicovými signály jejímž cílem je extrahovat důležité informace, které jsou přenášeny signálem Vstupní signál Zpracovaný

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační

Více

Neparametrické odhady hustoty pravděpodobnosti

Neparametrické odhady hustoty pravděpodobnosti Neparametrické odhady hustoty pravděpodobnosti Václav Hlaváč Elektrotechnická fakulta ČVUT Katedra kybernetiky Centrum strojového vnímání 121 35 Praha 2, Karlovo nám. 13 hlavac@fel.cvut.cz Statistické

Více

POČÍTAČOVÁ GRAFIKA. Počítačová grafika 1

POČÍTAČOVÁ GRAFIKA. Počítačová grafika 1 Počítačová grafika 1 POČÍTAČOVÁ GRAFIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Zpracování obrazu a fotonika 2006

Zpracování obrazu a fotonika 2006 Základy zpracování obrazu Zpracování obrazu a fotonika 2006 Reprezentace obrazu Barevný obrázek Na laně rozměry: 1329 x 2000 obrazových bodů 3 barevné RGB kanály 8 bitů na barevný kanál FUJI Superia 400

Více

Operace s obrazem II

Operace s obrazem II Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů

Více

Systém GIMP (barvy, vrstvy, transformace, průhlednost)

Systém GIMP (barvy, vrstvy, transformace, průhlednost) Semestrální práce z předmětu Kartografická polygrafie a reprografie Systém GIMP (barvy, vrstvy, transformace, průhlednost) Autor: Jiří Lejček, Ivan Majorník Editor: Jan Dolista Praha, květen 2010 Katedra

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do

Více

1. Přednáška: Obecné Inf. + Signály a jejich reprezentace

1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování

Více

FILTRACE VE FOURIEROVSKÉM SPEKTRU

FILTRACE VE FOURIEROVSKÉM SPEKTRU 1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz

Více

Základní metody číslicového zpracování signálu část I.

Základní metody číslicového zpracování signálu část I. A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového

Více

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2 A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace

Více

Obraz jako data. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.2487/2011

Obraz jako data. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.2487/2011 Získávání a analýza obrazové informace Obraz jako data Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Datové formáty obrazu 2 Datové

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt

MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt PROBLÉM ŠPATNÉ SYNCHRONIZACE VZORKOVACÍCH KMITOČTŮ U MLS SIGNÁLŮ: MODEL V PROSTŘEDÍ MATLAB F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze Abstrakt Chceme-li hodnotit kvalitativní stránku

Více

Z OBRAZOVÉHO ZÁZNAMU. Jan HAVLÍK. Katedra teorie obvodů, Fakulta elektrotechnická

Z OBRAZOVÉHO ZÁZNAMU. Jan HAVLÍK. Katedra teorie obvodů, Fakulta elektrotechnická POROVNÁNÍ HRANOVÝCH DETEKTORŮ POUŽITÝCH PŘI PARAMETRIZACI POHYBU Z OBRAZOVÉHO ZÁZNAMU Jan HAVLÍK Katedra teorie obvodů, Fakulta elektrotechnická České vysoké učení technické v Praze Abstrakt Tento článek

Více

ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně 1. ÚVOD...

ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně 1. ÚVOD... 5 OBSAH. ÚVOD... 7 2. ZÁKLADNÍ POJMY... 8 2. POČÍTAČOVÉ VIDĚNÍ... 8 2.2 REPREZENTACE OBRAZU... 9 2.3 ZPRACOVÁNÍ OBRAZU... 3. DIGITALIZACE OBRAZU... 3. VZORKOVÁNÍ... 3.2 KVANTOVÁNÍ... 2 4. FILTRACE A DETEKCE

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

VY_32_INOVACE_INF.10. Grafika v IT

VY_32_INOVACE_INF.10. Grafika v IT VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo

Více

Číslo DUM: VY_32_INOVACE_04_01 Autor: Mgr. Ivana Matyášková Datum vytvoření: březen 2013 Ročník: prima Vzdělávací obor: informační technologie

Číslo DUM: VY_32_INOVACE_04_01 Autor: Mgr. Ivana Matyášková Datum vytvoření: březen 2013 Ročník: prima Vzdělávací obor: informační technologie Číslo DUM: VY_32_INOVACE_04_01 Autor: Mgr. Ivana Matyášková Datum vytvoření: březen 2013 Ročník: prima Vzdělávací obor: informační technologie Tematický celek: počítačová grafika Název projektu: Zvyšování

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

3. Restrukturalizace nebo manipulace s údaji - práce s rastrovými daty

3. Restrukturalizace nebo manipulace s údaji - práce s rastrovými daty 3. Restrukturalizace nebo manipulace s údaji - práce s rastrovými daty Většina systémových konverzí je shodná nebo analogická jako u vektorových dat. změna formátu uložení dat změny rozlišení převzorkování

Více

Konverze grafických rastrových formátů

Konverze grafických rastrových formátů ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Konverze grafických rastrových formátů semestrální práce Jakub Hořejší Ondřej Šalanda V

Více

ZPRACOVÁNÍ OBRAZU přednáška 4

ZPRACOVÁNÍ OBRAZU přednáška 4 ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D.

Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D. FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Počítačové vidění Počítačová cvičení Autoři textu: Ing. Karel Horák, Ph.D. Brno..28 2 FEKT Vysokého učení technického v

Více

1. Polotóny, tisk šedých úrovní

1. Polotóny, tisk šedých úrovní 1. Polotóny, tisk šedých úrovní Studijní cíl Tento blok kurzu je věnován problematice principu tisku polotónů a šedých úrovní v oblasti počítačové grafiky. Doba nutná k nastudování 2 hodiny 1.1 Základní

Více

IVT. Úprava fotografií. 8. ročník

IVT. Úprava fotografií. 8. ročník IVT Úprava fotografií 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE PLZEŇ, 202 Pavel Jedlička TÉMA ČESKY: Předzpracování medicínských obrazů pro následnou segmentaci NÁZEV ANGLICKY:

Více

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,

Více

8. Sběr a zpracování technologických proměnných

8. Sběr a zpracování technologických proměnných 8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

Počítačová grafika 1. Úvod do grafiky, základní pojmy. Rastrová grafika.

Počítačová grafika 1. Úvod do grafiky, základní pojmy. Rastrová grafika. Počítačová grafika 1 Úvod do grafiky, základní pojmy. Rastrová grafika. Proč vůbec grafika? Zmrzlinový pohár s převažující červenou barvou. Základem je jahodová zmrzlina, která se nachází ve spodní části

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Videosignál. A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer. Před. A3M38VBM, 2015 J. Fischer, kat. měření, ČVUT FEL, Praha

Videosignál. A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer. Před. A3M38VBM, 2015 J. Fischer, kat. měření, ČVUT FEL, Praha Videosignál A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer 1 Základ CCTV Základ - CCTV (uzavřený televizní okruh) Řetězec - snímač obrazu (kamera) zobrazovací jednotka (CRT monitor) postupné

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Digitalizace a zpracování obrazu

Digitalizace a zpracování obrazu Digitalizace a zpracování obrazu Jaroslav Fiřt a), Radek Holota b) a) Nové technologie výzkumné centrum Sedláčkova 15 306 14 Plzeň tel. (+420) 377236881, kl. 237 e-mail: firt@kae.zcu.cz b) Nové technologie

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz) NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků

SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků lukas.mach@gmail.com Přílohy (videa, zdrojáky, ) ke stažení na: http://mach.matfyz.cz/sift Korespondence

Více

INFORMATIKA. Grafické studio ve škole

INFORMATIKA. Grafické studio ve škole INFORMATIKA Grafické studio ve škole LUKÁŠ RACHŮNEK Přírodovědecká fakulta UP, Olomouc V současné době školy všech typů často potřebují grafické práce. Jedná se například o prezentaci školy ve formě brožur,

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od

DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od DIGITÁLNÍ OBRAZ JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah fáze zpracování obrazu reprezentace obrazu digitalizace obrazu

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více

ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI

ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI Šum Co je to šum v obrázku? Šum Co je to šum v obrázku? V obrázku je přidaná falešná informace nahodilého původu Jak vzniká v digitální fotografii? Šum Co je to šum v obrázku? V obrázku je přidaná falešná

Více

Informační technologie při zpracování obrazové informace. Vztah číslicového zpracování obrazů k ostatním příbuzným disciplínám

Informační technologie při zpracování obrazové informace. Vztah číslicového zpracování obrazů k ostatním příbuzným disciplínám Informační technologie při zpracování obrazové informace Obsah Informační technologie při zpracování obrazové informace... 1 Vztah číslicového zpracování obrazů k ostatním příbuzným disciplínám... 1 Postupy

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

Barvy a barevné modely. Počítačová grafika

Barvy a barevné modely. Počítačová grafika Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2

2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2 2D grafika Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace Počítačová grafika, 2D grafika 2 2D grafika PC pracuje s daným počtem pixelů s 3 (4) kanály barev (RGB

Více

Základy práce v programovém balíku Corel

Základy práce v programovém balíku Corel Základy práce v programovém balíku Corel Mgr. Tomáš Pešina Výukový text vytvořený v rámci projektu DOPLNIT První jazyková základní škola v Praze 4, Horáčkova 1100, 140 00 Praha 4 - Krč Základy počítačové

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Princip pořízení obrazu P1

Princip pořízení obrazu P1 Princip pořízení obrazu P1 Optická vinětace objektivu Optická soustava Mechanická vinětace objektivu Optická soustava Optická soustava Hloubka ostrosti závislá na použitém objektivu, velikosti pixelu a

Více

GUI APLIKACE PRO VÝUKU AUTOMATIZACE

GUI APLIKACE PRO VÝUKU AUTOMATIZACE GUI APLIKACE PRO VÝUKU AUTOMATIZACE J. Škutová VŠB-Technická univerzita Ostrava, Fakulta strojní Abstrakt V rámci projektu ESF byla vytvořena GUI aplikace pro výuku předmětu Základy automatizace. Cílem

Více

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti

Více

Grafika a grafický design. Internetové publikování

Grafika a grafický design. Internetové publikování Grafika a grafický design Internetové publikování Design stránky Grafický design první dojem, rychlost stahování Struktura stránek navigace, rozvržení plochy Volba informací okruh čtenářů Syntaktická správnost,

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KALIBRACE KAMERY NA ZÁKLADĚ PŘÍMKOVÝCH ÚSEKŮ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KALIBRACE KAMERY NA ZÁKLADĚ PŘÍMKOVÝCH ÚSEKŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF CONTROL AND INSTRUMENTATION

Více

DIGITÁLNÍ ZPRACOVÁNÍ OBRAZU Z TERMOVIZNÍ KAMERY

DIGITÁLNÍ ZPRACOVÁNÍ OBRAZU Z TERMOVIZNÍ KAMERY DIGITÁLNÍ ZPRACOVÁNÍ OBRAZU Z TERMOVIZNÍ KAMERY R. Hájovský, J. Krňávek, Z. Macháček Katedra měřicí a řídicí techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava Abstrakt Příspěvek se zabývá

Více

Matematika pro geometrickou morfometrii (2)

Matematika pro geometrickou morfometrii (2) Ján Dupej (jdupej@cgg.mff.cuni.cz) Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze Opakování 2 Opakování 3 Opakování 4 Opakování

Více

Kreslíme do webu. Canvas

Kreslíme do webu. Canvas Kreslíme do webu Canvas Počítačová grafika Bitmapy vs Vektory Bitmapy: - obraz je složen z bodů (pixelů), které mají definované vlastnosti Vektory: - obraz je složen z grafických prvků (primitiv), které

Více

Modulační parametry. Obr.1

Modulační parametry. Obr.1 Modulační parametry Specifickou skupinou měřicích problémů je měření modulačních parametrů digitálních komunikačních systémů. Většinu modulačních metod používaných v digitálních komunikacích lze realizovat

Více

M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U

M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U CÍLE LABORTATORNÍ ÚLOHY 1. Seznámení se s metodami rozpoznání objektů v obraze 2. Vyzkoušení detekce objektů na snímcích z kamery a MRI snímku ÚKOL

Více

Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E

Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E Z O B R A Z O V A C Í C H Z A Ř Í Z E NÍ CÍLE LABORATORNÍ ÚLOHY 1. Seznámení se s metodami šedotónové a barevné kalibrace fotoaparátů, kamer, snímků

Více

Mikroskopická obrazová analýza

Mikroskopická obrazová analýza Návod pro laboratorní úlohu z měřicí techniky Práce O1 Mikroskopická obrazová analýza 0 1 Úvod: Tato laboratorní úloha je koncipována jako seznámení se s principy snímání mikroskopických obrazů a jejich

Více

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět

Více

þÿ K o n v e r z e v z o r k o v a c í h o k m i t o t u

þÿ K o n v e r z e v z o r k o v a c í h o k m i t o t u DSpace VSB-TUO http://www.dspace.vsb.cz Advances in Electrical and Electronic Engineering (AEEE) AEEE. 00, vol. 8 þÿ K o n v e r z e v z o r k o v a c í h o k m i t o t u 0-0-08T:48:3Z http://hdl.handle.net/0084/8453

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Technologie QosmioEngine: Dokonalý obraz

Technologie QosmioEngine: Dokonalý obraz technické informace technologie qosmioengine Technologie QosmioEngine: Dokonalý obraz 02 03 06 09 10 Notebook Qosmio spojuje grafické možnosti systému QosmioEngine a přehrávače QosmioPlayer, reproduktorů

Více