Analýza kvantitativních dat II. Standardní chyby a intervaly spolehlivosti (1.)

Rozměr: px
Začít zobrazení ze stránky:

Download "Analýza kvantitativních dat II. Standardní chyby a intervaly spolehlivosti (1.)"

Transkript

1 UK FHS Historická sociologie (LS 2012+) Analýza kvantitativních dat II. Standardní chyby a intervaly spolehlivosti (1.) Jiří Šafr jiri.safr(at)seznam.cz Poslední aktualizace 23/11/2014

2 Obsah Logika měření ve výběrových šetřeních: chyby měření Principy inferenční statistiky a intervalového odhadu Co předchází výpočtu intervalu spolehlivosti: 1. Standardní (směrodatná) chyba K čemu je standardní chyba (SE)? SE pro kardinální znaky (průměr) a pro nominální (P resp. %) 2. koeficient spolehlivosti (z-values) - krátký exkurz do normálního rozložení a teorie pravděpodobnosti Využití CfI Výpočet CfI pro kvalitativní nominální proměnnou (tj. pro %) (Ne)možnosti výpočtu CfI v SPSS a alternativy Simultánní intervaly spolehlivosti Standardní chyba a intervaly spolehlivosti pro další parametry (korelační koeficient, medián, rozdíl podílů) 2

3 Chyby měření Při interpretaci a analýze výsledků z výběrových dat je třeba mít neustále na paměti, že vznikly zpracováním dat získaných z výběrového šetření (populace vzorek). všechny (publikované) údaje jsou pouze odhady zatížené určitou chybou a nikoliv přesná čísla. Tato chyba má dvě složky: výběrovou a nevýběrovou. 3

4 Nevýběrová chyba vyskytuje se u všech zjišťování (tedy i u vyčerpávajících cenzovních šetření) Vzniká z důvodu: špatné práce v případné fázi výzkumu (konceptualizace, operacionalizace) neochotou respondentů sdělovat úplné a přesné informace atd. validita nedokonalé metodiky, jejího nepřesného dodržování chybnými postupy při zpracování dat významně ovlivnit ji lze precizní prací ve všech fázích přípravy a průběhu šetření zhodnotit její vliv na výsledky je obtížné (možností je např. porovnání s údaji zjištěnými při úplném cenzu, pokud je máme k dispozici) (Dále se jí nebudeme zabývat.) 4

5 Výběrová chyba Populace výběr populace Vybírá se náhodně (bez vracení) pouze jeden výběrový soubor a údaje z něho reprezentují základní soubor (populaci). Chybu způsobenou volbou výběrového souboru lze s určitou předem zvolenou pravděpodobností vymezit na základě teorie výběrových šetření 5

6 Přesnost chyby měření S výběrovými šetřeními jsou v sociálních vědách spjaty tzv. výběrové a nevýběrové chyby. Nevýběrové chyby (nonsampling error): odmítnutí odpovědi, chyby při pořizování dotazníku. nelze kvantifikovat vychýlení odhadu. (ty se objevují i v případě šetření celé populace - cenzu) Výběrové chyby (sampling error): vznikající vztažením charakteristik výběrového souboru na celý základní soubor vliv: velikosti výběru, metody výběru, velikosti populace lze je interpretovat pomocí tzv. intervalů spolehlivosti = intervaly zkonstruované kolem bodového odhadu tak, že surčitou pravděpodobností skutečná hodnota odhadované charakteristiky (tj. v celé populaci) leží právě vtomto intervalu. Nejčastěji se u odhadů konstruuje 95% interval spolehlivosti v něm s 95% pravděpodobností leží skutečná hodnota odhadované charakteristiky (připouštíme 5 % 6 chybu)

7 Velikost výběrové chyby lze vyjádřit buď Standardní (směrodatnou) chybou - bodovým odhadem rozptylu/směrodatné odchylky nebo intervalem spolehlivosti pro odhad sledovaného ukazatele. Nejčastěji se okolo odhadu konstruuje tzv. 95 % interval spolehlivosti (vynásobením směrodatné odchylky odhadu kvantilem normovaného normálního rozdělení, tj. hodnotou 1,96). interval, ve kterém s 95 % pravděpodobností leží skutečná hodnota odhadované charakteristiky 7

8 Chyba měření Pravděpodobnostní výběry nikdy nedávají statistiky (změřené hodnoty ve vzorku) přesně odpovídající parametru (hodnotám v celé v populaci) T = M + e T = skutečná hodnota proměnné (v populaci) M = naměřená hodnota T e = je chyba měření 8

9 Intervaly spolehlivosti Tolerance chyb (margin of error) suma všech možných výběrových chyb, která kvantifikuje nejistotu výsledků měření pravděpodobnostní interval ± (např. 95% interval spolehlivosti určuje rozpětí kolem naměřené hodnoty) ovlivněno: velikostí výběru, metoda výběru, velikost populace 95 % (konfidenční) interval spolehlivosti jsme si jistí, že naše výběrová data z 95 % (tj. námi zvolená spolehlivost) budou obsahovat skutečnou hodnotu v celé populaci 9

10 Intervaly spolehlivosti (CI) princip intervalového odhadu Odhadujeme parametry základního souboru (populace) jsou-li nám známy pouze charakteristiky výběru Při intervalovém odhadování se charakteristika základního souboru popisuje pomocí intervalu, k níž se přidává pravděpodobnost, že odhad bude správný spolehlivost odhadu (1-α). Použití pro průměr, podíl (%), rozptyl, korelační koeficient Obecně CfI lze vyjádřit: Bodový odhad ± Koeficient spolehlivosti pro zvolenou hladinu x Směrodatná chyba odhadu Např. pro 95 % CfI a procentní údaj ohledně účasti ve volbách: Se spolehlivostí 95 % můžeme tvrdit, že podle zjištění výzkumu půjde volit 62,8 % (± 2,7 %) občanů, tj. v rozmezí 60,1 až 65,5 %. 10

11 Výsledky výběrových šetření jsou vždy jen odhadem skutečného parametru (v populaci). Jejich přesnost je závislá především na velikosti výběrového souboru a podílu hodnot daného znaku. Orientační pomůcka: pro vzorek z velké (národní) populace cca N=1000 se skutečné (populační) relativní četnosti (procenta) pohybují v těchto intervalech: Pozorované četnosti (%) Intervaly spolehlivosti 10 % nebo 90 % 20 % nebo 80 % 30 % nebo 70 % 40 % nebo 60 % 50 % ± 1,9 ± 2,5 ± 2,7 ± 3,0 ± 3,1 Zdroj: [Special Eurobarometer 337] My si ale dále ukážeme, jak to spočítat přesně a navíc pro jakoukoliv hodnotu a míru (%, průměr, rozdíl %, korelace, ) 11

12 Interval spolehlivosti Interval spolehlivosti volíme. Například zvolíme-li 95 %, znamená to, že parametr naměřený ve výběrovém souboru (např. průměr) se bude v celé populaci nacházet v daném intervalu. Nebo obráceně: Zvolená chyba (alpha) např. 5%, je pravděpodobnost, že průměr (nebo jiná míra) nebude v celé populaci (jejíž vlastnosti z výběru zjišťujeme) mezi spočítaným intervalem a to díky náhodě. 5% pravděpodobnost (type I error), znamená že naměřený rozdíl existuje (např., že lidé budou volit kandidáta X) oproti tomu, že naměřený rozdíl je ve skutečnosti způsoben tím, že vzorek je nereprezentativní. 12

13 Nejprve ujasnění pojmů (pro jistotu) Rozptyl je variance v hodnotách proměnné Směrodatná odchylka je odmocnina z rozptylu Standardní chyba (např. průměru) je vyjádřením nepřesnosti měření odhadu K jejímu odhadu můžeme použít právě směrodatnou odchylku (v případě průměru), výpočet viz dále 13

14 Princip inferenční statistiky - kardinální/číselné znaky distribuce průměru v náhodném výběru z populace Zdroj: [De Vaus 1986: 116] Ze vzorku víme, že průměrný příjem je 18tis$ ( bodový odhad), jaký je ale skutečný populační průměr (tj. v celém základním souboru)? Protože víme, že výběrový průměr je zatížen výběrovou chybou, nemůžeme se na tento bodový odhad spolehnout. Potřebujeme zjistit, jak přesně náš vzorek měří. Pokud máme náhodný výběr, odpověď nám dá teorie pravděpodobnosti. Pokud bychom provedli velké množství náhodných výběrů, budeme se postupně blížit ke skutečné 14 populační hodnotě průměrného příjmu. Rozložení hodnot ve vzorku se bude blížit tzv. normálnímu rozložení (Gaussově křivce).

15 Princip inferenční statistiky kategoriální znaky distribuce pravděpodobnosti (tj. %) v náhodném výběru z populace Zdroj: [De Vaus (1986) 2002: 304] Dtto ale pro podíl (procenta). Na ose X je podíl (relativní počet výskytu) odpovědí pro volbu konzervativní strany v mnoha náhodných výběrech. S rostoucím počtem opakovaných náhodných výběrů se odhadovaná hodnota % blíží skutečné hodnotě v populaci. 15

16 Binomické rozdělení Návštěva kostela NSR, červenec srpen 1956 % Pravidelná 30,3 Nepravidelná 24,6 Málokdy 28,6 Nikdy 16,5 Celkem 100,0 Náhodný výběr 4000 osob, se rozdělí na skupiny po 40 osobách, vznikne tak 100 dílčích náhodných výběrů. Toto rozdělení odpovídá jako při dotazování u 100 reprezentativních průřezů. Tyto dílčí náhodné výběry však nemají stejné procento osob, které chodí do kostela jen málokdy. Podle zákona velkých čísel musí přitom menší odchylky vystupovat častěji než velké. [Noelleová 1968: 115] Podíl 27,5 % osob, které málokdy navštěvuji kostel, tj. 11 ze 40 dotazovaných, vystupuje např. u 18 ze 100 dílčích náhodných výběrů, naproti tomu jen v jednom výběru je podíl 10 % = 4 ze 40 dotazovaných. Z křivky zvonovitého tvaru lze vyčíst, jaké rozdělení by se dalo očekávat v mezním případě, kdyby se neprošetřovalo pouze 100, ale libovolné množství dílčích náhodných výběrů. 16

17 Co předchází výpočtu intervalu spolehlivosti: 1. Standardní (směrodatná) chyba a jejímu výpočtu předchází výpočet rozptylu/směrodatné odchylky 2. koeficient spolehlivosti z-values (princip a odvození)

18 Standardní/směrodatná chyba odhadu parametru (např. průměru) Neboli obecně standardní chyba vzorku Kvantifikuje nepřesnost našeho měření pro průměr: StD Error (of mean) SE = pro podíl (%): StD Error (of proportion) SE = Pozn. Pravděpodobnost, tj. podíl (%) je vlastně průměrem počtu pozorování, takže SE pro pravděpodobnost počítáme v podstatě stejně jako SE pro průměr (Směrodatná odchylka podílu děleného odmocninou z velikosti výběru). 18

19 Standardní/směrodatná chyba Je menší pokud roste velikost výběrového souboru (roste přesnost odhadu parametru) Zvětšením výběru 2x se interval zmenší jen 1,41krát ( k-násobně), proto pro dvojnásobnou přesnost potřebujme čtyřnásobný rozsah výběru Obvykle nám stačí pokud je pravděpodobnost, že cca 2/3 naměřených hodnot leží v rozsahu hranice průměru nebo +/- 1 jejich vlastní standardní chyby (SE) 19

20 K čemu je standardní chyba (SE)? ukazuje, jak (ne)přesné jsou naše výsledky pro výpočet intervalu spolehlivosti k testování, zda se dva parametry liší k testu, zda se výběrová charakteristika statisticky významně liší od nuly v základním souboru (dělíme-li např. korelační koeficient r jeho SE a dostaneme-li číslo větší než 2, pak je s 95% pravděpodobností korelace nenulová, tj. existuje i v celé populaci) 20

21 Malý exkurz do rozložení pravděpodobnosti nejen k tomu abychom odvodili Z-hodnoty pro koeficient spolehlivosti (vlastnosti normálního rozložení využijeme ještě při testování hypotéz)

22 Normální rozložení rozsah oblastí pod křivkou Pravděpodobnosti pozorování náhodné proměnné Procenta plochy pod křivkou Pravděpodobnosti pozorování hodnot, odpovídají oblastem pod křivkou Násobky Směrodatné odchylky Rozdíl mezi 2 až 3 StD odpovídá 5 % plochy pod křivkou normálního rozložení. Pravděpodobnost, že se (hodnota) pozorování vyskytne: -nad bodem E je 0,025 -mezi body A a E je 0,95 95 % interval spolehlivosti Tato vlastnost normálního rozložení nám umožňuje činit odhad parametrů základního souboru, známe-li pouze charakteristiky výběru. 22

23 Směrodatná odchylka a (konfidenční) interval spolehlivosti Normální rozložení Násobky Směrodatné odchylky 23

24 z-values koeficient spolehlivosti (C) pro danou hladinu významnosti (α) tu si zvolíme, podle toho, jak přesně výsledky chceme prezentovat (nejčastěji 5 %) α = 5 % α = 1 % 2,5 % 2,5 % Násobky Směrodatné odchylky α 10% 5% 1% z α /2 z.1 z.05 z.025 z.01 z.005 z.001 z.0005 C

25 a zpět do výpočtu intervalu spolehlivosti

26 Interval spolehlivosti (předpoklady) Dále budeme uvažovat pouze dvoustranný interval spolehlivosti (existuje také jednostranný CfI, kdy určujeme buď jen horní nebo dolní hranici) pro prostý náhodný výběr a pro velké výběrové soubory (kde n > 30) Předpokládáme alespoň přibližně normální rozložení hodnot zkoumaného jevu (což dost často z principu nemusí být) 26

27 Připomenutí z AKD I. Intervaly spolehlivosti pro spojitou kardinální proměnnou průměr

28 Odhad parametru (např. průměru) v populaci na základě výběrového vzorku Standardní chyba průměru StD Error (of mean) SE = s 2 /n nebo SE = s/ n kde s 2 je rozptyl (ve výběrovém vzorku) nebo s je směrodatná odchylka 95 % konfidenční interval CI pro výběrový průměr X = X ± C * SE kde C = 1,96 (pro 95 % CI) z-hodnota Prezentujeme buď dvě čísla: průměr ± konfidenční interval nebo 28 tři čísla: dolní mez - průměr - horní mez.

29 Výpočet konfidenčního intervalu výběrového průměru Hypotetická populace Průměr v celé populaci μ = 8 jednotky hodnoty A 2 B 6 C 8 D 10 E 10 F 12 Např. věk dětí v ulici Náhodný výběr 2 jednotek (např. dětí v ulici) A (=2) a D (=10) Průměr ve výběru X = (2+10)/2 = 6 Rozptyl (s 2 ) je ve výběru 32 směrodatná odchylka (s) CI = X ± 1,96 * 4 = 6 ± 7,84-1,84 až 13,84 To znamená, že z námi vypočteného bodového odhadu průměrného věku ve výběru (6 let) můžeme usuzovat, že v celé populaci se jeho hodnota s přesností 95 % pohybuje v rozmezí -1,8 až 13,8. (Což je zde jistě neproduktivní informace.) 29

30 Rozdíl: populace / výběr, StD a SE Vek_AKD2_ xls

31 Využití CfI Deskriptivní pro popis (odhad) určitého parametru v populaci měřeného pomocí výběru s použitím intervalového odhadu (např. průměr, podíl kategorie) EXPLORE Porovnání rozdílů hodnot dvou či více proměnných testování hypotézy pomocí principu statistické indukce ( překrývají se hranice intervalů?), např. v grafech Error-Bar: A) vzájemné porovnání rozdílů hodnot (průměrů) u sady několika proměnných měřených na stejné škále (např. obliba 8 TV žánrů) B) Hodnoty průměrů jedné proměnné v podskupinách kategoriích vysvětlujícího znaku (např. průměr příjmu v kategoriích vzdělání). C) porovnání hodnoty s výsledky z jiného výzkumu (např. časově nebo z jiné země) 31

32 Porovnání rozdílů hodnot (průměrů) pomocí překryvu intervalů spolehlivosti A) Obliba 8 TV žánrů B) Příjem v podskupinách podle vzdělání Zdroj: Kultura 2011 Zdroj: CVVM GRAPH ERROR (CI) k31_a TO k31_h. GRAPH ERROR (CI) prijem BY vzd4. 32

33 V SPSS: interval spolehlivosti pro spojitou proměnnou průměr Např. v rámci EXPLORE (v syntaxu EXAMINE): EXAMINE proměnná. */ třídění 1.stupně včetně grafů. EXAMINE prijem /PLOT NONE /STATISTICS DESCRIPTIVES /CINTERVAL 95 /NOTOTAL. Poněkud nepřehledné, ve výstupu nejprve za celek, pak teprve podskupiny. V rámci MEANS dostaneme pouze standardní chybu průměru = SEMEAN. MEANS prijem /CELLS= MEAN COUNT STDDEV SEMEAN. */ pro třídění 1. ale i 2./3. stupně. Přehledněji dostaneme intervaly spolehlivosti pro třídění 2. stupně v jedné tabulce v rámci jednoduché analýzy rozptylu (One-way ANOVA): ONEWAY prijem BY vzd4 / STATISTICS=DESCRIPTIVES. Nebo graf pro průměry s CI v kategoriích další proměnné: GRAPH /ERRORBAR (CI 95)=prijem BY vzd4. 33

34 CI ve výstupu z EXPLORE resp. EXAMINE v třídění 2.stupně: závislá proměnná = příjem nezávislá proměnná = pohlaví (s30) Počítáme odděleně průměry s (S.E.) a CI v jejích kategoriích. EXAMINE proměnná. *třídění 1.stupně včetně grafů. Zdroj: data ISSP 2007 EXAMINE prijem BY s30 /PLOT NONE /STATISTICS DESCRIPTIVES /CINTERVAL 95 /NOTOTAL. * třídění 2. stupně a pouze hlavní statistiky. Pro více kategorií je to již poměrně nepraktické uspořádání, proto můžeme použít např.: ONEWAY prijem BY vzd4 / 34 STATISTICS=DESCRIPTIVES.

35 Graf chybových úseček (průměr s CI) v SPSS GRAPH /ERRORBAR (CI 95)=Var1 BY Var2. Var1 je spojitá (pro ní počítáme průměr) Var 2 je kategoriální (podskupiny) 35

36 CfI pro průměry v podskupinách ONEWAY prijem BY vzd4/ STATISTICS=DESCRIPTIVES. GRAPH ERROR (CI 95) prijem BY vzd4. 36

37 Rozdíl: ERRORBAR (graf chybových úseček) BOXPLOT (graf fousatých krabiček) BOXPLOT - graf fousatých krabiček znázornění rozložení (rozptýlení) dat: medián, kvartilové rozpětí (horní a dolní kvartil) a hranic odlehlých (Outliers = ) a vzdálených hodnot (Extremes = *). Jak pro populační tak pro výběrová data. ERRORBAR - graf chybových úseček znázornění průměru a jeho (zvoleného) intervalu spolehlivosti Pouze pro výběrová data. Vnitřní a vnější hradby (hranice velmi vysokých/ní zkých hodnot) Kvartilové rozpětí EXAMINE prijem BY s30 /PLOT=BOXPLOT /STATISTICS=NONE /NOTOTAL. GRAPH /ERRORBAR (CI 95) prijem BY s30. Zdroj: data ISSP

38 Intervaly spolehlivosti pro kvalitativní - nominální proměnnou četnosti (pravděpodobnost / procenta) pro jistotu: Procento je stým násobkem pravděpodobnosti, tj. p 0,1 = 10 % (takže p = 0,8 1-p = 0,2)

39 Interval spolehlivosti pro relativní četnost tj. pravděpodobnost (tj. % /100), binomický podíl Bodový odhad ± Koeficient spolehlivosti pro zvolenou hladinu (C) x Směrodatná chyba odhadu Pravděpodobnost jevu (bodový odhad) p = x/n Směrodatná chyba pravděpodobnosti SE = p(1 p)/n Interval spolehlivosti p ± z α/2 (SE) C pro 95 % spolehlivost α = 0,05; z α/2 = 1,96 Existuje 95 % spolehlivost, že naměřená hodnota ve výběru bude (v populaci) mezi hodnotami horní a dolní hranice. Máme-li proměnnou s více kategoriemi, pak počítáme p vždy jako dichotomii té které kategorie oproti součtu ostatních (např. vzdělání: VŠ / ostatní stupně (ZŠ+VY+SŠ). 39

40 Příklad: volební účast v r Zdroj: data ISSP

41 Příklad: volební účast v r Máme výběrový odhad pro proměnnou Volil2006 (katg. Volil / Nevolil) Směrodatná chyba pravděpodobnosti SE pro Volil: Pravděpodobnost Volil = 750/1196 = 0,628 Pravděpodobnost Nevolil = 446/1196 = 0,373 SE = 0,628(1 0,628)/1196 = 0,014 Odhad Volil bude ležet mezi 0,628 ± 1,96 (0,628)(0,373)/1196 0,628 ± 0,0274 nebo (0,6006; 0,6554) nebo 62,8 (± 2,7)% Zdroj: ISSP

42 Příklad: volební účast v r Voleb do Poslanecké sněmovny konaných ve dnech se účastnilo 64,47 % občanů (oficiální údaj z ČSÚ). Náš výběrový odhad (data ISSP 2007) pro 95 % CfI: 60,06 62,8 65,54 Pro 99 % CfI (kdy z α/2 = 2,326) 59,60 62,8 66,05 Pro 90 % CfI (kdy z α/2 = 1,645) 60,05 62,8 65,01 42

43 v SPSS CfI pro % standardně pouze v grafu BARCHART GRAPH /BAR(SIMPLE)=PCT BY q34 /INTERVAL CI(95.0). Zdroj: data ISSP

44 BARCHART pro % s CfI, klikací postup 44

45 Třídění druhého st. v BARCHARTu (s CI pro %) GRAPH /BAR(SIMPLE)=PCT BY q34 BY q38 /INTERVAL CI(95.0). Pro porovnání % volil v 2006 v podskupinách (zde dle členství v odborech) Zdroj: data ISSP

46 Na hotovou tabulku lze aplikovat skript Skript: Nebo jobíkem [Gwilym Pryce 2002] v syntaxu vyplníme hodnoty např. z FREQ nebo CROSSTAB Je to ten druhý Large-Sample Confidence Interval for a Single Population Proportion. Přepíšeme/vyplníme jen hodnotu n a p, můžeme také volit velikost CI a počet desetinných míst. Run MATRIX procedure: Confidence Interval for a Single Population Proportion n phat zstar SE Lower Upper 1196,000,627 1,960,014,600, END MATRIX Zdroj: data ISSP

47 1. In the output (on FREQ table) you can use (post)script Script can be downloaded from: This is most convenient way. However it needs to be stored in a computer and you need the appropriate version of the script fitting to your SPSS version, sometimes even some programming environment needs to be installed (Python), and also it is probably only in Czech. It doesn t exist in PSPP. Source: data ISSP 2007, CR 47

48 2. Syntax routine CI for proportion [Pryce 2002] Here we have to fill in results, e.g. from FREQ (univariate) or possibly CROSSTAB (bivariate). In fact there are four tests in this syntax. For univariate description it is the second test Large-Sample Confidence Interval for a Single Population Proportion. Fill in only values of n a p, you can also choose CI (originaly set to 99% CI) and decimals shown. * * * Large-Sample Confidence Interval for a Single Population Proportion. * (see Moore and McCabe (2001) Intro to the Practice of Statistics, p ). * *For the inverse normal computation, I use the approximation used by adapted from Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards MATRIX. COMPUTE n = {4040}. /* Enter the sample size here (change the number in curly brackets)*/ COMPUTE x = {2048}. /* Enter the number of "successes" (change the number in curly brackets)*/ COMPUTE CONFID = {0.99}. /* Enter the desired confidence level here */ *The remainder of the syntax calculates the Confidence Interval given the values for n and x which you have entered above. *NB you don't need to alter anything from here on. COMPUTE Q = 0.5 * (1-CONFID). COMPUTE A = ln(1/(q**2)). COMPUTE T_ = SQRT(A). COMPUTE zstar = T_ - (( ( *T_) + ( *T_**2))/ (1 + ( *T_) + ( *T_**2) + ( *T_**3))). COMPUTE phat = x/n. COMPUTE SE_phat = SQRT((phat*(1-phat))/n). COMPUTE m = zstar * SE_phat. COMPUTE LOWER = phat - m. COMPUTE UPPER = phat + m. COMPUTE ANSWER = {n, phat, zstar, SE_phat, Lower, Upper}. PRINT ANSWER / FORMAT "F10.5" /Title = "Confidence Interval for a Single Population Proportion" / CLABELS = n, phat, zstar, SE, Lower, Upper. END MATRIX. *NB if you want to obtain values to a greater (lesser) number of decimal places, change the format specified in the last but one line of the syntax. *e.g. if you want only 3 decimal places, change the format to "F10.3". * * The output: Run MATRIX procedure: Confidence Interval for a Single Population Proportion n phat zstar SE Lower Upper 1196,000,627 1,960,014,600, END MATRIX And don't forget, if you use this script (e.g. in diploma thesis) you should credit it, cite: Gwilym Pryce Large-Sample Confidence Interval for a Single Population Proportion. Inference for Proportions. Available at: 48 Source: data ISSP 2007, CR

49 Pro kontingenční tabulku CROSS s31 BY s21. A dosadíme do vzorce (jobíku) Zdroj: data ISSP 2007 Pro kategorii menší město : p dolní mez horní mez Rodinný domek 0,3266 0,2805 0,3727 Menší bytový dům 0,1482 0,1133 0,1832 Větší bytový dům 0,5251 0,4761 0,5742 CROSS s31 BY s21 /cel col. GRAPH /BAR(SIMPLE)=PCT BY s31 by s21/interval CI(95.0). 49

50 Kalkulátory intervalů spolehlivosti pro nominální znaky (%) ten bohužel nefunguje 50

51 Orientační pomůcka: Statistické rozpětí odchylek pro binominální rozdělení Hodnoty 2σ dvě směrodatné odchylky v % Stupeň významnosti 95,45 % n = rozsah náhodného výběru p = četnost znaku v základním souboru v % Zdroj: [Noelleová 1968: 118] 51

52 Úkol Spočítejte interval spolehlivosti pro podíl vysokoškolsky vzdělaných v ČR Porovnejte se skutečnou hodnotou v populaci (údaje ČSÚ pro 2007) promítnout řešení z AKD2_1_CfI_RESENI 52

53 Porovnání % rozdílů v třídění 2. stupně (binární proměnné) Zjednodušeně můžeme spočítat interval spolehlivosti pro podíl určité kategorie v podskupinách podle jiné proměnné nebo již existujících výsledků. Např. jednoduše dichotomicky: Volil (závislá proměnná) podle kategorií Křesťanská nábož. orientace (ano/ne; nezávislá p.) a porovnat, zda se hodnoty intervalového odhadu v podskupinách nepřekrývají. Přesnější je řešení pomocí CF samotného % rozdílu mezi těmito kategoriemi (p1-p2). To lze spočítat ručně (viz dále) a nebo dosazením do SPSS jobíku G. Pryce [2002] kde použijeme poslední (4.) test Large-sample Confidence Intervals for Comparing for two population proportions. Pokud spočítaný interval spolehlivosti rozdílu neprochází 0 (tj. nezasahuje nulu = v populaci není nulový), lze tvrdit, že % rozdíl subkategorií (p1-p2) je statisticky významný, tj. platí se zvolenou chybou pro celou populaci. Tento postup lze aplikovat i na kontingenční tabulku s více kategoriemi postupně počítáme CI pro rozdíly vždy dvou 53 hodnot/kategorií. Zde však nastává problém vícenásobného porovnání (viz dále).

54 Comparing for two population proportions (dichotomised variables in crosstabulation) We can compute confidence interval for proportion of specific value/category within subgroups or for already existing results. For example, dichotomised variables: Voted (dependent var) along categories of Religion (Christian/otherwise) (independent var) and to compare, whether interval estimates within categories of Religion overlap or not. More exact and easier it is via computing CF of % difference between the proportions/categories If the confidence interval of the proportion difference is not including 0 (i.e. it is not zero within the whole population), we can assert, that % difference between the (sub)categories is statistically significant (at given p), i.e. it holds true with given statistical error for whole population. You can compute it by hand (for formula see later) or using SPSS syntax routine by G. Pryce [2002] use the last (4.) test Large-sample Confidence Intervals for Comparing for two population proportions. This method can be applied to a crosstabulation with more categories step by step focusing on one by one value/category comparison. 54

55 Comparing for two population proportions SPSS syntax routine by G. Pryce [2002] Here we have to fill in results, e.g. from FREQ (univariate) or possibly CROSSTAB (bivariate). In fact there are four tests in this syntax. For comparing for two population proportions it is the fourth test Largesample Confidence Intervals for Comparing for two population proportions. Fill in only values of n1, n2 and p1, p2, you can also choose CI (originally set to 90% CI) and decimals shown. * * * Large-sample Confidence Intervals for Comparing for two population proportions. * (see Moore and McCabe (2001) Intro to the Practice of Statistics, p ). * *For the inverse normal computation, I use the approximation used by adapted from Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards MATRIX. COMPUTE n1 = {1222}. /* Enter the first sample size here (change the number in curly brackets)*/ COMPUTE n2 = {1222}. /* Enter the second sample size here (change the number in curly brackets)*/ COMPUTE x1 = {958}. /* Enter the number of "successes" for sample 1 here (change the nb in curly brackets)*/ COMPUTE x2 = {1016}. /* Enter the number of "successes" for sample 2 here (change the nb in curly brackets)*/ COMPUTE CONFID = {0.95}. /* Enter the desired confidence level here */ *The remainder of the syntax calculates the Confidence Interval given the values for n and x which you have entered above. *NB you don't need to alter anything from here on. COMPUTE Q = 0.5 * (1-CONFID). COMPUTE A = ln(1/(q**2)). COMPUTE T_ = SQRT(A). COMPUTE zstar = T_ - (( ( *T_) + ( *T_**2))/ (1 + ( *T_) + ( *T_**2) + ( *T_**3))). COMPUTE p1hat = x1/n1. COMPUTE p2hat = x2/n2. COMPUTE SE_phat = SQRT(((p1hat*(1-p1hat))/n1) + (p2hat*(1-p2hat))/n2)). COMPUTE m = zstar * SE_phat. COMPUTE LOWER = (p1hat - p2hat) - m. COMPUTE UPPER = (p1hat - p2hat) + m. COMPUTE diffp1p2 = p1hat - p2hat. COMPUTE ANSWER = {n1, n2, diffp1p2, zstar, SE_phat, Lower, Upper}. PRINT ANSWER / FORMAT "F10.5" /Title = "Confidence Interval for Comparing 2 Proportions" / CLABELS = n1, n2, diffp1p2, zstar, SE, Lower, Upper. END MATRIX. The output: Example: Non-participation in Run MATRIX procedure: Confidence Interval for Comparing 2 Proportions n1 n2 diffp1p2 zstar SE Lower Upper 1222, , , ,96039, , , END MATRIX Sport clubs and Culture association [ISSP 2007, CR] Sport (q13_a) = 958 Culture: (q13_b) = 1016 TOTAL = The result: the CI is not crossing 0 the difference 4,7 % points is statistically significant (at p < 5%). And don't forget, if you use this script (e.g. in diploma thesis) you should credit it, cite: Gwilym Pryce Large-Sample Confidence Interval for a Single Population Proportion. Inference for Proportions. Available at: 55

56 Or you can use Web Calculator for Confidence Interval for the Difference Between Two Independent Proportions 56

57 Simultánní intervaly spolehlivosti pro četnosti Dosud jsme činili samostatné závěry, ale chceme-li zhodnotit několik četností zároveň, musíme zajistit, aby všechny parametry byly pokryty předem požadovanou spolehlivostí. Pro souběžný závěr o několika četnostech proto zpřísníme celkovou spolehlivost C na z α / S kde S = počet četnostní pro něž chceme simultánní intervaly spolehlivosti Např. pro 4 četnosti, při požadované α = 0,05: z α / 4 =z α / 0,0125 = 0,02497 tj. přibližně 2,5 Viz tabulky kritických hodnot standardního normálního testu pro simultánní testování. [Řehák, Řeháková 1986: 64-65] 57

58 Další možnosti využití Intervalu spolehlivosti

59 Standardizace kardinálních proměnných na z-skóre Užitečná transformace data pro porovnání proměnných měřených na různých škálách (rozpětí) Jak na to viz Dimenze pro-čtenářského klimatu a čtení v dětství v závislosti na vzdělání rodičů, průměry z-skórů, věková kohorta narozených nadprůměr Průměr škál (=0) podprůměr Zdroj: [Gorčíková, Šafr 2012: 75] Dostupnost/nápodoba Interakce/komunikace Četl/a v dětství Příklad: dvě odlišné dimenze pročtenářského klimatu v rodině a čtení v dětství (3 průměry) podle vzdělání rodičů Závislé proměnné (dimenze pročtenářského klimatu a čtení) jsou spojitékardinální a protože byly měřeny na škálách s odlišným rozpětím jsou standardizované na z-skóry, tj. mají stejnou metriku-rozsah (průměr =0 a StD=1) můžeme porovnávat jejich relativní(!) intenzitu napříč vzdělanostními kategoriemi a to i uvnitř nich, nikoliv ale celkovou hodnotu jako takovou mezi sebou (tj. v třídění 1. stupně).

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

AKDII. - Seminární práce. revize Jiří Šafr (6/2/2014) Sociologie volného času

AKDII. - Seminární práce. revize Jiří Šafr (6/2/2014) Sociologie volného času AKDII., ZS 2013 ANONYMIZOVÁNO AKDII. - Seminární práce revize Jiří Šafr (6/2/2014) Chybí název (nadpis), který by charakterizoval téma (výzkumnou otázku) Sociologie volného času V západním světě se v poslední

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení SOC1/ LEKCE : ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH A SPOJITÝCH DAT: LEKCEa ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení CVIČENÍ.1: Je česká populace věřící, nebo nevěřící? Tuto otázku

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Ranní úvahy o statistice

Ranní úvahy o statistice Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy

Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Výzkum sociální změny

Výzkum sociální změny UK FHS Historická sociologie (ZS 2011) Design kvantitativního výzkumu Výzkum sociální změny 6. část poslední aktualizace 26.11. 2011 Jiří Šafr jiri.safr(at)seznam.cz Zkoumání sociální změny V centru zájmu

Více

STATISTICKÉ ZJIŠŤOVÁNÍ

STATISTICKÉ ZJIŠŤOVÁNÍ STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce

Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce UK FHS Historická sociologie (LS 2011) Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace 23.4. 2011

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Kontingenční tabulky analýza kategoriálních dat: Úvod. Třídění 2. stupně

Kontingenční tabulky analýza kategoriálních dat: Úvod. Třídění 2. stupně UK FHS Historická sociologie a Řízení a supervize (2011, 2012, 2013, 2014) Analýza kvantitativních dat I. & Praktikum elementární analýzy dat Kontingenční tabulky analýza kategoriálních dat: Úvod. Třídění

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

Excel mini úvod do kontingenčních tabulek

Excel mini úvod do kontingenčních tabulek UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (ZS 2005+) Kvantitativní metody výzkumu v praxi Excel mini úvod do kontingenčních tabulek (nepovinnáčást pro KMVP) Jiří Šafr jiri.safratseznam.cz

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Základy pravděpodobnosti a statistiky. Popisná statistika

Základy pravděpodobnosti a statistiky. Popisná statistika Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

Návod na vypracování semestrálního projektu

Návod na vypracování semestrálního projektu Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více