Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D.

Rozměr: px
Začít zobrazení ze stránky:

Download "Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D."

Transkript

1 FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Počítačové vidění Počítačová cvičení Autoři textu: Ing. Karel Horák, Ph.D. Brno..28

2 2 FEKT Vysokého učení technického v Brně Obsah ÚVOD ZAŘAZENÍ PŘEDMĚTU VE STUDIJNÍM PROGRAMU ÚVOD DO PŘEDMĚTU VSTUPNÍ TEST CVIČENÍ I. DISKRÉTNÍ OBRAZ TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ II. ARITMETICKÉ OPERACE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY... 5 CVIČENÍ III. BODOVÉ JASOVÉ TRANSFORMACE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ IV. SEGMENTACE PRAHOVÁNÍM TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ V. DISKRÉTNÍ KONVOLUCE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ VI. DETEKCE HRAN TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ VII. REDUKCE ŠUMU A OSTŘENÍ OBRAZU TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY... 2 CVIČENÍ VIII. NÁVRH HRANOVÉHO FILTRU... 2

3 Počítačové vidění 3. TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ IX. FILTRACE OBRAZU V KMITOČTOVÉ OBLASTI TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ X. MORFOLOGICKÉ OPERACE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY DODATKY VSTUPNÍ TEST Vstupní test zadání Vstupní test řešení SEZNAM POUŽITÉ LITERATURY... 29

4 4 FEKT Vysokého učení technického v Brně Seznam obrázků OBR. 3.: DISKRÉTNÍ OBRAZ A ODPOVÍDAJÍCÍ HODNOTY JASOVÉ FUNKCE... 6 OBR. 3.2: SLOŽENÍ BAREVNÉHO OBRAZU ZE SPEKTRÁLNÍCH SLOŽEK R, G A B... 7 OBR. 3.3: GALERIE VÝSLEDKŮ CVIČENÍ I OBR. 4.: GALERIE VÝSLEDKŮ CVIČENÍ II. MÍCHÁNÍ OBRAZŮ... OBR. 4.2: GALERIE VÝSLEDKŮ CVIČENÍ II. FILTRACE MASKOU... OBR. 5.: PŘEVODNÍ CHARAKTERISTIKY BODOVÝCH JASOVÝCH TRANSFORMACÍ... OBR. 5.2: HISTOGRAM ORIGINÁLNÍHO A INVERZNÍHO OBRAZU... 2 OBR. 5.3: EKVALIZACE HISTOGRAMU OBRAZU... 2 OBR. 6.: PRAHOVÁNÍ S PEVNÝMI RELATIVNÍMI PRAHY RŮZNÝCH ÚROVNÍ... 3 OBR. 7.: ZNÁZORNĚNÍ MECHANISMU VÝPOČTU KONVOLUTORNÍ HODNOTY... 4 OBR. 7.2: GALERIE VÝSLEDKŮ CVIČENÍ V. ROZTAŽENÍ HISTOGRAMU A PRŮMĚROVÁNÍ. 5 OBR. 8.: GALERIE VÝSLEDKŮ CVIČENÍ VI. APLIKACE FILTRŮ... 8 OBR. 9.: NEOPTIMALIZOVANÉ OPERACE ODSTRANĚNÍ ŠUMU Z OBRAZU... 2 OBR. 9.2: GALERIE VÝSLEDKŮ CVIČENÍ VII. OSTŘENÍ A ŠUM V OBRAZE... 2 OBR..: GALERIE VÝSLEDKŮ CVIČENÍ VIII. HRANOVÉ DETEKTORY OBR..: FILTRACE V PROSTOROVÉ A FREKVENČNÍ OBLASTI OBR..2: PŘÍKLAD AMPLITUDOVÉ FREKVENČNÍ CHARAKTERISTIKY OBR..3: OBRAZ V PROSTOROVÉ A FREKVENČNÍ OBLASTI OBR..4: FILTRACE OBRAZU VE FREKVENČNÍ DOMÉNĚ OBR. 2.: OPERACE DILATACE OBR. 2.2: MORFOLOGICKÉ OPERACE Úvod Tento elektronický text je určen posluchačům kurzu Počítačové vidění vypisovaného Skupinou počítačového vidění na Ústavu automatizace a měřicí techniky VUT v Brně. Text tematicky doplňuje stejnojmenné elektronické přednáškové texty a obsahuje kromě zadání úloh řešených na pravidelných počítačových cvičeních také teoretické minimum pro jejich úspěšné absolvování Karel Horák, , 2 Zařazení předmětu ve studijním programu Předmět Počítačové vidění je určen posluchačům čtvrtého ročníku magisterského studia oboru Elektrotechnika, elektronika, komunikační a řídicí technika. Má statut volitelného oborového předmětu hodnoceného šesti kredity. Předmět není vázán na žádný jiný volitelný kurz, pouze na předměty povinné. Vhodnou pre-rekvizitou jsou předměty Systémy, procesy a signály I. (UAMT), Praktické programování v jazyce C/C++ (UAMT) a všechny předměty vypisované Skupinou počítačového vidění na UAMT.

5 Počítačové vidění 5 2. Úvod do předmětu Počítačová cvičení kurzu si kladou za cíl seznámit studenty s praktickým řešením alespoň některých důležitých úloh počítačového vidění. Jednak jde o rozvinutí schopností úlohu počítačového vidění pochopit a následně řešit, za druhé ji řešit efektivně s použitím vhodného programovacího jazyka. Jako základ pro pochopení principů se v počítačových cvičeních kurzu pracuje v interpretu MatLab, který je vzhledem ke své vektorové a maticové orientaci vhodný jako názorný didaktický prostředek a je vhodný i jako prostředek pro optimalizaci výsledného funkčního kódu. Počítačová cvičení nejsou nutnou podmínkou pro splnění podmínek úspěšného zakončení kurzu, nicméně jsou vhodným a názorným doplňkem přednáškové části. Rozdělení kapitol elektronického textu je následující. První a druhá kapitola obsahují všeobecné informace o počítačových cvičeních předmětu. Druhá kapitola mimo jiné obsahuje i vstupní test, který odhalí případné teoretické nedostatky posluchače a upozorní tak na nutnost doučení látky. Jedná se zpravidla o znalosti v oboru teorie signálů, matematiky a optimalizace programování. Správnost výsledků tohoto vstupního testu si student může ověřit v předposlední kapitole. Od kapitoly třetí dále jsou uvedena jednotlivá zadání cvičení. Každé jedno cvičení obsahuje úvodní pasáž objasňující základní teoretické znalosti nutné pro smysluplné řešení úkolů cvičení. Po této teoretické stati následuje kapitola zadání úkolů, kapitola objasňující příkazy použité při jejich řešení a celé cvičení je uzavřeno kapitolou s obrazovými ukázkami pro kontrolu správnosti řešení. Každé cvičení je tedy rozděleno podle následujícího schématu:. Teoretický úvod 2. Úkoly 3. Dobré vědět 4. Výsledky Na konci elektronického textu jsou kromě dodatků a výsledků vstupního testu uvedeny také literární a internetové prameny doplňující teoretickou část cvičení. Obdobné prameny jsou použité jako základní literatura celého kurzu, tedy i přednáškové části. Jako apriorní znalosti pro splnění úkolů se předpokládají alespoň základní znalosti práce s vektory a maticemi v prostředí MatLab a znalosti ověřené ve vstupním testu. Všechny příkazy potřebné ke splnění úkolu jsou vždy uvedeny ve třetí podkapitole Dobré vědět. Příkazy, které již byly v některém z předchozích cvičení použity, nejsou v následujících cvičeních znovu uváděny. Pokud není některý z příkazů nebo jeho parametrů dostatečně vysvětlen, lze vyvolat zpravidla vyčerpávající nápovědu přímo z povelového řádku MatLabu voláním help příkaz. Dosažené výsledky každého cvičení lze vykreslit do grafické podoby a zkontrolovat se správnými výsledky (zpravidla obrazy) uvedenými vždy na konci cvičení v podkapitole Výsledky. 2.2 Vstupní test Vstupní test je určen k vyhodnocení samotným studentem a jeho účelem je ověření předchozích znalostí studenta, potřebných k úspěšnému zvládnutí předkládaného výukového textu. Výsledky vstupního testu jsou uvedeny v dodatku v závěru tohoto textu.

6 6 FEKT Vysokého učení technického v Brně. Jak lze charakterizovat diskrétní obraz z hlediska teorie signálu? 2. Co o diskrétním signálu vypovídá charakteristika nazývaná četnost popř. histogram? 3. Co se rozumí filtrací obrazového signálu v prostorové a co ve frekvenční oblasti? 4. Jak lze z hlediska rychlosti optimalizovat kód zpracovávající dvourozměrný signál? 5. K čemu se používá Fouriérova transformace? 6. Co je to topologie objektu? 3 Cvičení I. Diskrétní obraz 3. Teoretický úvod Obraz jako dvourozměrná diskrétní veličina je v počítači reprezentován maticí řádu 2. Řádky a sloupce matice určují samotnou obrazovou rovinu, prvky matice pak jasové hodnoty v příslušném obrazovém bodě (pixel). Pokud jde o šedo-tónový obraz (někdy nesprávně označovaný jako černobílý), jsou jednotlivé prvky matice tvořeny skalárem udávající hodnotu intenzity jasové funkce. Takový šedo-tónový obraz je zpravidla uložen v paměti počítače ve 256 stupních šedi, čili v osmibitové barevné hloubce (užívá se označení barevná hloubka, i když jde o šedo-tónový obraz). Na každý obrazový bod je tedy zapotřebí Byte paměti. Reprezentaci matice dat při zpracování diskrétního šedo-tónového obrazu o rozměru 8x8 pixelů ukazuje následující obrázek. Obr. 3.: Diskrétní obraz a odpovídající hodnoty jasové funkce V případě barevného obrazu je takováto matice definována zvlášť pro každou základní barevnou složku (červená, zelená a modrá). Tyto matice určují intenzity jednotlivých spektrálních složek v příslušných místech obrazu a teprve jejich aditivním složením vznikne dojem barevného obrazu. Graficky lze tento proces vyjádřit jako překrytí tří obrazů za použití metriky prostého součtu prvků. Vznik barevného obrazu ze tří matic základních spektrálních složek ukazuje následující obrázek.

7 Počítačové vidění 7 Obr. 3.2: Složení barevného obrazu ze spektrálních složek R, G a B Třetí a poslední typ obrazu z hlediska barevné hloubky je binární obraz. Prvky matice jsou pouze resp. a reprezentují černou resp. bílou barvu. Bitová hloubka u těchto obrazů je tedy vždy rovna jedné. Binární obrazy se zpravidla používají pro definici obrazových masek. Prostým násobením prvků obrazu a masky téže velikosti lze filtrovat odpovídající části obrazu. 3.2 Úkoly. Vytvořte matici představující obrazovou rovinu šedo-tónového obrazu o rozměrech 64x48 bodů s nulovými prvky. 2. Sestavte blok programu, který postupně projde všechny body obrazu. Nejprve řešte klasickým způsobem pro práci s dvourozměrným polem hodnot, poté optimalizujte použitím vektorových a maticových operací MatLabu. 3. Vygenerujte šedo-tónový obraz s uvedenými rozměry a libovolnými prvky v obraze (např. nuly a překrývající se obdélníky o různých hodnotách). 4. Obdobně jako v předchozím případě vygenerujte barevný obraz složením tří šedotónových obrazů představující složky červené, zelené a modré barvy. Obrazy navrhněte tak, aby ve výsledném barevném obraze vznikly všechny kombinace tří základních barev. Vykreslete všechny tři složkové obrazy a obraz barevný do jednoho okna současně. 5. Načtěte libovolný obraz z disku, proveďte nulování jeho prostřední třetiny a opět jej uložte na disk. 3.3 Dobré vědět Základní příkazy pro všeobecnou práci: help příkaz, demo, exit, who, whos, clear proměnná, clear all, close okno, close all Základní příkazy pro práci s maticemi: ones, zeros, A = [ 5; 2 7; 2 5 ], B = A, C = A.*B, size

8 8 FEKT Vysokého učení technického v Brně Základní příkazy pro práci s obrazem: imread, imwrite, imshow, image, figure, colormap, title Datové typy pro obrazy: Pro vykreslení obrazu je vhodný datový typ uint8 (rozsah.. 255). Pozor! Pro práci s prvky matice je zpravidla nutné přetypovat na vyšší datový typ (int6, uint6, double, ), jinak hrozí přetečení hodnoty při součtu a násobení nebo podtečení při odečítání. Naopak neustálé používání rozsahově vyššího datového typu např. double není vhodné z hlediska rychlosti zpracování a z hlediska správného vykreslení jasových úrovní. 3.4 Výsledky Obr. 3.3: Galerie výsledků cvičení I. 4 Cvičení II. Aritmetické operace 4. Teoretický úvod Obdobně jako u skalárních veličin jsou i u vektorových a maticových definovány mimo jiné i elementární aritmetické operace jako součet, rozdíl, násobení a dělení. Vzhledem k tomu, že v předchozím cvičení bylo ukázáno, že na libovolný diskrétní obraz lze pohlížet jako na matici konečných hodnot, je patrné, že tyto elementární operace jsou definovány i pro obrazy. Pokud se jedná o šedo-tónový obraz, provádí se aritmetické operace přímo s prvky matic a ukládají se do výstupního pole. Pokud jde o barevné obrazy, pak se operace provádí pro každou barevnou složku zvlášť a zvlášť se také ukládá do výstupního obrazu. Pokud je třeba provést aritmetickou operaci nad jedním barevným a jedním šedo-tónovým obrazem, má situace tři řešení. Za prvé je možné provést aritmetickou operaci nad šedo-tónovým obrazem a jednou zvolenou složkou barevného obrazu a zbylé dvě ponechat nezměněné. Za druhé lze tentýž postup aplikovat na všechny tři složky barevného obrazu s třetinovou vahou prvků šedo-tónového obrazu, anebo za třetí lze barevný obraz převést na černobílý podle vzorce (4.). Vzhledem k různé citlivosti lidského oka na různé spektrální složky nejsou jednotlivé koeficienty C i rovny jedné třetině, ale empiricky zjištěným hodnotám C R =.299, C G =.587, C B =.4. G( x, y) = C R( x, y) + C G( x, y) + C B( x, y) ( 4. ) R G B

9 Počítačové vidění 9 Aritmetické operace lze aplikovat jak na šedo-tónové, barevné tak i binární obrazy. Nejedná se ovšem o binární operace s obrazy, ale o aritmetické operace s binárními obrazy. Binární obrazy se zpravidla vyskytují jako masky aplikované na jiný, šedo-tónový nebo barevný obraz. 4.2 Úkoly. Pomocí kódu z minulého cvičení pro přístup ke každému pixelu obrazu proveďte se dvěma libovolnými obrazy a jedním obrazem a konstantou následující operace: součet obrazů R(i,j)=P (i,j)+p2(i,j) a R(i,j)=P (i,j)+c rozdíl obrazů R(i,j)=P (i,j)-p 2 (i,j) a R(i,j)=P (i,j)-c součin obrazů R(i,j)=P (i,j)*p 2 (i,j) a R(i,j)=P (i,j)*c dělení obrazů R(i,j)=P (i,j)/p 2 (i,j) a R(i,j)=P (i,j)/c míchání obrazů R(i,j)=X*P (i,j)+(-x)*p 2 (i,j) a R(i,j)=X*P (i,j)+(-x)*c 2. Pro libovolný barevný obraz proveďte konverzi na šedo-tónový s různými koeficienty jednotlivých spektrálních složek a s koeficienty uvedenými v textu nad vztahem (4.). 3. Vygenerujte dva syntetické obrazy masky o rozměrech libovolného používaného obrazu. První maska bude obsahovat nulové prvky kromě prostřední třetiny, kde budou prvky nabývat hodnoty. Druhá maska bude představovat šachovnici, kde černá pole budou mít hodnotu a bílá pole hodnotu. Rozměr jednoho políčka zvolte tak, aby byla celá maska rozdělena na 8x8 políček. 4. Pro obě vygenerované masky v kombinaci s jedním z šedo-tónových obrazů proveďte operaci násobení prostorovou filtraci obrazu. 4.3 Dobré vědět Všechny operace prvního bodu lze provést pro saturované ( ; - ) a přetékající (255+ ; - 255) mezní hodnoty. Operace nad obrazem a konstantou jsou identické operaci nad dvěma obrazy, z nichž jeden je ve všech svých bodech konstantní. U rozdílu a dělení sledujte rozdílné výsledky při záměně operandů (obrazů nebo obrazu a konstanty). Pro zobrazení obrazu masky je nutné před vykreslením prvky matice násobit hodnotou 255, obdobně jako pole typu double přetypovat na typ uint8. Příkazy: im2bw, imcomplement

10 FEKT Vysokého učení technického v Brně 4.4 Výsledky Obr. 4.: Galerie výsledků cvičení II. míchání obrazů Obr. 4.2: Galerie výsledků cvičení II. filtrace maskou 5 Cvičení III. Bodové jasové transformace 5. Teoretický úvod Bodové jasové transformace obrazu jsou takové transformace, u kterých je hodnota výstupního obrazového bodu s danými souřadnicemi závislá pouze na obrazovém bodu se stejnými souřadnicemi ve vstupním obrazu. Pro realizaci takových transformací je někdy potřebné získat informace o celkovém rozložení jasu v obrazu (např. pro zjištění hodnoty prahování). O rozložení jasu v obraze vypovídá nejlépe charakteristika, které se říká histogram obrazu (v matematice odpovídá četnosti prvku ve třídě). Jde o závislost počtu výskytů určité jasové úrovně na těchto úrovních. Horizontální osu histogramu mohou tedy tvořit v případě šedo-tónového obrazu s bitovou barevnou hloubkou 8 hodnoty až 255. Vertikální osu pak počty těchto úrovní v obraze. Je zřejmé, že histogram čistě bílého, černého nebo jinak šedého homogenního obrazu bude tvořen pouze jednou svislou čarou v příslušném místě histogramu. Její výška bude odpovídat celkovému počtu bodů obrazu. Sestavením převodních tabulek nebo lépe grafů udávajících závislost jasových hodnot výstupního obrazu na jasových hodnotách obrazu vstupního lze provést některé ze základních

11 Počítačové vidění úprav obrazu jako např.: inverze, okénková úprava jasu, prahování, úprava jasu nebo kontrastu, redukce barev a gama korekce. Na následujícím obrázku jsou graficky znázorněny převodní charakteristiky uvedených operací. Obr. 5.: Převodní charakteristiky bodových jasových transformací Mezi často používané jasové transformace patří také roztažení a vyrovnání (někdy ekvalizace) histogramu. Roztažení histogramu je jednoduchá operace, kdy je rozsah reálného histogramu normován na celý rozsah jasových hodnot. Naproti tomu při vyrovnání histogramu jde o složitější transformaci jasových hodnot. V první řadě je třeba vypočítat kumulativní histogram, jehož prvek n je dán součtem jeho prvku n- a prvku n původního histogramu. Následně je třeba vytvořit transformační funkci normováním kumulativního histogramu na rozsah jasových hodnot odpovídající obrazu např Posledním krokem je samotná transformace jasových úrovní podle nalezené funkce. Důležité podotknou, že tato transformace je obecně nelineární. 5.2 Úkoly. Proveďte na jednom libovolném šedo-tónovém a jednom barevném obraze operace inverze, okénkové funkce a úpravy jasu a kontrastu. 2. Pro každý takto získaný obraz vypočítejte histogram a porovnejte s histogramem původního obrazu. 3. U obrazu s histogramem neobsahující některé jasové úrovně na spodní a horní hranici rozsahu proveďte jeho roztažení a vyrovnání. 5.3 Dobré vědět Roztažením nebo vyrovnáním histogramu se samotný obraz nezmění, pouze se získá charakteristika, podle které je teprve nutné upravit jasové úrovně všech bodů obrazu.

12 2 FEKT Vysokého učení technického v Brně 5.4 Výsledky Obr. 5.2: Histogram originálního a inverzního obrazu Obr. 5.3: Ekvalizace histogramu obrazu 6 Cvičení IV. Segmentace prahováním 6. Teoretický úvod Separaci objektů od obrazového pozadí se říká segmentace. Jednou z možných a současně velmi jednoduchých metod segmentace je prahování. Jde o jasové oddělení objektů a pozadí. Nejtriviálnějším způsobem takové segmentace je prahování s jedním pevným prahem, čímž vzniká dvojbarevný obraz. Mechanismus prahování lze postupně zdokonalovat zvyšováním počtu prahů (prahování do několika tříd) nebo/a dynamickým stanovováním hodnot prahů podle aktuálních charakteristik obrazu. Takto stanovený práh se nazývá jasově

13 Počítačové vidění 3 adaptivní a může být vypočten např. jako průměr indexů dvou největších maxim histogramu (předpokládá se, že jedno maximum odpovídá jasovým složkám podkladu a druhé jasovým složkám objektů). Často se pro stanovení hodnoty prahu používají složité výpočty navíc vázané jen na určitou část obrazu (prostorově adaptivní práh). 6.2 Úkoly. Naprogramujte kód pro prahování libovolného obrazu s jedním a dvěma pevnými prahy. 2. Naprogramujte jasově adaptivní prahování s jedním prahem na libovolném obraze tak, aby na výsledném obraze byly odděleny objekty s jasově vyšší úrovní od jasově tmavějšího podkladu. 3. Obdobně jako v předchozím bodě stanovte adaptivní práh z hlediska prostorového rozložení, čili počítejte jasově adaptivní práh vždy jen pro určitou oblast obrazu a pro další oblast jej stanovte znovu. 6.3 Dobré vědět Vyzkoušejte různé metody stanovení jasového adaptivního prahu: průměr dvou největších maxim histogramu, vážený průměr dvou maxim s přikloněním k maximu charakterizující objekty v obraze apod. Prostředí MatLab pracuje s relativními prahy v rozsahu. až., které odpovídají u šedo-tónového obrazu se 256 úrovněmi hodnotám a 255. Práh.7 tedy odpovídá jasové hodnotě 79. Příkazy: graythresh, max, median, mean 6.4 Výsledky Obr. 6.: Prahování s pevnými relativními prahy různých úrovní

14 4 FEKT Vysokého učení technického v Brně 7 Cvičení V. Diskrétní konvoluce 7. Teoretický úvod Vzhledem k tomu, že konvoluce je důležitou operací v teorii signálů, a že obraz sám je dvourozměrný diskrétní signál, používá se konvoluce v souvislosti se zpracováním obrazu velmi často. Kromě toho, že konvoluce je jádrem téměř všech pokročilejších transformací obrazu je rovněž nedílnou součástí některých základních metod jako např. detekce hran, kde se jako konvolutorní jádro používá některý ze známých hranových detektorů. Vztah konvoluce pro dvourozměrný obraz lze vyjádřit následujícím vztahem, v němž symbol g(x,y) značí výstupní obraz, f(x,y) vstupní obraz a h(x,y) konvoluční jádro o rozměrech RxS. x+ S / 2 y+ R / 2 g ( x, y) = f ( x, y) h( x, y) = f ( i, j) h( x i, y j) ( 7. ) i= xs / 2 j = yr / 2 Graficky si lze konvoluci dvou signálů (zpravidla obrazu a masky) představit jako postupné prostorové posouvání převrácené masky (konvolučního jádra) po obrazu. Pro každou vzájemnou polohu obrazu a masky je vypočítán součet hodnot pixelů vážených příslušnými koeficienty masky a tento součet určuje výstupní hodnotu signálu (obrazu) v daném bodě. Ilustrativně je tento postup zachycen na obrázku. Obr. 7.: Znázornění mechanismu výpočtu konvolutorní hodnoty

15 Počítačové vidění Úkoly. Vytvořte funkci realizující konvoluci dvou matic. Vstupem je originální obraz a konvoluční jádro, výstupem je obraz vzniklý konvolucí vstupního obrazu a jádra. Funkci implementujte pro obecný rozměr jádra RxS podle definičního vzorce (bez použití interní funkce). 2. Pomocí vytvořené funkce pro konvoluci dvou matic navrhněte masku (jádro) pro tyto výpočty: posunutí obrazu o pět pixelů vpravo s ořezáním roztažení histogramu obrazu o 3 % se saturací inverze obrazu průměrování maskou velikosti 5x5, 9x9 a 3x3 (zjistěte časovou náročnost všech tří výpočtů a odhadněte závislost časové náročnosti na velikosti masky použijte funkce pro přesné měření času). 7.3 Dobré vědět Pro konvolutorní výpočty je důležité si uvědomit mechanismus výpočtu výsledné hodnoty. Jedná se o součet součinů, čili ve funkci se objevují pouze a jen aditivní a multiplikativní složky. Pomocí konvoluce např. nelze na obraz aplikovat přičtení konstanty. Příkazy: conv2, filter2, tic, toc, clock, etime 7.4 Výsledky Obr. 7.2: Galerie výsledků cvičení V. roztažení histogramu a průměrování

16 6 FEKT Vysokého učení technického v Brně 8 Cvičení VI. Detekce hran 8. Teoretický úvod Hrany jsou místa v obraze, kde dochází ke skokovým změnám obrazové funkce. Nalezení hran v obraze patří mezi základní operace zpracování obrazu. Pro jejich nalezení se používá výpočtu konvoluce nad obrazem v kombinaci s různými konvolučními jádry. Tato jádra se z hlediska detekce hran nazývají hranové detektory. Každý z detektorů má své výhody a nevýhody, univerzálně vhodný detektor neexistuje. Následující vzorce ukazují některé základní gradientní detektory. Popořadě jde o detektor Robertsův, Prewittové, Sobelův, Robinsonův, Kirschův, Laplaceův ve čtyř-okolí a Laplaceův v osmi-okolí. = R ( 8. ) = P ( 8.2 ) = 2 2 S ( 8.3 ) = 2 Ro ( 8.4 ) = K ( 8.5 ) = 4 4 L ( 8.6 ) = 8 8 L ( 8.7 ) Tato skupina hranových detektorů aproximuje derivace obrazové funkce diferencemi vzniklými diskrétní konvolucí. Prvních pět uvedených operátorů aproximuje první derivace obrazové funkce, Laplaceův operátor pro čtyř-okolí i osmi-okolí aproximuje druhou derivaci. Existují ještě hranové detektory nazývané souhrnně zero-crossing, které hledají hrany

17 Počítačové vidění 7 v místě, kde druhá derivace prochází nulou např. operátor Marra a Hildrethové. Využívají skutečnosti, že je jednodušší vyhledávat průchody signálu nulou, než jeho maxima. 8.2 Úkoly. Pomocí funkce vytvořené v minulém cvičení pro konvoluci dvou matic navrhněte konvoluční masku (jádro) pro výpočet velikosti hran v horizontálním a vertikálním směru a masce o rozměru 3x3. 2. Nalezněte v obraze hrany konvolucí obrazu a těchto hranových operátorů: Robertsův, Prewittové, Sobelův, Robinsonův, Kirschův a Laplaceův. 3. Vyzkoušejte tvorbu filtrů (konvolučních jader) různých velikostí a parametrů pomocí knihovní funkce fspecial. 4. Filtry vytvořené podle předchozího bodu aplikujte na obraz pomocí konvoluční funkce vytvořené v minulém cvičení a pomocí knihovních funkcí conv2 a imfilter. 5. Nalezněte v obraze hrany pomocí knihovní funkce edge s použitím metod Laplace- Gauss, Canny a Zero-cross. 8.3 Dobré vědět Příkazy: fspecial, imfilter, edge U funkce edge pozorujte vliv parametrů thresh, sigma, horizontal, vertical a both na výsledek operace hledání hran.

18 8 FEKT Vysokého učení technického v Brně 8.4 Výsledky Obr. 8.: Galerie výsledků cvičení VI. aplikace filtrů 9 Cvičení VII. Redukce šumu a ostření obrazu 9. Teoretický úvod V každém nesyntetickém obraze se vyskytuje šum. Může se jednat o šum s Gaussovým rozložením, o šum typu sůl a pepř, aditivní, multiplikativní, bílý šum atd. Mezi techniky pro potlačení šumu patří tzv. vyhlazování obrazu. Jednou možností vyhlazení obrazu je prosté průměrování. Při této metodě zaniká šum o velikosti zvoleného okolí průměrování. Toto okolí by mělo být voleno tak, aby nebyly filtrovány také malé detaily v obrazu. Negativní vlastností této filtrace je, že rozmazává ostré hrany. Konvoluční maska pro obyčejné průměrování a pro průměrování se zvýrazněným středem může vypadat tak, jak ukazují následující vztahy. m = ( 9. ) 9

19 Počítačové vidění 9 m = 2 ( 9.2 ) Další možností redukce šumu v obraze je vyhlazování mediánem. Jako filtrovaná hodnota je zvolena hodnota ležící uprostřed seřazené posloupnosti okolních hodnot filtrovaného bodu. Nevýhodou mediánové filtrace je porušování tenkých čar. Poslední možností je filtrace rotující maskou. V tomto případě je maska rotována kolem filtrovaného bodu a pro každou pozici masky je spočítána míra homogenity (např. součet diferencí). Filtrace se pak provádí jen pro jednu polohu masky, kdy je míra homogenity nejvyšší. Takto je nalezeno nejbližší okolí, které k bodu pravděpodobně patří. Filtrace rotující maskou tedy částečně řeší problémy s rozmazáváním a porušováním tenkých čar a ostrých rohů. Ostření obrazu má za cíl zvýraznit všechny hrany vyskytující se v obraze. Používá obdobně jako hranové detektory aproximaci první derivace a definiční vztah pro úpravu ostrosti obrazu lze napsat takto: g( x, y) = f ( x, y) C S( i, j) ( 9.3 ) Symbol C představuje míru ostření a symbol S(i,j) strmost obrazové funkce v okolí vyšetřovaného bodu. Operaci ostření lze provést také pomocí konvoluce s jádrem podobným Laplaceově hranovému detektoru, jen s opačnými znaménky. Filtr vždy musí zvýraznit hodnotu aktuálního pixelu a potlačit hodnoty pixelů okolních, do jaké míry je to provedeno, určuje koeficient C. 9.2 Úkoly. Napište kód realizující filtr pro redukci šumu v obraze metodou průměrování a metodou mediánu. Filtr realizujte pro velikosti 3x3, 5x5 a 7x7. 2. Porovnejte rychlost třídění obou dvou algoritmů pro všechny tři velikost třídícího pole (použijte funkce pro přesné měření času). 3. Seznamte se s knihovní funkcí imnoise, která přidává do obrazu šum a na reálném obrazu srovnejte všech pět implementovaných typů (Gaussovský šum, bílý šum, poisson šum, šum sůl a pepř a multiplikativní šum). Na vzniklý obraz aplikujte některý z filtrů pro odstranění šumu z prvního bodu cvičení. 4. Pomocí funkce konvoluce z předchozích cvičení navrhněte a aplikujte na obrazová data filtr pro ostření obrazu o velikosti 3x3, 5x5 a 7x Dobré vědět Pro porovnání výsledku algoritmu použijte vhodné parametry funkce fspecial např. unsharp.

20 2 FEKT Vysokého učení technického v Brně Pamatujte, že součet koeficientů konvolučního jádra pro ostření obrazu se musí stejně jako v případě hranových detektorů vždy rovnat nule. Příkazy: clock, etime, imnoise, fspecial, imfilter 9.4 Výsledky Obr. 9.: Neoptimalizované operace odstranění šumu z obrazu Obr. 9.2: Galerie výsledků cvičení VII. ostření a šum v obraze Cvičení VIII. Návrh hranového filtru. Teoretický úvod Jak bylo uvedeno v minulých cvičeních, patří detekce hran mezi základní operace s obrazem. Obdobně bylo ukázáno, že každý obraz obsahuje určitou míru šumu. Samotné detektory hran jsou ale citlivé na libovolnou skokovou změnu jasové funkce obrazu, tedy i na změny způsobené šumem. Nalezené hrany jsou pak falešné. Aby se tomuto jevu zabránilo a byly detekovány jen skutečné hrany, je třeba obraz před samotnou hranovou filtrací vhodně upravit. K tomu může sloužit např. eliminace šumu tzv. Gaussovým filtrem. Samotná filtrace probíhá stejně jako filtrace např. průměrováním, čili lze opět použít diskrétní konvoluci. Rozměry filtru záleží na konkrétním obrazu a lze je volit téměř neomezeně (zpravidla se však

21 Počítačové vidění 2 používá jedno nebo dvou pixelové okolí). Výpočet hodnot filtru se provádí na základě vztahu pro dvourozměrné Gaussovo (normální) rozložení: G x + y σ ( x, y) = e (. ) 2πσ Následně je na filtrovaný obraz aplikován některý z hranových filtrů. Výsledkem je obraz, který obsahuje všechny hrany v původním obraze, dokonce i ty nejmenší. Proto je třeba zabývat se kvalitou hrany a výsledek případně ještě vyprahovat. V některých případech se k tomu účelu používá prahování s hysterezí. Pracuje tak, že jsou předem stanoveny dva prahy vyšší (T H ) a nižší (T L ). Hodnoty hran vyšší, než práh T H jsou ihned uznány jako hrany, hodnoty pod prahem T L nejsou uznány. Hrany, jejichž úroveň leží v intervalu <T L ;T H > jsou uznány pouze tehdy, pokud již dříve byl uznán jako hrana některý z okolních bodů. Tento uvedený postup používá Cannyho hranový filtr..2 Úkoly. Napište funkci pro generování konvoluční masky odpovídající Gaussově normálnímu rozložení se středem uprostřed masky. 2. Aplikujte masky různých rozměrů na libovolný šedo-tónový obraz pro potlačení šumu. 3. Navrhněte hranový detektor pro detekci lokálních maxim ve filtrovaném obraze a použijte jej na filtrovaný obraz. 4. Na obraze s detekovanými hranami proveďte prahování s hysterezí, jak bylo popsáno výše. Stanovení mezí T L a T H volte tak, aby horní práh segmentoval pouze významné kontury objektů a dolní práh je významně doplnil..3 Dobré vědět Vypočítanou masku je třeba normovat tak, aby součet všech jejích prvků byl roven jedné, stejně jako všech ostatních vyhlazovacích masek. Součet koeficientů hranového detektoru je roven nule, ten se ovšem nepočítá, ale volí z možností uvedených ve cvičení VI. kapitoly 8.

22 22 FEKT Vysokého učení technického v Brně.4 Výsledky Obr..: Galerie výsledků cvičení VIII. hranové detektory Cvičení IX. Filtrace obrazu v kmitočtové oblasti. Teoretický úvod Z předešlých cvičení je patrné, že filtrace obecně je pro zpracování obrazu důležitá v mnoha případech např. pro odstranění šumu nebo pro segmentaci pomocí nalezení hran v obraze. Filtraci lze provádět v oblasti prostorové nebo frekvenční, v obou případech buďto na celém obraze nebo třeba jen nad výřezem. Pojem prostorová oblast je zde použit jako 2D ekvivalent pojmu časová oblast pro jednorozměrný signál. Pro analýzu obrazu ve frekvenční oblasti je nutné obraz nejdříve transformovat do cílové domény a po analýze a případných úpravách zase zpět do prostorové jak je patrné z následujícího obrázku. Obr..: Filtrace v prostorové a frekvenční oblasti K tomuto převodu se používají různé lineární integrální transformace. Nejpoužívanější a pravděpodobně posluchačům i nejznámější z nich je Fouriérova transformace. Fouriérova transformace je matematický převod originálního signálu na jeho frekvenční spektrum tzv. Fourierův obraz nebo jen obraz (pozn.: vzhledem k zavedené terminologii pojmu obraz pro

23 Počítačové vidění 23 originální 2D signál bude pro Fourierův obraz ve frekvenční rovině vždy používán termín frekvenční spektrum obrazu ). Pro analýzu diskrétního obrazu se používá diskrétní Fouriérova transformace (DFT), jejíž definiční vztah pro 2D signál je dán vzorcem (.). F( u, v) = R S y= x= 2πj x u 2πj y v f ( x, y) exp + S R (. ) v němž F (u, v) je frekvenční spektrum obrazu s frekvenčními souřadnicemi (u, v). Symboly S, R udávají rozměry obrazu, symbol f (x, y) pak samotnou obrazovou funkci. Frekvenční souřadnice (u, v) nabývají hodnot od nuly do (S, R). Frekvenční spektrum obsahuje komplexní čísla, proto se pro zpracování obrazového signálu ve frekvenční oblasti používají amplitudy komplexních čísel (amplitudová frekvenční charakteristika) nebo výkonová spektrální hustota (koeficienty násobené komplexně sdruženým číslem). Příklad grafického znázornění amplitudové charakteristiky jednoduchého syntetického dvourozměrného signálu je uveden na následujícím obrázku. Obr..2: Příklad amplitudové frekvenční charakteristiky Tato frekvenční charakteristika obsahuje koeficienty odpovídající různým frekvenčním složkám analogicky jako u jednorozměrných signálů. Analýzou a operacemi s koeficienty ve frekvenční oblasti lze modifikovat obraz v prostorové oblasti (např. realizovat filtr typu dolní propust pro vyhlazení obrazu). Pro získání modifikovaného obrazu je třeba převést koeficienty zpět do prostorové oblasti. Tomuto procesu se říká zpětná nebo někdy inverzní Fouriérova transformace IFT, jejíž diskrétní varianta IDFT je dána definičním vztahem (.2). f ( x, y) = R S R S v= u= 2πj x u 2πj y v F( u, v) exp + S R (.2 ) Člen /(R*S) se někdy vyskytuje ve vzorci (.) pro přímou DFT místo (.2) pro zpětnou DFT. Méně často se pak vyskytuje v obou vzorcích současně odmocnina tohoto členu. Na způsob zpracování koeficientů to ale nemá žádný vliv, pokud do výpočtů zahrneme jejich vážení touto konstantou.

24 24 FEKT Vysokého učení technického v Brně.2 Úkoly. Podle definičních vzorců sestavte program pro výpočet přímé a zpětné DFT bez použití implementovaných knihoven. Programový kód se pokuste optimalizovat. 2. Vygenerujte konstantní šedo-tónový obraz o rozměrech 256x256 bodů a úrovni 28. Proveďte DFT a IDFT a zobrazte originální obraz, frekvenční spektrum a rekonstruovaný obraz. 3. Do vygenerovaného obrazu zaneste v úrovních šedé libovolnou grafickou entitu a proveďte předchozí bod znovu, komentujte rozdílné výsledky. 4. Na libovolném obrazu reálné scény (čili ne na synteticky generovaném obraze) proveďte filtraci šumu a detekci hran pomocí DFT a IFFT a přehledně zobrazte výsledky..3 Dobré vědět Pro zpětný převod do prostorové oblasti je třeba uvažovat koeficienty opět jako komplexní čísla, i když se pro analýzu a modifikaci koeficientů ve frekvenční rovině používala jen např. absolutní hodnota čísla. Příkazy: fft2, ifft2, fftshitf.4 Výsledky Obr..3: Obraz v prostorové a frekvenční oblasti

25 Počítačové vidění 25 Obr..4: Filtrace obrazu ve frekvenční doméně 2 Cvičení X. Morfologické operace 2. Teoretický úvod Matematická morfologie vychází z vlastností bodových množin. Nečastěji se aplikuje na binární obrazy, ale lze ji zobecnit i na obrazy s více úrovněmi šedi. Morfologické operace se používají pro předzpracování (odstranění šumu, zjednodušení tvaru objektů), zdůraznění struktury objektů (kostra, ztenčování, zesilování, konvexní obal, označování objektů) a pro popis objektů číselnými charakteristikami (plocha, obvod, projekce, atd.). Morfologické transformace jsou realizovány jako relace obrazu (bodové množiny X) s jinou menší bodovou množinou B, tzv. strukturním elementem. Morfologickou transformaci si lze představit jako určitý systematický pohyb strukturního elementu po obraze. Mezi základní morfologické operace patří dilatace. Dilatace skládá body dvou množin pomocí vektorového součtu. Objekty v obraze jsou po aplikaci dilatace zvětšené o jednu slupku na úkor pozadí. Dilatace se používá k zaplnění děr popř. zálivů, její definiční vztah je uveden v následujícím vzorci. X 2 B = { d E : d = x + b, x X, b B} X B = U b B X b ( 2. ) Obrázek 2. graficky znázorňuje výsledek operace dilatace (vpravo) vzniklý z původního obrazu (vlevo) pohybem strukturního elementu (uprostřed).

26 26 FEKT Vysokého učení technického v Brně Obr. 2.: Operace dilatace Druhou základní morfologickou operací je eroze. Eroze skládá dvě bodové množiny s využitím rozdílu vektorů. Je duální (nikoliv inverzní) transformací k dilataci a používá se pro zjednodušení struktury objektů. Objekty tloušťky jedna (relativní jednotka) zmizí (tj. potlačení šumu), složité objekty spojené čárami tloušťky jedna se rozloží na několik jednodušších objektů. Eroze je dána vztahem: 2 X Θ B = { d E : d + b X pro b B} X Θ B = I b B X b ( 2.2 ) Obrysy objektů můžeme jednoduše a rychle najít odečtením erodovaného obrazu od originálu. Morfologické operace otevření a uzavření jsou operace, které vzniknou kombinací elementárních operací dilatace a eroze. Výsledkem obou je zjednodušený obraz, který obsahuje méně detailů (odstraní detaily menší, než strukturní element, celkový tvar objektu se ale neporuší). Eroze následovaná dilatací je otevřením a zapisuje se X o B. Oddělí objekty spojené úzkou šíjí a tak zjednoduší strukturu objektů. Dilatace následovaná erozí je uzavřením a zapisuje se X B. Spojí objekty, které jsou blízko u sebe, zaplní díry a vyhladí obrys. Definiční vztahy logicky vyplývají z uvedeného a jsou dány následujícími dvěma vzorci. ( X Θ B) B X o B = ( 2.3 ) ( X B) ΘB X B = ( 2.4 ) 2.2 Úkoly. Vytvořte blok programu řešící dilataci binárního obrazu strukturním elementem stejným jako na obrázku v teoretické části.

27 Počítačové vidění Vygenerujte uvedený strukturní element pomocí knihovní funkce strel. Pomocí knihovní funkce imdilate ověřte správnost výsledků předchozího bodu. 3. Aplikujte na jeden libovolný obraz několikrát operaci eroze imerode a najděte různě široké obrysy objektů. 4. Proveďte operaci otevření jako erozi následovanou dilatací a poté také pomocí funkce imopen. Porovnejte výsledek těchto operací s výsledkem operace uzavření. 2.3 Dobré vědět Je třeba vhodně zvolit obraz pro zkoušení jedno zda syntetický nebo reálný. Obraz by měl obsahovat hodně strukturních oblastí, tenké čáry a objekty s tenkými zálivy. Příkazy: strel, imdilate, imerode, imopen, imclose, imfill 2.4 Výsledky Obr. 2.2: Morfologické operace 3 Dodatky 3. Vstupní test 3.. Vstupní test zadání. Jak lze charakterizovat diskrétní obraz z hlediska teorie signálu?

28 28 FEKT Vysokého učení technického v Brně 2. Co o diskrétním signálu vypovídá charakteristika nazývaná četnost popř. histogram? 3. Co se rozumí filtrací obrazového signálu v prostorové a co ve frekvenční oblasti? 4. Jak lze z hlediska rychlosti optimalizovat kód zpracovávající dvourozměrný signál? 5. K čemu se používá Fouriérova transformace? 6. Co je to topologie objektu? 3..2 Vstupní test řešení. Obraz je převeden z analogové podoby do číslicové vždy při pořízení/snímání obrazu. Vzorkování probíhá mimoděk na samotné ploše snímacího čipu (např. CCD nebo CMOS), kvantování pak v A/D převodníku digitalizační karty nebo fotoaparátu. Frekvence vzorkování (počet buněk čipu) v prvním resp. druhém rozměru analogového obrazu udává počet řádků resp. sloupců výstupního diskrétního obrazu. Rozsah A/D převodníku pak určuje počet kvantizačních úrovní a tím výslednou barevnou hloubku obrazu. 2. Četnost hodnoty v diskrétním signálu udává počet výskytů této konkrétní hodnoty. Pokud se tyto hodnoty seřadí vedle sebe vzestupně podle hodnoty odpovídající signálu, vytvoří charakteristiku zvanou histogram. 3. Filtrací obrazového signálu v prostorové oblasti se rozumí potlačení či jiné ovlivnění obrazových bodů v přesně specifikované oblasti např. filtrace binární maskou. Na druhé straně filtrací ve frekvenční oblasti se rozumí odstranění nebo naopak zvýraznění některých frekvenčních složek obrazu např. rozmazání hran resp. ostření znamená potlačení resp. zvýraznění vysokých frekvencí v signálu. 4. Vzhledem ke zpracování všech cvičení v interpretu MatLab je nutné klást důraz na vektorové a maticové operace. Naopak vhodné není řešit úlohy klasickou programovací metodou používající cykly for a while a podmínky if. 5. Fouriérova transformace při zpracování obrazu se využívá stejným způsobem jako při zpracování obecného signálu. Lze pomocí ní analyzovat signál ve frekvenční oblasti (souvisí s frekvenční filtrací v bodě 3). 6. Topologické vlastnosti objektu jsou takové, které se neopírají o pojem vzdálenosti, ale jsou určeny vzájemným uspořádáním jednotlivých bodů tvořících objekt. Pokud je na obraz aplikována homeomorfní transformace (např. otočení, změna měřítka, deformace obrazové roviny apod.) zůstávají topologické vlastnosti objektu beze změny.

29 Počítačové vidění 29 4 Seznam použité literatury [ ] Hlaváč V., Šonka M.: Počítačové vidění, Grada 992, ISBN [ 2 ] Hlaváč V., Sedláček M.: Zpracování signálů a obrazů, skriptum ČVUT 2, ISBN [ 3 ] Žára J. a kol.: Moderní počítačová grafika, Computer Press 998, ISBN [ 4 ] Jahne. B., Handbook of Computer Vision and Applications I, II, III. Academic Press, San Diego, 999. [ 5 ] HIPR2 jednoduchý a názorný materiál pro demonstraci základních operací nad obrazem: [ 6 ] Computer Vision online soubor odkazů a článků:

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Operace s obrazem II

Operace s obrazem II Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Operace s obrazem. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Operace s obrazem Biofyzikální ústav LF MU Obraz definujeme jako zrakový vjem, který vzniká po dopadu světla na sítnici oka. Matematicky lze obraz chápat jako vícerozměrný signál (tzv. obrazová funkce)

Více

Diskrétní 2D konvoluce

Diskrétní 2D konvoluce ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov bruxy@regnet.cz Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Úpravy rastrového obrazu

Úpravy rastrového obrazu Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha

Více

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz) NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

HLEDÁNÍ HRAN. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. 1/35 HLEDÁNÍ HRAN Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac FYZIOLOGICKÁ MOTIVACE 2/35 Výsledky

Více

Zpracování obrazu a fotonika 2006

Zpracování obrazu a fotonika 2006 Základy zpracování obrazu Zpracování obrazu a fotonika 2006 Reprezentace obrazu Barevný obrázek Na laně rozměry: 1329 x 2000 obrazových bodů 3 barevné RGB kanály 8 bitů na barevný kanál FUJI Superia 400

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,

Více

Základy zpracování obrazu

Základy zpracování obrazu Základy zpracování obrazu Tomáš Mikolov, FIT VUT Brno V tomto cvičení si ukážeme základní techniky používané pro digitální zpracování obrazu. Pro jednoduchost budeme pracovat s obrázky ve stupních šedi

Více

ZPRACOVÁNÍ OBRAZU přednáška 4

ZPRACOVÁNÍ OBRAZU přednáška 4 ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě

OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky

Více

Rastrové digitální modely terénu

Rastrové digitální modely terénu Rastrové digitální modely terénu Rastr je tvořen maticí buněk (pixelů), které obsahují určitou informaci. Stejně, jako mohou touto informací být typ vegetace, poloha sídel nebo kvalita ovzduší, může každá

Více

ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI

ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI Šum Co je to šum v obrázku? Šum Co je to šum v obrázku? V obrázku je přidaná falešná informace nahodilého původu Jak vzniká v digitální fotografii? Šum Co je to šum v obrázku? V obrázku je přidaná falešná

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU 3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,

Více

FILTRACE VE FOURIEROVSKÉM SPEKTRU

FILTRACE VE FOURIEROVSKÉM SPEKTRU 1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

12 Metody snižování barevného prostoru

12 Metody snižování barevného prostoru 12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

ALGORITMIZACE A PROGRAMOVÁNÍ

ALGORITMIZACE A PROGRAMOVÁNÍ Metodický list č. 1 Algoritmus a jeho implementace počítačovým programem Základním cílem tohoto tematického celku je vysvětlení pojmů algoritmus a programová implementace algoritmu. Dále je cílem seznámení

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

" Furierova transformace"

 Furierova transformace UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více

Středoškolská technika SCI-Lab

Středoškolská technika SCI-Lab Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce

Více

Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39

Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39 Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 39

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

44. Obraz jako signál.

44. Obraz jako signál. 44. Obraz jako signál. Obraz je vícerozměrný signál. Je chápán intuitivně jako obraz na sítnici lidského oka nebo obraz sejmutý TV kamerou. Může být modelován matematicky pomocí spojité skalaární funkce

Více

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Restaurace (obnovení) obrazu při známé degradaci

Restaurace (obnovení) obrazu při známé degradaci Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky

Více

BPC2E_C09 Model komunikačního systému v Matlabu

BPC2E_C09 Model komunikačního systému v Matlabu BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu

Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu Defektoskopie Cíl cvičení: Detekce měřicího stavu a lokalizace objektu 1 Teoretický úvod Defektoskopie tvoří v počítačovém vidění oblast zpracování snímků, jejímž úkolem je lokalizovat výrobky a detekovat

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Automatické zaostřování světlometu

Automatické zaostřování světlometu Automatické zaostřování světlometu Ing. Ondřej Šmirg,Ing. Michal Kohoutek Ústav telekomunikací, Purkyňova 118, 612 00 Brno Email: xsmirg00@stud.feec.vutbr.cz Článek se zabývá zpracováním obrazu a tvorbou

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze

Hledání hran. Václav Hlaváč. České vysoké učení technické v Praze Hledání hran Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická, katedra kybernetiky

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský Rovinný průtokoměr Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013 Autor: Vedoucí DP: Jakub Filipský Ing. Jan Čížek, Ph.D. Zadání práce 1. Proveďte rešerši aktuálně používaných způsobů a

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

PŘEVOD ŠEDOTÓNOVÝCH SNÍMKŮ NA BINÁRNÍ

PŘEVOD ŠEDOTÓNOVÝCH SNÍMKŮ NA BINÁRNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Ústav radioelektroniky Vysoké učení technické v Brně Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Přednáška 8 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Rozšíření bakalářské práce

Rozšíření bakalářské práce Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE

Více

DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od

DIGITÁLNÍ OBRAZ. Obrázky (popř. slajdy) převzaty od DIGITÁLNÍ OBRAZ JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah fáze zpracování obrazu reprezentace obrazu digitalizace obrazu

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Spektrální charakteristiky

Spektrální charakteristiky Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí

Více

oblasti je znázorněn na obr Komplexní obálku můžeme rozepsat na její reálnou a

oblasti je znázorněn na obr Komplexní obálku můžeme rozepsat na její reálnou a Fakulta elektrotechniky a komunikačních technologií VUT v Brně 5 2 Komplexníobálka Zadání 1. Mějme dán pásmový signál s(t) =[1 0.5cos (2π5t)] cos (2π100t) (a) Zobrazte tento signál a odhad jeho modulového

Více

M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U

M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U CÍLE LABORTATORNÍ ÚLOHY 1. Seznámení se s metodami rozpoznání objektů v obraze 2. Vyzkoušení detekce objektů na snímcích z kamery a MRI snímku ÚKOL

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela

Více

ANALÝZA LIDSKÉHO HLASU

ANALÝZA LIDSKÉHO HLASU ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o.

Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o. Zpracování obrazu v FPGA Leoš Maršálek ATEsystem s.r.o. Základní pojmy PROCESOROVÉ ČIPY Křemíkový čip zpracovávající obecné instrukce Různé architektury, pracují s různými paměti Výkon instrukcí je závislý

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více