Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Počítačové vidění Počítačová cvičení. Autoři textu: Ing. Karel Horák, Ph.D."

Transkript

1 FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Počítačové vidění Počítačová cvičení Autoři textu: Ing. Karel Horák, Ph.D. Brno..28

2 2 FEKT Vysokého učení technického v Brně Obsah ÚVOD ZAŘAZENÍ PŘEDMĚTU VE STUDIJNÍM PROGRAMU ÚVOD DO PŘEDMĚTU VSTUPNÍ TEST CVIČENÍ I. DISKRÉTNÍ OBRAZ TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ II. ARITMETICKÉ OPERACE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY... 5 CVIČENÍ III. BODOVÉ JASOVÉ TRANSFORMACE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ IV. SEGMENTACE PRAHOVÁNÍM TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ V. DISKRÉTNÍ KONVOLUCE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ VI. DETEKCE HRAN TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ VII. REDUKCE ŠUMU A OSTŘENÍ OBRAZU TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY... 2 CVIČENÍ VIII. NÁVRH HRANOVÉHO FILTRU... 2

3 Počítačové vidění 3. TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ IX. FILTRACE OBRAZU V KMITOČTOVÉ OBLASTI TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY CVIČENÍ X. MORFOLOGICKÉ OPERACE TEORETICKÝ ÚVOD ÚKOLY DOBRÉ VĚDĚT VÝSLEDKY DODATKY VSTUPNÍ TEST Vstupní test zadání Vstupní test řešení SEZNAM POUŽITÉ LITERATURY... 29

4 4 FEKT Vysokého učení technického v Brně Seznam obrázků OBR. 3.: DISKRÉTNÍ OBRAZ A ODPOVÍDAJÍCÍ HODNOTY JASOVÉ FUNKCE... 6 OBR. 3.2: SLOŽENÍ BAREVNÉHO OBRAZU ZE SPEKTRÁLNÍCH SLOŽEK R, G A B... 7 OBR. 3.3: GALERIE VÝSLEDKŮ CVIČENÍ I OBR. 4.: GALERIE VÝSLEDKŮ CVIČENÍ II. MÍCHÁNÍ OBRAZŮ... OBR. 4.2: GALERIE VÝSLEDKŮ CVIČENÍ II. FILTRACE MASKOU... OBR. 5.: PŘEVODNÍ CHARAKTERISTIKY BODOVÝCH JASOVÝCH TRANSFORMACÍ... OBR. 5.2: HISTOGRAM ORIGINÁLNÍHO A INVERZNÍHO OBRAZU... 2 OBR. 5.3: EKVALIZACE HISTOGRAMU OBRAZU... 2 OBR. 6.: PRAHOVÁNÍ S PEVNÝMI RELATIVNÍMI PRAHY RŮZNÝCH ÚROVNÍ... 3 OBR. 7.: ZNÁZORNĚNÍ MECHANISMU VÝPOČTU KONVOLUTORNÍ HODNOTY... 4 OBR. 7.2: GALERIE VÝSLEDKŮ CVIČENÍ V. ROZTAŽENÍ HISTOGRAMU A PRŮMĚROVÁNÍ. 5 OBR. 8.: GALERIE VÝSLEDKŮ CVIČENÍ VI. APLIKACE FILTRŮ... 8 OBR. 9.: NEOPTIMALIZOVANÉ OPERACE ODSTRANĚNÍ ŠUMU Z OBRAZU... 2 OBR. 9.2: GALERIE VÝSLEDKŮ CVIČENÍ VII. OSTŘENÍ A ŠUM V OBRAZE... 2 OBR..: GALERIE VÝSLEDKŮ CVIČENÍ VIII. HRANOVÉ DETEKTORY OBR..: FILTRACE V PROSTOROVÉ A FREKVENČNÍ OBLASTI OBR..2: PŘÍKLAD AMPLITUDOVÉ FREKVENČNÍ CHARAKTERISTIKY OBR..3: OBRAZ V PROSTOROVÉ A FREKVENČNÍ OBLASTI OBR..4: FILTRACE OBRAZU VE FREKVENČNÍ DOMÉNĚ OBR. 2.: OPERACE DILATACE OBR. 2.2: MORFOLOGICKÉ OPERACE Úvod Tento elektronický text je určen posluchačům kurzu Počítačové vidění vypisovaného Skupinou počítačového vidění na Ústavu automatizace a měřicí techniky VUT v Brně. Text tematicky doplňuje stejnojmenné elektronické přednáškové texty a obsahuje kromě zadání úloh řešených na pravidelných počítačových cvičeních také teoretické minimum pro jejich úspěšné absolvování Karel Horák, , 2 Zařazení předmětu ve studijním programu Předmět Počítačové vidění je určen posluchačům čtvrtého ročníku magisterského studia oboru Elektrotechnika, elektronika, komunikační a řídicí technika. Má statut volitelného oborového předmětu hodnoceného šesti kredity. Předmět není vázán na žádný jiný volitelný kurz, pouze na předměty povinné. Vhodnou pre-rekvizitou jsou předměty Systémy, procesy a signály I. (UAMT), Praktické programování v jazyce C/C++ (UAMT) a všechny předměty vypisované Skupinou počítačového vidění na UAMT.

5 Počítačové vidění 5 2. Úvod do předmětu Počítačová cvičení kurzu si kladou za cíl seznámit studenty s praktickým řešením alespoň některých důležitých úloh počítačového vidění. Jednak jde o rozvinutí schopností úlohu počítačového vidění pochopit a následně řešit, za druhé ji řešit efektivně s použitím vhodného programovacího jazyka. Jako základ pro pochopení principů se v počítačových cvičeních kurzu pracuje v interpretu MatLab, který je vzhledem ke své vektorové a maticové orientaci vhodný jako názorný didaktický prostředek a je vhodný i jako prostředek pro optimalizaci výsledného funkčního kódu. Počítačová cvičení nejsou nutnou podmínkou pro splnění podmínek úspěšného zakončení kurzu, nicméně jsou vhodným a názorným doplňkem přednáškové části. Rozdělení kapitol elektronického textu je následující. První a druhá kapitola obsahují všeobecné informace o počítačových cvičeních předmětu. Druhá kapitola mimo jiné obsahuje i vstupní test, který odhalí případné teoretické nedostatky posluchače a upozorní tak na nutnost doučení látky. Jedná se zpravidla o znalosti v oboru teorie signálů, matematiky a optimalizace programování. Správnost výsledků tohoto vstupního testu si student může ověřit v předposlední kapitole. Od kapitoly třetí dále jsou uvedena jednotlivá zadání cvičení. Každé jedno cvičení obsahuje úvodní pasáž objasňující základní teoretické znalosti nutné pro smysluplné řešení úkolů cvičení. Po této teoretické stati následuje kapitola zadání úkolů, kapitola objasňující příkazy použité při jejich řešení a celé cvičení je uzavřeno kapitolou s obrazovými ukázkami pro kontrolu správnosti řešení. Každé cvičení je tedy rozděleno podle následujícího schématu:. Teoretický úvod 2. Úkoly 3. Dobré vědět 4. Výsledky Na konci elektronického textu jsou kromě dodatků a výsledků vstupního testu uvedeny také literární a internetové prameny doplňující teoretickou část cvičení. Obdobné prameny jsou použité jako základní literatura celého kurzu, tedy i přednáškové části. Jako apriorní znalosti pro splnění úkolů se předpokládají alespoň základní znalosti práce s vektory a maticemi v prostředí MatLab a znalosti ověřené ve vstupním testu. Všechny příkazy potřebné ke splnění úkolu jsou vždy uvedeny ve třetí podkapitole Dobré vědět. Příkazy, které již byly v některém z předchozích cvičení použity, nejsou v následujících cvičeních znovu uváděny. Pokud není některý z příkazů nebo jeho parametrů dostatečně vysvětlen, lze vyvolat zpravidla vyčerpávající nápovědu přímo z povelového řádku MatLabu voláním help příkaz. Dosažené výsledky každého cvičení lze vykreslit do grafické podoby a zkontrolovat se správnými výsledky (zpravidla obrazy) uvedenými vždy na konci cvičení v podkapitole Výsledky. 2.2 Vstupní test Vstupní test je určen k vyhodnocení samotným studentem a jeho účelem je ověření předchozích znalostí studenta, potřebných k úspěšnému zvládnutí předkládaného výukového textu. Výsledky vstupního testu jsou uvedeny v dodatku v závěru tohoto textu.

6 6 FEKT Vysokého učení technického v Brně. Jak lze charakterizovat diskrétní obraz z hlediska teorie signálu? 2. Co o diskrétním signálu vypovídá charakteristika nazývaná četnost popř. histogram? 3. Co se rozumí filtrací obrazového signálu v prostorové a co ve frekvenční oblasti? 4. Jak lze z hlediska rychlosti optimalizovat kód zpracovávající dvourozměrný signál? 5. K čemu se používá Fouriérova transformace? 6. Co je to topologie objektu? 3 Cvičení I. Diskrétní obraz 3. Teoretický úvod Obraz jako dvourozměrná diskrétní veličina je v počítači reprezentován maticí řádu 2. Řádky a sloupce matice určují samotnou obrazovou rovinu, prvky matice pak jasové hodnoty v příslušném obrazovém bodě (pixel). Pokud jde o šedo-tónový obraz (někdy nesprávně označovaný jako černobílý), jsou jednotlivé prvky matice tvořeny skalárem udávající hodnotu intenzity jasové funkce. Takový šedo-tónový obraz je zpravidla uložen v paměti počítače ve 256 stupních šedi, čili v osmibitové barevné hloubce (užívá se označení barevná hloubka, i když jde o šedo-tónový obraz). Na každý obrazový bod je tedy zapotřebí Byte paměti. Reprezentaci matice dat při zpracování diskrétního šedo-tónového obrazu o rozměru 8x8 pixelů ukazuje následující obrázek. Obr. 3.: Diskrétní obraz a odpovídající hodnoty jasové funkce V případě barevného obrazu je takováto matice definována zvlášť pro každou základní barevnou složku (červená, zelená a modrá). Tyto matice určují intenzity jednotlivých spektrálních složek v příslušných místech obrazu a teprve jejich aditivním složením vznikne dojem barevného obrazu. Graficky lze tento proces vyjádřit jako překrytí tří obrazů za použití metriky prostého součtu prvků. Vznik barevného obrazu ze tří matic základních spektrálních složek ukazuje následující obrázek.

7 Počítačové vidění 7 Obr. 3.2: Složení barevného obrazu ze spektrálních složek R, G a B Třetí a poslední typ obrazu z hlediska barevné hloubky je binární obraz. Prvky matice jsou pouze resp. a reprezentují černou resp. bílou barvu. Bitová hloubka u těchto obrazů je tedy vždy rovna jedné. Binární obrazy se zpravidla používají pro definici obrazových masek. Prostým násobením prvků obrazu a masky téže velikosti lze filtrovat odpovídající části obrazu. 3.2 Úkoly. Vytvořte matici představující obrazovou rovinu šedo-tónového obrazu o rozměrech 64x48 bodů s nulovými prvky. 2. Sestavte blok programu, který postupně projde všechny body obrazu. Nejprve řešte klasickým způsobem pro práci s dvourozměrným polem hodnot, poté optimalizujte použitím vektorových a maticových operací MatLabu. 3. Vygenerujte šedo-tónový obraz s uvedenými rozměry a libovolnými prvky v obraze (např. nuly a překrývající se obdélníky o různých hodnotách). 4. Obdobně jako v předchozím případě vygenerujte barevný obraz složením tří šedotónových obrazů představující složky červené, zelené a modré barvy. Obrazy navrhněte tak, aby ve výsledném barevném obraze vznikly všechny kombinace tří základních barev. Vykreslete všechny tři složkové obrazy a obraz barevný do jednoho okna současně. 5. Načtěte libovolný obraz z disku, proveďte nulování jeho prostřední třetiny a opět jej uložte na disk. 3.3 Dobré vědět Základní příkazy pro všeobecnou práci: help příkaz, demo, exit, who, whos, clear proměnná, clear all, close okno, close all Základní příkazy pro práci s maticemi: ones, zeros, A = [ 5; 2 7; 2 5 ], B = A, C = A.*B, size

8 8 FEKT Vysokého učení technického v Brně Základní příkazy pro práci s obrazem: imread, imwrite, imshow, image, figure, colormap, title Datové typy pro obrazy: Pro vykreslení obrazu je vhodný datový typ uint8 (rozsah.. 255). Pozor! Pro práci s prvky matice je zpravidla nutné přetypovat na vyšší datový typ (int6, uint6, double, ), jinak hrozí přetečení hodnoty při součtu a násobení nebo podtečení při odečítání. Naopak neustálé používání rozsahově vyššího datového typu např. double není vhodné z hlediska rychlosti zpracování a z hlediska správného vykreslení jasových úrovní. 3.4 Výsledky Obr. 3.3: Galerie výsledků cvičení I. 4 Cvičení II. Aritmetické operace 4. Teoretický úvod Obdobně jako u skalárních veličin jsou i u vektorových a maticových definovány mimo jiné i elementární aritmetické operace jako součet, rozdíl, násobení a dělení. Vzhledem k tomu, že v předchozím cvičení bylo ukázáno, že na libovolný diskrétní obraz lze pohlížet jako na matici konečných hodnot, je patrné, že tyto elementární operace jsou definovány i pro obrazy. Pokud se jedná o šedo-tónový obraz, provádí se aritmetické operace přímo s prvky matic a ukládají se do výstupního pole. Pokud jde o barevné obrazy, pak se operace provádí pro každou barevnou složku zvlášť a zvlášť se také ukládá do výstupního obrazu. Pokud je třeba provést aritmetickou operaci nad jedním barevným a jedním šedo-tónovým obrazem, má situace tři řešení. Za prvé je možné provést aritmetickou operaci nad šedo-tónovým obrazem a jednou zvolenou složkou barevného obrazu a zbylé dvě ponechat nezměněné. Za druhé lze tentýž postup aplikovat na všechny tři složky barevného obrazu s třetinovou vahou prvků šedo-tónového obrazu, anebo za třetí lze barevný obraz převést na černobílý podle vzorce (4.). Vzhledem k různé citlivosti lidského oka na různé spektrální složky nejsou jednotlivé koeficienty C i rovny jedné třetině, ale empiricky zjištěným hodnotám C R =.299, C G =.587, C B =.4. G( x, y) = C R( x, y) + C G( x, y) + C B( x, y) ( 4. ) R G B

9 Počítačové vidění 9 Aritmetické operace lze aplikovat jak na šedo-tónové, barevné tak i binární obrazy. Nejedná se ovšem o binární operace s obrazy, ale o aritmetické operace s binárními obrazy. Binární obrazy se zpravidla vyskytují jako masky aplikované na jiný, šedo-tónový nebo barevný obraz. 4.2 Úkoly. Pomocí kódu z minulého cvičení pro přístup ke každému pixelu obrazu proveďte se dvěma libovolnými obrazy a jedním obrazem a konstantou následující operace: součet obrazů R(i,j)=P (i,j)+p2(i,j) a R(i,j)=P (i,j)+c rozdíl obrazů R(i,j)=P (i,j)-p 2 (i,j) a R(i,j)=P (i,j)-c součin obrazů R(i,j)=P (i,j)*p 2 (i,j) a R(i,j)=P (i,j)*c dělení obrazů R(i,j)=P (i,j)/p 2 (i,j) a R(i,j)=P (i,j)/c míchání obrazů R(i,j)=X*P (i,j)+(-x)*p 2 (i,j) a R(i,j)=X*P (i,j)+(-x)*c 2. Pro libovolný barevný obraz proveďte konverzi na šedo-tónový s různými koeficienty jednotlivých spektrálních složek a s koeficienty uvedenými v textu nad vztahem (4.). 3. Vygenerujte dva syntetické obrazy masky o rozměrech libovolného používaného obrazu. První maska bude obsahovat nulové prvky kromě prostřední třetiny, kde budou prvky nabývat hodnoty. Druhá maska bude představovat šachovnici, kde černá pole budou mít hodnotu a bílá pole hodnotu. Rozměr jednoho políčka zvolte tak, aby byla celá maska rozdělena na 8x8 políček. 4. Pro obě vygenerované masky v kombinaci s jedním z šedo-tónových obrazů proveďte operaci násobení prostorovou filtraci obrazu. 4.3 Dobré vědět Všechny operace prvního bodu lze provést pro saturované ( ; - ) a přetékající (255+ ; - 255) mezní hodnoty. Operace nad obrazem a konstantou jsou identické operaci nad dvěma obrazy, z nichž jeden je ve všech svých bodech konstantní. U rozdílu a dělení sledujte rozdílné výsledky při záměně operandů (obrazů nebo obrazu a konstanty). Pro zobrazení obrazu masky je nutné před vykreslením prvky matice násobit hodnotou 255, obdobně jako pole typu double přetypovat na typ uint8. Příkazy: im2bw, imcomplement

10 FEKT Vysokého učení technického v Brně 4.4 Výsledky Obr. 4.: Galerie výsledků cvičení II. míchání obrazů Obr. 4.2: Galerie výsledků cvičení II. filtrace maskou 5 Cvičení III. Bodové jasové transformace 5. Teoretický úvod Bodové jasové transformace obrazu jsou takové transformace, u kterých je hodnota výstupního obrazového bodu s danými souřadnicemi závislá pouze na obrazovém bodu se stejnými souřadnicemi ve vstupním obrazu. Pro realizaci takových transformací je někdy potřebné získat informace o celkovém rozložení jasu v obrazu (např. pro zjištění hodnoty prahování). O rozložení jasu v obraze vypovídá nejlépe charakteristika, které se říká histogram obrazu (v matematice odpovídá četnosti prvku ve třídě). Jde o závislost počtu výskytů určité jasové úrovně na těchto úrovních. Horizontální osu histogramu mohou tedy tvořit v případě šedo-tónového obrazu s bitovou barevnou hloubkou 8 hodnoty až 255. Vertikální osu pak počty těchto úrovní v obraze. Je zřejmé, že histogram čistě bílého, černého nebo jinak šedého homogenního obrazu bude tvořen pouze jednou svislou čarou v příslušném místě histogramu. Její výška bude odpovídat celkovému počtu bodů obrazu. Sestavením převodních tabulek nebo lépe grafů udávajících závislost jasových hodnot výstupního obrazu na jasových hodnotách obrazu vstupního lze provést některé ze základních

11 Počítačové vidění úprav obrazu jako např.: inverze, okénková úprava jasu, prahování, úprava jasu nebo kontrastu, redukce barev a gama korekce. Na následujícím obrázku jsou graficky znázorněny převodní charakteristiky uvedených operací. Obr. 5.: Převodní charakteristiky bodových jasových transformací Mezi často používané jasové transformace patří také roztažení a vyrovnání (někdy ekvalizace) histogramu. Roztažení histogramu je jednoduchá operace, kdy je rozsah reálného histogramu normován na celý rozsah jasových hodnot. Naproti tomu při vyrovnání histogramu jde o složitější transformaci jasových hodnot. V první řadě je třeba vypočítat kumulativní histogram, jehož prvek n je dán součtem jeho prvku n- a prvku n původního histogramu. Následně je třeba vytvořit transformační funkci normováním kumulativního histogramu na rozsah jasových hodnot odpovídající obrazu např Posledním krokem je samotná transformace jasových úrovní podle nalezené funkce. Důležité podotknou, že tato transformace je obecně nelineární. 5.2 Úkoly. Proveďte na jednom libovolném šedo-tónovém a jednom barevném obraze operace inverze, okénkové funkce a úpravy jasu a kontrastu. 2. Pro každý takto získaný obraz vypočítejte histogram a porovnejte s histogramem původního obrazu. 3. U obrazu s histogramem neobsahující některé jasové úrovně na spodní a horní hranici rozsahu proveďte jeho roztažení a vyrovnání. 5.3 Dobré vědět Roztažením nebo vyrovnáním histogramu se samotný obraz nezmění, pouze se získá charakteristika, podle které je teprve nutné upravit jasové úrovně všech bodů obrazu.

12 2 FEKT Vysokého učení technického v Brně 5.4 Výsledky Obr. 5.2: Histogram originálního a inverzního obrazu Obr. 5.3: Ekvalizace histogramu obrazu 6 Cvičení IV. Segmentace prahováním 6. Teoretický úvod Separaci objektů od obrazového pozadí se říká segmentace. Jednou z možných a současně velmi jednoduchých metod segmentace je prahování. Jde o jasové oddělení objektů a pozadí. Nejtriviálnějším způsobem takové segmentace je prahování s jedním pevným prahem, čímž vzniká dvojbarevný obraz. Mechanismus prahování lze postupně zdokonalovat zvyšováním počtu prahů (prahování do několika tříd) nebo/a dynamickým stanovováním hodnot prahů podle aktuálních charakteristik obrazu. Takto stanovený práh se nazývá jasově

13 Počítačové vidění 3 adaptivní a může být vypočten např. jako průměr indexů dvou největších maxim histogramu (předpokládá se, že jedno maximum odpovídá jasovým složkám podkladu a druhé jasovým složkám objektů). Často se pro stanovení hodnoty prahu používají složité výpočty navíc vázané jen na určitou část obrazu (prostorově adaptivní práh). 6.2 Úkoly. Naprogramujte kód pro prahování libovolného obrazu s jedním a dvěma pevnými prahy. 2. Naprogramujte jasově adaptivní prahování s jedním prahem na libovolném obraze tak, aby na výsledném obraze byly odděleny objekty s jasově vyšší úrovní od jasově tmavějšího podkladu. 3. Obdobně jako v předchozím bodě stanovte adaptivní práh z hlediska prostorového rozložení, čili počítejte jasově adaptivní práh vždy jen pro určitou oblast obrazu a pro další oblast jej stanovte znovu. 6.3 Dobré vědět Vyzkoušejte různé metody stanovení jasového adaptivního prahu: průměr dvou největších maxim histogramu, vážený průměr dvou maxim s přikloněním k maximu charakterizující objekty v obraze apod. Prostředí MatLab pracuje s relativními prahy v rozsahu. až., které odpovídají u šedo-tónového obrazu se 256 úrovněmi hodnotám a 255. Práh.7 tedy odpovídá jasové hodnotě 79. Příkazy: graythresh, max, median, mean 6.4 Výsledky Obr. 6.: Prahování s pevnými relativními prahy různých úrovní

14 4 FEKT Vysokého učení technického v Brně 7 Cvičení V. Diskrétní konvoluce 7. Teoretický úvod Vzhledem k tomu, že konvoluce je důležitou operací v teorii signálů, a že obraz sám je dvourozměrný diskrétní signál, používá se konvoluce v souvislosti se zpracováním obrazu velmi často. Kromě toho, že konvoluce je jádrem téměř všech pokročilejších transformací obrazu je rovněž nedílnou součástí některých základních metod jako např. detekce hran, kde se jako konvolutorní jádro používá některý ze známých hranových detektorů. Vztah konvoluce pro dvourozměrný obraz lze vyjádřit následujícím vztahem, v němž symbol g(x,y) značí výstupní obraz, f(x,y) vstupní obraz a h(x,y) konvoluční jádro o rozměrech RxS. x+ S / 2 y+ R / 2 g ( x, y) = f ( x, y) h( x, y) = f ( i, j) h( x i, y j) ( 7. ) i= xs / 2 j = yr / 2 Graficky si lze konvoluci dvou signálů (zpravidla obrazu a masky) představit jako postupné prostorové posouvání převrácené masky (konvolučního jádra) po obrazu. Pro každou vzájemnou polohu obrazu a masky je vypočítán součet hodnot pixelů vážených příslušnými koeficienty masky a tento součet určuje výstupní hodnotu signálu (obrazu) v daném bodě. Ilustrativně je tento postup zachycen na obrázku. Obr. 7.: Znázornění mechanismu výpočtu konvolutorní hodnoty

15 Počítačové vidění Úkoly. Vytvořte funkci realizující konvoluci dvou matic. Vstupem je originální obraz a konvoluční jádro, výstupem je obraz vzniklý konvolucí vstupního obrazu a jádra. Funkci implementujte pro obecný rozměr jádra RxS podle definičního vzorce (bez použití interní funkce). 2. Pomocí vytvořené funkce pro konvoluci dvou matic navrhněte masku (jádro) pro tyto výpočty: posunutí obrazu o pět pixelů vpravo s ořezáním roztažení histogramu obrazu o 3 % se saturací inverze obrazu průměrování maskou velikosti 5x5, 9x9 a 3x3 (zjistěte časovou náročnost všech tří výpočtů a odhadněte závislost časové náročnosti na velikosti masky použijte funkce pro přesné měření času). 7.3 Dobré vědět Pro konvolutorní výpočty je důležité si uvědomit mechanismus výpočtu výsledné hodnoty. Jedná se o součet součinů, čili ve funkci se objevují pouze a jen aditivní a multiplikativní složky. Pomocí konvoluce např. nelze na obraz aplikovat přičtení konstanty. Příkazy: conv2, filter2, tic, toc, clock, etime 7.4 Výsledky Obr. 7.2: Galerie výsledků cvičení V. roztažení histogramu a průměrování

16 6 FEKT Vysokého učení technického v Brně 8 Cvičení VI. Detekce hran 8. Teoretický úvod Hrany jsou místa v obraze, kde dochází ke skokovým změnám obrazové funkce. Nalezení hran v obraze patří mezi základní operace zpracování obrazu. Pro jejich nalezení se používá výpočtu konvoluce nad obrazem v kombinaci s různými konvolučními jádry. Tato jádra se z hlediska detekce hran nazývají hranové detektory. Každý z detektorů má své výhody a nevýhody, univerzálně vhodný detektor neexistuje. Následující vzorce ukazují některé základní gradientní detektory. Popořadě jde o detektor Robertsův, Prewittové, Sobelův, Robinsonův, Kirschův, Laplaceův ve čtyř-okolí a Laplaceův v osmi-okolí. = R ( 8. ) = P ( 8.2 ) = 2 2 S ( 8.3 ) = 2 Ro ( 8.4 ) = K ( 8.5 ) = 4 4 L ( 8.6 ) = 8 8 L ( 8.7 ) Tato skupina hranových detektorů aproximuje derivace obrazové funkce diferencemi vzniklými diskrétní konvolucí. Prvních pět uvedených operátorů aproximuje první derivace obrazové funkce, Laplaceův operátor pro čtyř-okolí i osmi-okolí aproximuje druhou derivaci. Existují ještě hranové detektory nazývané souhrnně zero-crossing, které hledají hrany

17 Počítačové vidění 7 v místě, kde druhá derivace prochází nulou např. operátor Marra a Hildrethové. Využívají skutečnosti, že je jednodušší vyhledávat průchody signálu nulou, než jeho maxima. 8.2 Úkoly. Pomocí funkce vytvořené v minulém cvičení pro konvoluci dvou matic navrhněte konvoluční masku (jádro) pro výpočet velikosti hran v horizontálním a vertikálním směru a masce o rozměru 3x3. 2. Nalezněte v obraze hrany konvolucí obrazu a těchto hranových operátorů: Robertsův, Prewittové, Sobelův, Robinsonův, Kirschův a Laplaceův. 3. Vyzkoušejte tvorbu filtrů (konvolučních jader) různých velikostí a parametrů pomocí knihovní funkce fspecial. 4. Filtry vytvořené podle předchozího bodu aplikujte na obraz pomocí konvoluční funkce vytvořené v minulém cvičení a pomocí knihovních funkcí conv2 a imfilter. 5. Nalezněte v obraze hrany pomocí knihovní funkce edge s použitím metod Laplace- Gauss, Canny a Zero-cross. 8.3 Dobré vědět Příkazy: fspecial, imfilter, edge U funkce edge pozorujte vliv parametrů thresh, sigma, horizontal, vertical a both na výsledek operace hledání hran.

18 8 FEKT Vysokého učení technického v Brně 8.4 Výsledky Obr. 8.: Galerie výsledků cvičení VI. aplikace filtrů 9 Cvičení VII. Redukce šumu a ostření obrazu 9. Teoretický úvod V každém nesyntetickém obraze se vyskytuje šum. Může se jednat o šum s Gaussovým rozložením, o šum typu sůl a pepř, aditivní, multiplikativní, bílý šum atd. Mezi techniky pro potlačení šumu patří tzv. vyhlazování obrazu. Jednou možností vyhlazení obrazu je prosté průměrování. Při této metodě zaniká šum o velikosti zvoleného okolí průměrování. Toto okolí by mělo být voleno tak, aby nebyly filtrovány také malé detaily v obrazu. Negativní vlastností této filtrace je, že rozmazává ostré hrany. Konvoluční maska pro obyčejné průměrování a pro průměrování se zvýrazněným středem může vypadat tak, jak ukazují následující vztahy. m = ( 9. ) 9

19 Počítačové vidění 9 m = 2 ( 9.2 ) Další možností redukce šumu v obraze je vyhlazování mediánem. Jako filtrovaná hodnota je zvolena hodnota ležící uprostřed seřazené posloupnosti okolních hodnot filtrovaného bodu. Nevýhodou mediánové filtrace je porušování tenkých čar. Poslední možností je filtrace rotující maskou. V tomto případě je maska rotována kolem filtrovaného bodu a pro každou pozici masky je spočítána míra homogenity (např. součet diferencí). Filtrace se pak provádí jen pro jednu polohu masky, kdy je míra homogenity nejvyšší. Takto je nalezeno nejbližší okolí, které k bodu pravděpodobně patří. Filtrace rotující maskou tedy částečně řeší problémy s rozmazáváním a porušováním tenkých čar a ostrých rohů. Ostření obrazu má za cíl zvýraznit všechny hrany vyskytující se v obraze. Používá obdobně jako hranové detektory aproximaci první derivace a definiční vztah pro úpravu ostrosti obrazu lze napsat takto: g( x, y) = f ( x, y) C S( i, j) ( 9.3 ) Symbol C představuje míru ostření a symbol S(i,j) strmost obrazové funkce v okolí vyšetřovaného bodu. Operaci ostření lze provést také pomocí konvoluce s jádrem podobným Laplaceově hranovému detektoru, jen s opačnými znaménky. Filtr vždy musí zvýraznit hodnotu aktuálního pixelu a potlačit hodnoty pixelů okolních, do jaké míry je to provedeno, určuje koeficient C. 9.2 Úkoly. Napište kód realizující filtr pro redukci šumu v obraze metodou průměrování a metodou mediánu. Filtr realizujte pro velikosti 3x3, 5x5 a 7x7. 2. Porovnejte rychlost třídění obou dvou algoritmů pro všechny tři velikost třídícího pole (použijte funkce pro přesné měření času). 3. Seznamte se s knihovní funkcí imnoise, která přidává do obrazu šum a na reálném obrazu srovnejte všech pět implementovaných typů (Gaussovský šum, bílý šum, poisson šum, šum sůl a pepř a multiplikativní šum). Na vzniklý obraz aplikujte některý z filtrů pro odstranění šumu z prvního bodu cvičení. 4. Pomocí funkce konvoluce z předchozích cvičení navrhněte a aplikujte na obrazová data filtr pro ostření obrazu o velikosti 3x3, 5x5 a 7x Dobré vědět Pro porovnání výsledku algoritmu použijte vhodné parametry funkce fspecial např. unsharp.

20 2 FEKT Vysokého učení technického v Brně Pamatujte, že součet koeficientů konvolučního jádra pro ostření obrazu se musí stejně jako v případě hranových detektorů vždy rovnat nule. Příkazy: clock, etime, imnoise, fspecial, imfilter 9.4 Výsledky Obr. 9.: Neoptimalizované operace odstranění šumu z obrazu Obr. 9.2: Galerie výsledků cvičení VII. ostření a šum v obraze Cvičení VIII. Návrh hranového filtru. Teoretický úvod Jak bylo uvedeno v minulých cvičeních, patří detekce hran mezi základní operace s obrazem. Obdobně bylo ukázáno, že každý obraz obsahuje určitou míru šumu. Samotné detektory hran jsou ale citlivé na libovolnou skokovou změnu jasové funkce obrazu, tedy i na změny způsobené šumem. Nalezené hrany jsou pak falešné. Aby se tomuto jevu zabránilo a byly detekovány jen skutečné hrany, je třeba obraz před samotnou hranovou filtrací vhodně upravit. K tomu může sloužit např. eliminace šumu tzv. Gaussovým filtrem. Samotná filtrace probíhá stejně jako filtrace např. průměrováním, čili lze opět použít diskrétní konvoluci. Rozměry filtru záleží na konkrétním obrazu a lze je volit téměř neomezeně (zpravidla se však

21 Počítačové vidění 2 používá jedno nebo dvou pixelové okolí). Výpočet hodnot filtru se provádí na základě vztahu pro dvourozměrné Gaussovo (normální) rozložení: G x + y σ ( x, y) = e (. ) 2πσ Následně je na filtrovaný obraz aplikován některý z hranových filtrů. Výsledkem je obraz, který obsahuje všechny hrany v původním obraze, dokonce i ty nejmenší. Proto je třeba zabývat se kvalitou hrany a výsledek případně ještě vyprahovat. V některých případech se k tomu účelu používá prahování s hysterezí. Pracuje tak, že jsou předem stanoveny dva prahy vyšší (T H ) a nižší (T L ). Hodnoty hran vyšší, než práh T H jsou ihned uznány jako hrany, hodnoty pod prahem T L nejsou uznány. Hrany, jejichž úroveň leží v intervalu <T L ;T H > jsou uznány pouze tehdy, pokud již dříve byl uznán jako hrana některý z okolních bodů. Tento uvedený postup používá Cannyho hranový filtr..2 Úkoly. Napište funkci pro generování konvoluční masky odpovídající Gaussově normálnímu rozložení se středem uprostřed masky. 2. Aplikujte masky různých rozměrů na libovolný šedo-tónový obraz pro potlačení šumu. 3. Navrhněte hranový detektor pro detekci lokálních maxim ve filtrovaném obraze a použijte jej na filtrovaný obraz. 4. Na obraze s detekovanými hranami proveďte prahování s hysterezí, jak bylo popsáno výše. Stanovení mezí T L a T H volte tak, aby horní práh segmentoval pouze významné kontury objektů a dolní práh je významně doplnil..3 Dobré vědět Vypočítanou masku je třeba normovat tak, aby součet všech jejích prvků byl roven jedné, stejně jako všech ostatních vyhlazovacích masek. Součet koeficientů hranového detektoru je roven nule, ten se ovšem nepočítá, ale volí z možností uvedených ve cvičení VI. kapitoly 8.

22 22 FEKT Vysokého učení technického v Brně.4 Výsledky Obr..: Galerie výsledků cvičení VIII. hranové detektory Cvičení IX. Filtrace obrazu v kmitočtové oblasti. Teoretický úvod Z předešlých cvičení je patrné, že filtrace obecně je pro zpracování obrazu důležitá v mnoha případech např. pro odstranění šumu nebo pro segmentaci pomocí nalezení hran v obraze. Filtraci lze provádět v oblasti prostorové nebo frekvenční, v obou případech buďto na celém obraze nebo třeba jen nad výřezem. Pojem prostorová oblast je zde použit jako 2D ekvivalent pojmu časová oblast pro jednorozměrný signál. Pro analýzu obrazu ve frekvenční oblasti je nutné obraz nejdříve transformovat do cílové domény a po analýze a případných úpravách zase zpět do prostorové jak je patrné z následujícího obrázku. Obr..: Filtrace v prostorové a frekvenční oblasti K tomuto převodu se používají různé lineární integrální transformace. Nejpoužívanější a pravděpodobně posluchačům i nejznámější z nich je Fouriérova transformace. Fouriérova transformace je matematický převod originálního signálu na jeho frekvenční spektrum tzv. Fourierův obraz nebo jen obraz (pozn.: vzhledem k zavedené terminologii pojmu obraz pro

23 Počítačové vidění 23 originální 2D signál bude pro Fourierův obraz ve frekvenční rovině vždy používán termín frekvenční spektrum obrazu ). Pro analýzu diskrétního obrazu se používá diskrétní Fouriérova transformace (DFT), jejíž definiční vztah pro 2D signál je dán vzorcem (.). F( u, v) = R S y= x= 2πj x u 2πj y v f ( x, y) exp + S R (. ) v němž F (u, v) je frekvenční spektrum obrazu s frekvenčními souřadnicemi (u, v). Symboly S, R udávají rozměry obrazu, symbol f (x, y) pak samotnou obrazovou funkci. Frekvenční souřadnice (u, v) nabývají hodnot od nuly do (S, R). Frekvenční spektrum obsahuje komplexní čísla, proto se pro zpracování obrazového signálu ve frekvenční oblasti používají amplitudy komplexních čísel (amplitudová frekvenční charakteristika) nebo výkonová spektrální hustota (koeficienty násobené komplexně sdruženým číslem). Příklad grafického znázornění amplitudové charakteristiky jednoduchého syntetického dvourozměrného signálu je uveden na následujícím obrázku. Obr..2: Příklad amplitudové frekvenční charakteristiky Tato frekvenční charakteristika obsahuje koeficienty odpovídající různým frekvenčním složkám analogicky jako u jednorozměrných signálů. Analýzou a operacemi s koeficienty ve frekvenční oblasti lze modifikovat obraz v prostorové oblasti (např. realizovat filtr typu dolní propust pro vyhlazení obrazu). Pro získání modifikovaného obrazu je třeba převést koeficienty zpět do prostorové oblasti. Tomuto procesu se říká zpětná nebo někdy inverzní Fouriérova transformace IFT, jejíž diskrétní varianta IDFT je dána definičním vztahem (.2). f ( x, y) = R S R S v= u= 2πj x u 2πj y v F( u, v) exp + S R (.2 ) Člen /(R*S) se někdy vyskytuje ve vzorci (.) pro přímou DFT místo (.2) pro zpětnou DFT. Méně často se pak vyskytuje v obou vzorcích současně odmocnina tohoto členu. Na způsob zpracování koeficientů to ale nemá žádný vliv, pokud do výpočtů zahrneme jejich vážení touto konstantou.

24 24 FEKT Vysokého učení technického v Brně.2 Úkoly. Podle definičních vzorců sestavte program pro výpočet přímé a zpětné DFT bez použití implementovaných knihoven. Programový kód se pokuste optimalizovat. 2. Vygenerujte konstantní šedo-tónový obraz o rozměrech 256x256 bodů a úrovni 28. Proveďte DFT a IDFT a zobrazte originální obraz, frekvenční spektrum a rekonstruovaný obraz. 3. Do vygenerovaného obrazu zaneste v úrovních šedé libovolnou grafickou entitu a proveďte předchozí bod znovu, komentujte rozdílné výsledky. 4. Na libovolném obrazu reálné scény (čili ne na synteticky generovaném obraze) proveďte filtraci šumu a detekci hran pomocí DFT a IFFT a přehledně zobrazte výsledky..3 Dobré vědět Pro zpětný převod do prostorové oblasti je třeba uvažovat koeficienty opět jako komplexní čísla, i když se pro analýzu a modifikaci koeficientů ve frekvenční rovině používala jen např. absolutní hodnota čísla. Příkazy: fft2, ifft2, fftshitf.4 Výsledky Obr..3: Obraz v prostorové a frekvenční oblasti

25 Počítačové vidění 25 Obr..4: Filtrace obrazu ve frekvenční doméně 2 Cvičení X. Morfologické operace 2. Teoretický úvod Matematická morfologie vychází z vlastností bodových množin. Nečastěji se aplikuje na binární obrazy, ale lze ji zobecnit i na obrazy s více úrovněmi šedi. Morfologické operace se používají pro předzpracování (odstranění šumu, zjednodušení tvaru objektů), zdůraznění struktury objektů (kostra, ztenčování, zesilování, konvexní obal, označování objektů) a pro popis objektů číselnými charakteristikami (plocha, obvod, projekce, atd.). Morfologické transformace jsou realizovány jako relace obrazu (bodové množiny X) s jinou menší bodovou množinou B, tzv. strukturním elementem. Morfologickou transformaci si lze představit jako určitý systematický pohyb strukturního elementu po obraze. Mezi základní morfologické operace patří dilatace. Dilatace skládá body dvou množin pomocí vektorového součtu. Objekty v obraze jsou po aplikaci dilatace zvětšené o jednu slupku na úkor pozadí. Dilatace se používá k zaplnění děr popř. zálivů, její definiční vztah je uveden v následujícím vzorci. X 2 B = { d E : d = x + b, x X, b B} X B = U b B X b ( 2. ) Obrázek 2. graficky znázorňuje výsledek operace dilatace (vpravo) vzniklý z původního obrazu (vlevo) pohybem strukturního elementu (uprostřed).

26 26 FEKT Vysokého učení technického v Brně Obr. 2.: Operace dilatace Druhou základní morfologickou operací je eroze. Eroze skládá dvě bodové množiny s využitím rozdílu vektorů. Je duální (nikoliv inverzní) transformací k dilataci a používá se pro zjednodušení struktury objektů. Objekty tloušťky jedna (relativní jednotka) zmizí (tj. potlačení šumu), složité objekty spojené čárami tloušťky jedna se rozloží na několik jednodušších objektů. Eroze je dána vztahem: 2 X Θ B = { d E : d + b X pro b B} X Θ B = I b B X b ( 2.2 ) Obrysy objektů můžeme jednoduše a rychle najít odečtením erodovaného obrazu od originálu. Morfologické operace otevření a uzavření jsou operace, které vzniknou kombinací elementárních operací dilatace a eroze. Výsledkem obou je zjednodušený obraz, který obsahuje méně detailů (odstraní detaily menší, než strukturní element, celkový tvar objektu se ale neporuší). Eroze následovaná dilatací je otevřením a zapisuje se X o B. Oddělí objekty spojené úzkou šíjí a tak zjednoduší strukturu objektů. Dilatace následovaná erozí je uzavřením a zapisuje se X B. Spojí objekty, které jsou blízko u sebe, zaplní díry a vyhladí obrys. Definiční vztahy logicky vyplývají z uvedeného a jsou dány následujícími dvěma vzorci. ( X Θ B) B X o B = ( 2.3 ) ( X B) ΘB X B = ( 2.4 ) 2.2 Úkoly. Vytvořte blok programu řešící dilataci binárního obrazu strukturním elementem stejným jako na obrázku v teoretické části.

27 Počítačové vidění Vygenerujte uvedený strukturní element pomocí knihovní funkce strel. Pomocí knihovní funkce imdilate ověřte správnost výsledků předchozího bodu. 3. Aplikujte na jeden libovolný obraz několikrát operaci eroze imerode a najděte různě široké obrysy objektů. 4. Proveďte operaci otevření jako erozi následovanou dilatací a poté také pomocí funkce imopen. Porovnejte výsledek těchto operací s výsledkem operace uzavření. 2.3 Dobré vědět Je třeba vhodně zvolit obraz pro zkoušení jedno zda syntetický nebo reálný. Obraz by měl obsahovat hodně strukturních oblastí, tenké čáry a objekty s tenkými zálivy. Příkazy: strel, imdilate, imerode, imopen, imclose, imfill 2.4 Výsledky Obr. 2.2: Morfologické operace 3 Dodatky 3. Vstupní test 3.. Vstupní test zadání. Jak lze charakterizovat diskrétní obraz z hlediska teorie signálu?

28 28 FEKT Vysokého učení technického v Brně 2. Co o diskrétním signálu vypovídá charakteristika nazývaná četnost popř. histogram? 3. Co se rozumí filtrací obrazového signálu v prostorové a co ve frekvenční oblasti? 4. Jak lze z hlediska rychlosti optimalizovat kód zpracovávající dvourozměrný signál? 5. K čemu se používá Fouriérova transformace? 6. Co je to topologie objektu? 3..2 Vstupní test řešení. Obraz je převeden z analogové podoby do číslicové vždy při pořízení/snímání obrazu. Vzorkování probíhá mimoděk na samotné ploše snímacího čipu (např. CCD nebo CMOS), kvantování pak v A/D převodníku digitalizační karty nebo fotoaparátu. Frekvence vzorkování (počet buněk čipu) v prvním resp. druhém rozměru analogového obrazu udává počet řádků resp. sloupců výstupního diskrétního obrazu. Rozsah A/D převodníku pak určuje počet kvantizačních úrovní a tím výslednou barevnou hloubku obrazu. 2. Četnost hodnoty v diskrétním signálu udává počet výskytů této konkrétní hodnoty. Pokud se tyto hodnoty seřadí vedle sebe vzestupně podle hodnoty odpovídající signálu, vytvoří charakteristiku zvanou histogram. 3. Filtrací obrazového signálu v prostorové oblasti se rozumí potlačení či jiné ovlivnění obrazových bodů v přesně specifikované oblasti např. filtrace binární maskou. Na druhé straně filtrací ve frekvenční oblasti se rozumí odstranění nebo naopak zvýraznění některých frekvenčních složek obrazu např. rozmazání hran resp. ostření znamená potlačení resp. zvýraznění vysokých frekvencí v signálu. 4. Vzhledem ke zpracování všech cvičení v interpretu MatLab je nutné klást důraz na vektorové a maticové operace. Naopak vhodné není řešit úlohy klasickou programovací metodou používající cykly for a while a podmínky if. 5. Fouriérova transformace při zpracování obrazu se využívá stejným způsobem jako při zpracování obecného signálu. Lze pomocí ní analyzovat signál ve frekvenční oblasti (souvisí s frekvenční filtrací v bodě 3). 6. Topologické vlastnosti objektu jsou takové, které se neopírají o pojem vzdálenosti, ale jsou určeny vzájemným uspořádáním jednotlivých bodů tvořících objekt. Pokud je na obraz aplikována homeomorfní transformace (např. otočení, změna měřítka, deformace obrazové roviny apod.) zůstávají topologické vlastnosti objektu beze změny.

29 Počítačové vidění 29 4 Seznam použité literatury [ ] Hlaváč V., Šonka M.: Počítačové vidění, Grada 992, ISBN [ 2 ] Hlaváč V., Sedláček M.: Zpracování signálů a obrazů, skriptum ČVUT 2, ISBN [ 3 ] Žára J. a kol.: Moderní počítačová grafika, Computer Press 998, ISBN [ 4 ] Jahne. B., Handbook of Computer Vision and Applications I, II, III. Academic Press, San Diego, 999. [ 5 ] HIPR2 jednoduchý a názorný materiál pro demonstraci základních operací nad obrazem: [ 6 ] Computer Vision online soubor odkazů a článků:

Základy zpracování obrazu

Základy zpracování obrazu Základy zpracování obrazu Tomáš Mikolov, FIT VUT Brno V tomto cvičení si ukážeme základní techniky používané pro digitální zpracování obrazu. Pro jednoduchost budeme pracovat s obrázky ve stupních šedi

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY

Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY Autor: Lukáš Polák Příklady MS Excel 2007 Tato publikace vznikla za přispění společnosti Microsoft ČR v rámci iniciativy Microsoft Partneři ve vzdělávání.

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

PROJEKT 3 2D TRAJEKTORIE KAMERY SEMESTRÁLNÍ PRÁCE DO PŘEDMĚTU MAPV

PROJEKT 3 2D TRAJEKTORIE KAMERY SEMESTRÁLNÍ PRÁCE DO PŘEDMĚTU MAPV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Vývojové diagramy 1/7

Vývojové diagramy 1/7 Vývojové diagramy 1/7 2 Vývojové diagramy Vývojový diagram je symbolický algoritmický jazyk, který se používá pro názorné zobrazení algoritmu zpracování informací a případnou stručnou publikaci programů.

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu:

Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu: Plán předmětu Název předmětu: Algoritmizace a programování (PAAPK) Školní rok: 2007/2008 Forma studia: Kombinovaná Studijní obory: DP, DI, PSDPI, OŽPD Ročník: I Semestr: II. (letní) Typ předmětu: povinný

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Photoshop - tutoriály

Photoshop - tutoriály H OŘÍCÍ TEXT Photoshop - tutoriály 1) Vytvořte Nový soubor. Velikost dokumentu jsem volil 500 x 200 obrazových bodů, rozlišení 72 dpi. Barva pozadí je předpokládaně bílá, což je pro náš případ vyhovující.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

NADSTAVBOVÝ MODUL MOHSA V1

NADSTAVBOVÝ MODUL MOHSA V1 NADSTAVBOVÝ MODUL MOHSA V1 Nadstavbový modul pro hierarchické shlukování se jmenuje Mod_Sh_Hier (MOHSA V1) je součástí souboru Shluk_Hier.xls. Tento soubor je přístupný na http://jonasova.upce.cz, a je

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku:

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku: Předmět: Ročník: Vytvořil: Datum: Informační 1. a 2. Ing. Andrea a komunikační (podle oboru září 2013 Modrovská technologie zaměření) Název zpracovaného celku: Tabulkový procesor Excel Podmíněné formátování,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

MS Excel. Upraveno pro verzi 2007. Jana Krutišová. Katedra informatiky a výpočetní techniky Fakulta aplikovaných věd Západočeská univerzita v Plzni

MS Excel. Upraveno pro verzi 2007. Jana Krutišová. Katedra informatiky a výpočetní techniky Fakulta aplikovaných věd Západočeská univerzita v Plzni MS Excel Upraveno pro verzi 2007 Katedra informatiky a výpočetní techniky Fakulta aplikovaných věd Západočeská univerzita v Plzni Charakteristika Zpracování dat uspořádaných do 2D nebo 3D tabulek. Dynamické

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Úpravy digitálních fotografií a jejich principy

Úpravy digitálních fotografií a jejich principy Úpravy digitálních fotografií a jejich principy Ing. Hana Druckmüllerová ydruck00@stud.fme.vutbr.cz Ing. Petra Nováčková ynovac06@stud.fme.vutbr.cz Ústav matematiky Fakulta strojního inženýrství Vysoké

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Přehledy pro Tabulky Hlavním smyslem této nové agendy je jednoduché řazení, filtrování a seskupování dle libovolných sloupců.

Přehledy pro Tabulky Hlavním smyslem této nové agendy je jednoduché řazení, filtrování a seskupování dle libovolných sloupců. Přehledy pro Tabulky V programu CONTACT Professional 5 naleznete u firem, osob a obchodních případů záložku Tabulka. Tuto záložku lze rozmnožit, přejmenovat a sloupce je možné definovat dle vlastních požadavků

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Obsah. Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje

Obsah. Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje Grafy v MS Excel Obsah Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje Funkce grafu Je nejčastěji vizualizací při zpracování dat z různých statistik

Více

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová

IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová IVT Počítačová grafika - úvod 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

Metodika měření linearity CCD snímačů

Metodika měření linearity CCD snímačů Metodika měření linearity CCD snímačů (test na plochu) Ver. 1.7 Zpracoval: Zdeněk Řehoř BRNO 2009 Metodika měření linearity CCD je určena pro stanovení závislosti odezvy senzorů na velikosti na detektor

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Základy zpracování kalkulačních tabulek

Základy zpracování kalkulačních tabulek Radek Maca Makovského 436 Nové Město na Moravě 592 31 tel. 0776 / 274 152 e-mail: rama@inforama.cz http://www.inforama.cz Základy zpracování kalkulačních tabulek Mgr. Radek Maca Excel I 1 slide ZÁKLADNÍ

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

DUM č. 18 v sadě. 31. Inf-7 Technické vybavení počítačů

DUM č. 18 v sadě. 31. Inf-7 Technické vybavení počítačů projekt GML Brno Docens DUM č. 18 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 24.02.2014 Ročník: 1A, 1B, 1C Anotace DUMu: monitory CRT a LCD - princip funkce, srovnání (výhody

Více

Gymnázium Vincence Makovského se sportovními třídami Nové Město na Moravě

Gymnázium Vincence Makovského se sportovními třídami Nové Město na Moravě VY_32_INOVACE_INF_BU_19 Sada: Digitální fotografie Téma: Panorama, redukce šumu, zaostření snímku, chromatická vada, vinětace Autor: Mgr. Miloš Bukáček Předmět: Informatika Ročník: 3. ročník osmiletého

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

RELAČNÍ DATABÁZE ACCESS

RELAČNÍ DATABÁZE ACCESS RELAČNÍ DATABÁZE ACCESS 1. Úvod... 2 2. Základní pojmy... 3 3. Vytvoření databáze... 5 4. Základní objekty databáze... 6 5. Návrhové zobrazení tabulky... 7 6. Vytváření tabulek... 7 6.1. Vytvoření tabulky

Více

ŠVP Gymnázium Ostrava-Zábřeh. 4.8.16. Úvod do programování

ŠVP Gymnázium Ostrava-Zábřeh. 4.8.16. Úvod do programování 4.8.16. Úvod do programování Vyučovací předmět Úvod do programování je na naší škole nabízen v rámci volitelných předmětů v sextě, septimě nebo v oktávě jako jednoletý dvouhodinový kurz. V případě hlubšího

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

DATABÁZE MS ACCESS 2010

DATABÁZE MS ACCESS 2010 DATABÁZE MS ACCESS 2010 KAPITOLA 5 PRAKTICKÁ ČÁST TABULKY POPIS PROSTŘEDÍ Spuštění MS Access nadefinovat název databáze a cestu k uložení databáze POPIS PROSTŘEDÍ Nahoře záložky: Soubor (k uložení souboru,

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více