Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM...

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM..."

Transkript

1 Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM... TEST 1 ŘEŠENÍ...5 TEST ZADÁNÍ...40 TEST TABULKA S BODOVÝM HODNOCENÍM...50 TEST ŘEŠENÍ...54 TEST 3 ZADÁNÍ...74 TEST 3 TABULKA S BODOVÝM HODNOCENÍM...84 TEST 3 ŘEŠENÍ...87 TEST 4 ZADÁNÍ TEST 4 TABULKA S BODOVÝM HODNOCENÍM TEST 4 ŘEŠENÍ... 1 TEST 5 ZADÁNÍ TEST 5 TABULKA S BODOVÝM HODNOCENÍM TEST 5 ŘEŠENÍ POUŽITÉ ZDROJE

2 Testy z matematiky ZÁKLADNÍ INFORMACE Maturitní zkouška se skládá ze dvou částí společné (státní) a profilové (školní). Žák úspěšně odmaturuje pouze tehdy, je-li úspěšný u povinných zkoušek obou částí, tedy společné i profilové. Společná část maturitní zkoušky z matematiky obsahuje pouze didaktický test. Jeho kritéria určuje Katalog požadavků zkoušek společné části maturitní zkoušky pro matematiku platný od školního roku 014/015. V katalogu jsou uvedeny očekávané vědomosti a dovednosti žáka: kompetence, které jsou ve zkouškách ověřovány, a konkrétní vědomosti a dovednosti z jednotlivých tematických okruhů. Katalog také uvádí základní specifikaci maturitní zkoušky z matematiky (mimo jiné procentuální zastoupení každého tematického okruhu v celém testu) a příklady testových úloh. Didaktický test z matematiky Obsahuje celkem 6 úloh hodnocených celkem maximálním počtem 50 bodů. Hranice úspěšnosti je pro rok 015 stanovena na 33 %. Časový limit pro vyřešení didaktického testu je 90 minut, předtím má žák 15 minut na výběr strategie řešení. Povolenými pomůckami jsou psací a rýsovací potřeby (tužka, guma, pravítko, trojúhelník s ryskou, úhloměr a kružítko) a kalkulačka bez grafického režimu, řešení rovnic a úprav algebraických výrazů. Kalkulačka nesmí vykreslovat grafy, nesmí zjednodušovat algebraické výrazy obsahující proměnnou a nesmí ani počítat kořeny algebraických nebo jiných rovnic. Kalkulačka by měla naopak zvládat všechny početní (aritmetické) operace (sčítání, odčítání, násobení dělení, umocňování a odmocňování), měla by počítat hodnoty elementárních funkcí (sinus, kosinus a tangens, logaritmus) a k hodnotám těchto funkcí nalézt argument (resp. hodnoty inverzních funkcí). Toleruje se mnoho dalších funkcí kalkulaček, např. práce se zlomky, částečné odmocňování (tedy úpravy aritmetických výrazů pouze s čísly), převody úhlů, výpočet faktoriálů a kombinačních čísel, statistické funkce apod. (www.novamaturita.cz) Další povolenou pomůckou jsou matematické, fyzikální a chemické tabulky pro střední školy, případně publikace s totožnými informacemi, neobsahující vzorové úlohy. U každé úlohy/podúlohy je pouze jedna správná odpověď. Za nesprávnou nebo neuvedenou odpověď se neudělují záporné body. V testu jsou a) úlohy s výběrem odpovědi, tj. volba jedné správné odpovědi z daných možností, b) úlohy dichotomické, tj. posuzování, zda je dané tvrzení pravdivé či nepravdivé, c) úlohy přiřazovací, tj. nalezení odpovídajících dvojic ve dvou seznamech, d) úlohy s otevřenou odpovědí, tj. zápis odpovědi (výsledku apod.), případně i postupu řešení (v případech, kdy je to uvedeno v zadání úlohy). V této knize najdete pět kompletních didaktických testů, které by měly sloužit k přípravě na společnou část maturitní zkoušky z matematiky. Snahou kolektivu autorů bylo vytvořit materiály, na nichž si budete moci vyzkoušet maturitní didaktický test nanečisto, včetně bodového vyhodnocení pomocí klíče. V připojeném řešení s komentáři získáte stručná vysvětlení správných odpovědí zejména u obtížnějších otázek. Vyplnění pěti testů nemůže nahradit několikaletou přípravu během studia. Bude však dobrou zpětnou vazbou, jaké jsou vaše silné, případně slabší stránky, a ve kterých oblastech si ještě dohledat informace a procvičit svoje vědomosti a dovednosti. Při práci s testy si také natrénujete určité postupy a získáte větší praxi při odpovídání na různé typy otázek ověřujících vaše vědomosti a dovednosti tak, jak jsou uvedeny v katalogu požadavků. 4

3 Základní informace OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI v didaktickém testu podle Katalogu požadavků zkoušek společné části maturitní zkoušky (015): KOMPETENCE 1. Osvojení matematických pojmů a dovedností a) užívat správně matematické pojmy (definovat pojmy a určit jejich obsah, charakterizovat pojem různými způsoby, třídit pojmy a nalézat vztahy mezi nimi); b) numericky počítat a užívat proměnnou (provádět základní početní operace, odhadnout výsledek výpočtu, využít efektivní způsoby výpočtu, upravit výrazy s čísly a proměnnými, stanovit definiční obor výrazu, na základě reálné situace sestavit výraz s proměnnými); c) pracovat s rovinnými a prostorovými útvary (rozpoznat a pojmenovat geometrické útvary, využívat geometrickou představivost při analýze rovinných a prostorových vztahů, měřit a odhadovat výsledek měření, řešit početně geometrickou úlohu, řešit konstrukčně geometrickou úlohu); d) matematicky argumentovat (rozlišit různé typy tvrzení definice, věta rozumět logické stavbě matematické věty).. Matematické modelování a) matematizovat reálné situace (odhalit kvantitativní nebo prostorové vztahy a zákonitosti, vytvořit matematický model reálné situace); b) pracovat s matematickým modelem; c) ověřit vytvořený model z hlediska reálné situace (vyjádřit výsledek řešení modelu v kontextu reálné situace, vyhodnotit výsledek modelové situace). 3. Vymezení a řešení problému a) vymezit problém; b) analyzovat problém; c) zvolit vhodnou metodu řešení problému (popsat problém vzorcem, užít známý algoritmus); vyřešit problém; d) diskutovat o výsledcích; e) aplikovat osvojené metody řešení problému v jiných tématech a oblastech. 4. Komunikace a) číst s porozuměním matematický text; b) vyhodnotit informace kvantitativního i kvalitativního charakteru obsažené v grafech, diagramech, tabulkách atd.; c) přesně se vyjádřit (užívat jazyk matematiky včetně symboliky a terminologie, zdůvodnit matematické tvrzení, obhájit vlastní řešení problému, prezentovat výsledky řešení úlohy a prezentovat geometrické konstrukce na dobré grafické úrovni); d) prezentovat získané informace a výsledky (zpracovat získané údaje formou grafu, diagramu, tabulek atd.). 5. Užití pomůcek a) využít informační zdroje (odborná literatura, internet atd.); b) efektivně řešit problémy pomocí kalkulátoru a PC; c) použít kalkulátor a PC k prezentaci řešení problému; d) použít tradiční prostředky grafického vyjadřování. 5

4 Testy z matematiky TEMATICKÉ OKRUHY 1. Číselné obory 1.1 Přirozená čísla a) provádět aritmetické operace s přirozenými čísly; b) rozlišit prvočíslo a číslo složené, rozložit přirozené číslo na prvočinitele; c) užít pojem dělitelnost přirozených čísel a znaky dělitelnosti; d) rozlišit čísla soudělná a nesoudělná; e) určit největšího společného dělitele a nejmenší společný násobek přirozených čísel. 1. Celá čísla a) provádět aritmetické operace s celými čísly; b) užít pojem opačné číslo. 1.3 Racionální čísla a) pracovat s různými tvary zápisu racionálního čísla a jejich převody; b) užít dekadický zápis čísla; c) provádět operace se zlomky; d) provádět operace s desetinnými čísly včetně zaokrouhlování, určit řád čísla; e) řešit praktické úlohy na procenta a užívat trojčlenku; f) znázornit racionální číslo na číselné ose. 1.4 Reálná čísla a) zařadit číslo do příslušného číselného oboru; b) provádět aritmetické operace v číselných oborech; c) užít pojmy opačné číslo a převrácené číslo; d) znázornit reálné číslo nebo jeho aproximaci na číselné ose; e) určit absolutní hodnotu reálného čísla a chápat její geometrický význam; f) zapisovat a znázorňovat intervaly, určovat jejich průnik a sjednocení; g) provádět operace s mocninami s celočíselným exponentem; h) ovládat početní výkony s mocninami a odmocninami; i) řešit praktické úlohy s mocninami s přirozeným exponentem a odmocninami.. Algebraické výrazy.1 Algebraický výraz a) určit hodnotu výrazu; b) určit nulový bod výrazu; c) určit definiční obor výrazu.. Mnohočleny a) užít pojmy člen, koeficient, stupeň mnohočlenu; b) provádět operace s mnohočleny, provádět umocnění dvojčlenů pomocí vzorců; c) rozložit mnohočlen na součin vytýkáním a užitím vzorců..3 Lomené výrazy a) provádět operace s lomenými výrazy; b) určit definiční obor lomeného výrazu..4 Výrazy s mocninami a odmocninami a) provádět operace s výrazy obsahujícími mocniny a odmocniny. 3. Rovnice a nerovnice 3.1 Algebraické rovnice a nerovnice a) užít pojmy rovnice/nerovnice s jednou neznámou, levá a pravá strana rovnice/nerovnice, obor rovnice/nerovnice, kořen rovnice, množina všech kořenů rovnice/nerovnice; 6

5 Základní informace b) užít ekvivalentní úpravu rovnice/nerovnice; c) provádět zkoušku. 3. Lineární rovnice a jejich soustavy a) řešit lineární rovnice o jedné neznámé; b) vyjádřit neznámou ze vzorce; c) řešit rovnice v součinovém a podílovém tvaru; d) řešit početně soustavy lineárních rovnic s více neznámými; e) řešit graficky soustavu dvou lineárních rovnic o dvou neznámých; f) užít lineární rovnice a jejich soustavy při řešení slovní úlohy. 3.3 Rovnice s neznámou ve jmenovateli a) stanovit definiční obor rovnice; b) řešit rovnice o jedné neznámé s neznámou ve jmenovateli; c) vyjádřit neznámou ze vzorce; d) užít rovnice s neznámou ve jmenovateli při řešení slovní úlohy; e) využít k řešení slovní úlohy grafu nepřímé úměry. 3.4 Kvadratické rovnice a) řešit neúplné i úplné kvadratické rovnice; b) užít vztahy mezi kořeny a koeficienty kvadratické rovnice; c) užít kvadratickou rovnici při řešení slovní úlohy. 3.5 Lineární nerovnice s jednou neznámou a jejich soustavy a) řešit lineární nerovnice s jednou neznámou a jejich soustavy; b) řešit nerovnice v součinovém a podílovém tvaru. 4. Funkce 4.1 Základní poznatky o funkcích a) užít různá zadání funkce a používat s porozuměním pojmy definiční obor, obor hodnot, argument funkce, hodnota funkce, graf funkce včetně jeho názvu; b) sestrojit graf funkce y = f(x) nebo část grafu pro hodnoty proměnné x z dané množiny, určit hodnoty proměnné x pro dané hodnoty funkce f; c) přiřadit předpis funkce ke grafu funkce a opačně; d) určit průsečíky grafu funkce s osami soustavy souřadnic; e) určit z grafu funkce intervaly monotonie a bod, v němž nabývá funkce extrému; f) modelovat reálné závislosti pomocí elementárních funkcí. 4. Lineární funkce, nepřímá úměrnost a) užít pojem a vlastnosti přímé úměrnosti, sestrojit její graf; b) určit lineární funkci, sestrojit její graf; c) objasnit geometrický význam parametrů a, b, v předpisu funkce y = ax + b; d) určit předpis lineární funkce z daných bodů nebo grafu funkce; e) užít pojem a vlastnosti nepřímé úměrnosti, načrtnout její graf; f) řešit reálné problémy pomocí lineární funkce a nepřímé úměrnosti. 4.3 Kvadratické funkce a) určit kvadratickou funkci, stanovit definiční obor a obor hodnot, sestrojit graf kvadratické funkce; b) vysvětlit význam parametru v předpisu kvadratické funkce, určit intervaly monotonie a bod, v němž nabývá funkce extrému; c) řešit reálné problémy pomocí kvadratické funkce. 4.4 Exponenciální a logaritmické funkce, jednoduché rovnice a) určit exponenciální funkci, stanovit definiční obor a obor hodnot, sestrojit graf; b) určit logaritmickou funkci, stanovit definiční obor a obor hodnot, sestrojit graf, užít definici logaritmické funkce; c) vysvětlit význam základu a v předpisech obou funkcí, monotonie; 7

6 Testy z matematiky d) užít definici logaritmu, věty o logaritmech, řešit jednoduché exponenciální a logaritmické rovnice, užít logaritmování exponenciální rovnice; e) použít poznatky o funkcích v jednoduchých praktických úlohách. 4.5 Goniometrické funkce a) užít pojmy úhel, stupňová míra, oblouková míra; b) definovat goniometrické funkce v pravoúhlém trojúhelníku; c) definovat goniometrické funkce v intervalu 0; π, resp. nebo _0; π, resp. v oboru reálných čísel, u každé z nich určit definiční obor a obor hodnot, sestrojit graf; d) užívat vlastností goniometrických funkcí, určit z grafu funkce intervaly monotonie a body, v nichž nabývá funkce extrému; e) užívat vlastností a vztahu goniometrických funkcí při řešení jednoduchých goniometrických rovnic. 5. Posloupnosti a finanční matematika 5.1 Základní poznatky o posloupnostech a) aplikovat znalosti o funkcích při úvahách o posloupnostech a při řešení úloh o posloupnostech; b) určit posloupnost vzorcem pro n tý člen, graficky, výčtem prvků. 5. Aritmetická posloupnost a) určit aritmetickou posloupnost a chápat význam diference; b) užít základní vzorce pro aritmetickou posloupnost. 5.3 Geometrická posloupnost a) určit geometrickou posloupnost a chápat význam kvocientu; b) užít základní vzorce pro geometrickou posloupnost. 5.4 Využití posloupností pro řešení úloh z praxe, finanční matematika a) využít poznatků o posloupnostech při řešení problémů v reálných situacích; b) řešit úlohy finanční matematiky. 6. Planimetrie 6.1 Planimetrické pojmy a poznatky a) užít pojmy bod, přímka, polopřímka, rovina, polorovina, úsečka, úhly (vedlejší, vrcholové, střídavé, souhlasné), objekty znázornit; b) užít s porozuměním polohové a metrické vztahy mezi geometrickými útvary v rovině (rovnoběžnost, kolmost a odchylka přímek, délka úsečky a velikost úhlu, vzdálenosti bodů a přímek); c) rozlišit konvexní a nekonvexní útvary, popsat jejich vlastnosti a správně jich užívat; d) využít poznatků o množinách všech bodů dané vlastnosti při řešení úloh. 6. Trojúhelníky a) určit objekty v trojúhelníku, znázornit je a správně využít jejich základních vlastností, pojmy užívat s porozuměním (strany, vnitřní a vnější úhly, osy stran a úhlu, výšky, ortocentrum, těžnice, těžiště, střední příčky, kružnice opsané a vepsané); b) při řešení početních i konstrukčních úloh využívat věty o shodnosti a podobnosti trojúhelníků; c) užít s porozuměním poznatky o trojúhelnících (obvod, obsah, velikost výšky, Pythagorova věta, poznatky o těžnicích a těžišti) v úlohách početní geometrie; d) řešit praktické úlohy s užitím trigonometrie pravoúhlého trojúhelníku a obecného trojúhelníku (sinová věta, kosinová věta, obsah trojúhelníku určeného sus). 6.3 Mnohoúhelníky a) rozlišit základní druhy čtyřúhelníků (různoběžníky, rovnoběžníky, lichoběžníky) a pravidelné mnohoúhelníky, popsat jejich vlastnosti a správně jich užívat; b) pojmenovat, znázornit a správně užít základní pojmy ve čtyřúhelníku (strany, vnitřní a vnější úhly, osy stran a úhlů, kružnice opsaná a vepsaná, úhlopříčky, výšky), popsat a užít vlastnosti konvexních mnohoúhelníků a pravidelných mnohoúhelníků; 8

7 Základní informace c) užít s porozuměním poznatky o čtyřúhelnících (obvod, obsah, vlastnosti úhlopříček a kružnice opsané nebo vepsané) v úlohách početní geometrie; d) užít s porozuměním poznatky o pravidelných mnohoúhelnících v úlohách početní geometrie. 6.4 Kružnice a kruh a) pojmenovat, znázornit a správně užít základní pojmy týkající se kružnice a kruhu (tětiva, kružnicový oblouk, kruhová výseč a úseč, mezikruží), popsat a užít jejich vlastnosti; b) užít s porozuměním polohové vztahy mezi body, přímkami a kružnicemi; c) aplikovat metrické poznatky o kružnicích a kruzích (obvod, obsah) v úlohách početní geometrie. 6.5 Geometrická zobrazení a) popsat a určit shodná zobrazení (souměrnosti, posunutí, otočení) a užít jejich vlastnosti. 7. Stereometrie 7.1 Tělesa a) charakterizovat jednotlivá tělesa (krychle, kvádr, hranol, jehlan, rotační válec, rotační kužel, komolý jehlan a kužel, koule a její části), vypočítat jejich objem a povrch; b) užít polohové a metrické vlastnosti v hranolu; c) využít poznatků o tělesech v praktických úlohách. 8. Analytická geometrie 8.1 Souřadnice bodu a vektoru na přímce a) určit vzdálenost dvou bodů a souřadnice středu úsečky; b) užít pojmy vektor a jeho umístění, souřadnice vektoru a velikost vektoru; c) provádět operace s vektory (součet vektorů, násobek vektoru reálným číslem). 8. Souřadnice bodů a vektorů v rovině a) určit vzdálenost dvou bodů a souřadnice středu úsečky; b) užít pojmy vektor a jeho umístění, souřadnice vektoru a velikost vektoru; c) provádět operace s vektory (součet vektorů, násobek vektoru reálným číslem, skalární součin vektorů); d) určit velikost úhlu dvou vektorů. 8.3 Přímka v rovině a) užít parametrické vyjádření přímky, obecnou rovnici přímky a směrnicový tvar rovnice přímky v rovině; b) určit polohové a metrické vztahy bodů a přímek v rovině a aplikovat je v úlohách. 9. Kombinatorika, pravděpodobnost a statistika 9.1 Základní poznatky z kombinatoriky a pravděpodobnosti a) užít základní kombinatorická pravidla; b) rozpoznat kombinatorické skupiny (variace s opakováním, variace, permutace, kombinace bez opakování), určit jejich počty a užít je v reálných situacích; c) počítat s faktoriály a kombinačními čísly; d) užít s porozuměním pojmy náhodný pokus, výsledek náhodného pokusu, náhodný jev, opačný jev, nemožný jev a jistý jev; e) určit množinu všech možných výsledků náhodného pokusu, počet všech výsledků příznivých náhodnému jevu a vypočítat pravděpodobnost náhodného jevu. 9. Základní poznatky ze statistiky a) užít pojmy statistický soubor, rozsah souboru, statistická jednotka, statistický znak kvalitativní a kvantitativní, hodnota znaku a pojmy vysvětlit; b) vypočítat četnost a relativní četnost hodnoty znaku, sestavit tabulku četností, graficky znázornit rozdělení četností; c) určit charakteristiky polohy (aritmetický průměr, medián, modus, percentil) a variability (rozptyl a směrodatná odchylka); d) vyhledat a vyhodnotit statistická data v grafech a tabulkách. (CERMAT, Katalog požadavků zkoušek společné části maturitní zkoušky) 9

8 Matemaka test 1 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 8 Z plechu tvaru čtverce byl uprostřed vystřihnut kruh a u vrcholů čtverce byly odstřihnuty čtyři čtvrtkruhy. Poloměr kruhu i poloměr čtvrtkruhů je roven jedné šesně délky úhlopříčky čtverce. 8 Výsledek zaokrouhlete na deseny procenta. Uveďte celý postup řešení. max. 3 body Vypočítejte, kolik procent z obsahu původního čtverce činí obsah zbylé čás. max. body 9 Řešte rovnici tg 3 v oboru ( 0; π ). Řešení vyjádřete v obloukové míře. Uveďte celý postup řešení. 11ZADÁNÍ 10 Řešte rovnici 5 x Uveďte celý postup řešení.. max. body

9 Zadání 4 Je dána funkce: y x x 3 Jaký je definiční obor této funkce? body ( 0 ; ) ( ; 3) 1 ; VÝCHOZÍ TEXT K ÚLOZE A) max. body Která z hodnot A) E) je součtem prvních 5 členů aritmecké posloupnos? Která z hodnot A) E) je součtem prvních 10 členů geometrické posloupnos? jiný součet VÝCHOZÍ TEXT K ÚLOZE 6 Hodíme najednou čtyřmi mincemi. 6 1 A) 5 B) C) D) 9 16 E) jiná hodnota ZADÁNÍ 1 1

10 Řešení Pavel: poseče celou louku sám za za hodiny společné práce poseče Sestavíme rovnici: (Jednička na pravé straně znamená, že Tomáš s Pavlem posečou celkem jednu celou louku chápeme ji jako jednu celou jednotku.) Vyřešíme rovnici: 3 ( x ) 1 3x x hod. 40 min. 3 Tomáš pracoval sám hod. 40 min. 3 6 hodin Hodnocení úlohy sestavení rovnice vyřešení rovnice 8 Řešení úlohy Definiční obor rovnice je množina všech reálných čísel, která lze dosadit za proměnnou do dané rovnice, tj. po dosazení budou všechny výrazy v rovnici definovány. Určíme podmínky jmenovatelé zlomků musí být různí od nuly: x 90 x 10 x 0 xr x 1 x 0 x = 0 a x = 1. D R \ 0;1 ŘEŠENÍ 15

11 Řešení 8 Řešení úlohy max. 3 body Označíme-li stranu čtverce, bude jeho obsah a délka úhlopříčly a. Polomr kruhu i tvrtkrtedy bude Ze čtyř čtvrtkruhů dostaneme jeden celý kruh a obsah zbylé čás vypočteme takto: a a π S a π 1 6 a π a 36 9 S 9 π Pro výpoet procent vypotáme pod 0, , což po a 9 zaokrouhlen je 65,1 %. Obsah zbylé ás je 65,1 % obsahu vodního tverce. Hodnocení úlohy nalezení poloměru kruhů nalezení obsahu zbylé čás správný počet procent 9 max. body Řešení úlohy π Funkce y tg x nabývá hodnoty 3 pro argument kπ, kde k je celé číslo. 3 π kπ 3 π π k 6 intervalu 0 ;π 1 π a π. 6 3 a Hodnocení úlohy nalezení alespoň jednoho řešení nalezení i druhého řešení ŘEŠENÍ 9

12 Řešení Úloha Správné řešení Body 0 D) 1 A) body max. 3 body.1. B) D) vyřešení 3 podúloh = 3 body, vyřešení podúloh = body,.3 A) 1 podúlohy = 3 A) 3 body 4 C) body 5 C) body 6 A) body Všechna ekvivalentní vyjádření jsou možná. ŘEŠENÍ 151

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Maturitní okruhy z matematiky ve školním roce 2010/2011

Maturitní okruhy z matematiky ve školním roce 2010/2011 Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1 Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA ZKOUŠKA ZADÁVANÁ MINISTERSTVEM ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Zpracoval: ÚIV CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ

Více

Předmět: MATEMATIKA Ročník: 6.

Předmět: MATEMATIKA Ročník: 6. Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 2014/2015 MATEMATIKA Zpracoval: CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ VZDĚLÁVÁNÍ Schválil: Ministerstvo školství, mládeže a

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd. MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 7. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

Požadavky na v domosti a dovednosti, které mohou být ov ovány v rámci maturitní zkoušky z matematiky

Požadavky na v domosti a dovednosti, které mohou být ov ovány v rámci maturitní zkoušky z matematiky Požadavky na v domosti a dovednosti, které mohou být ov ovány v rámci maturitní zkoušky z matematiky ást A Kompetence O ekávané v domosti a dovednosti pro maturitní zkoušku z matematiky v rámci spole né

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:13 Platnost učební osnovy: od 1.9.2010, aktualizováno 1.9.2015, 1.9.2016

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Vyučovací předmět: Matematika Ročník: 7.

Vyučovací předmět: Matematika Ročník: 7. Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni

Více

Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+

Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ 2 Úvod Účel a obsah katalogu Katalog požadavků výběrové nepovinné zkoušky

Více

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Časová dotace: 6. třída 5 h, 7. třída 5 h, 8. třída 4, 9. třída 5 h Základní škola Paskov Kirilovova 330 a její aplikace pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace

Více

Změna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně

Změna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně Dodatek č.. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor -1-M/0 Obchodní akademie, platného od 1. 9. 01 - platnost dodatku je od 1. 9. 015 Změna týdenní hodinové dotace v 1. ročníku

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+

KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ 2 Úvod Účel a obsah katalogu Katalog požadavků výběrové nepovinné zkoušky profilové části

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Ročník: 1 Počet hodin celkem: 3 hod/týden = 99 Rozpis výsledků vzdělávání a učiva Výsledky vzdělávání

Více

Matematika Ročník 6. Výstup podle RVP Výstup podle ŠVP Téma Učivo Přesahy, vazby, průřezová témata, Krychle Kvádr

Matematika Ročník 6. Výstup podle RVP Výstup podle ŠVP Téma Učivo Přesahy, vazby, průřezová témata, Krychle Kvádr Matematika Ročník 6. Výstup podle RVP Výstup podle ŠVP Téma Učivo Přesahy, vazby, průřezová témata, Zaokrouhluje a provádí odhady s danou přesností. Charakterizuje a třídí základní rovinné útvary. Odhaduje

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 6.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. ROZPRACOVANÉ OČEKÁVANÉ VÝSTUPY - čte, zapisuje a porovnává přirozená čísla - provádí početní operace s přirozenými

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika 9. Matematika 104 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu Obsahové, časové a organizační

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Matematika 3. období 8. ročník Počet hodin : 144 Učební texty : J.Coufalová : Matematika pro 8.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

Učební osnovy pracovní

Učební osnovy pracovní 4+1 týdně, povinný ČaPO: Lomený výraz Žák: rozloží výraz na součin vytýkáním a pomocí vzorců stanoví podmínky, za kterých má lomený výraz smysl Lomený výraz Výrazy a jejich užití - výraz s proměnnou -

Více

6.6 Matematika. 6.6.1 Charakteristika vyučovacího předmětu

6.6 Matematika. 6.6.1 Charakteristika vyučovacího předmětu 6.6 Matematika 6.6.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět se jmenuje Matematika. Patří do vzdělávací oblasti Matematika a její aplikace z RVP ZV. Vzdělávací

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1Příloha 6.04 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech

Více

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 1 Matematika Hodinová dotace Matematika 4 4 4 4 Realizuje obsah vzdělávacího oboru Matematika a její aplikace RVP ZV. Matematika

Více

Vyučovací předmět: Matematika Ročník: 6.

Vyučovací předmět: Matematika Ročník: 6. Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá

Více

SEMINÁŘ K VÝUCE MATEMATIKA 1

SEMINÁŘ K VÝUCE MATEMATIKA 1 Charakteristika vyučovacího předmětu SEMINÁŘ K VÝUCE MATEMATIKA 1 Vzdělávací oblast: Vzdělávací obor: Název vyučovacího předmětu: Časové vymezení předmětu: Matematika a její aplikace Matematika a její

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 2

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 2 Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA ZKOUŠKA ZADÁVANÁ MINISTERSTVEM ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Zpracoval: ÚIV CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

Výstupy Učivo Průřezová témata

Výstupy Učivo Průřezová témata 5.2.4.2. Vzdělávací obsah vyučovacího předmětu VZDĚLÁVACÍ OBLAST: Matematika a její aplikace PŘEDMĚT: Matematika ROČNÍK: 6. Výstupy Učivo Průřezová témata - provádí početní operace s přirozenými čísly

Více

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení MATEMATIKA 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Obsah vyučovacího předmětu Matematika je totožný s obsahem vyučovacího oboru Matematika a její aplikace.

Více

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. Žák: čte, zapisuje a porovnává přirozená čísla provádí početní operace s přirozenými čísly zpaměti a písemně provádí

Více