Gymnázium Jiřího Ortena, Kutná Hora
|
|
- Marek Tobiška
- před 1 lety
- Počet zobrazení:
Transkript
1 Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné obory Přirozená a celá čísla Racionální čísla Reálná čísla Charakterizuje obor přirozených a celých čísel, vysloví věty o základních operacích sčítání a násobení Definuje racionální číslo, používá různé tvary jeho zápisu a převody mezi nimi, ovládá operace s racionálními čísly Používá rozvinutý a zkrácený zápis desetinného čísla, stanoví řád čísla Ovládá operace s mocninami s celočíselným exponentem Znázorní reálné číslo na číselné ose Vysvětlí definici a geometrický význam absolutní hodnoty reálného čísla Řeší jednoduché rovnice a zákon komutativní asociativní distributivní věta o uzavřenosti číselného oboru věta o neutrálním prvku usměrnění zlomku částečné odmocnění absolutní hodnota geometrický význam absolutní hodnoty reálného čísla a absolutní hodnoty rozdílu dvou čísel historie matematiky: číselné soustavy OSV Seberegulace, organizační dovednosti a efektivní řešení problémů Samostatné řešení každé úlohy, ověření správnosti postupu, hledání řešení při skupinové práci.
2 nerovnice s absolutní hodnotou Množiny Aktivně ovládá základní pravidla pro počítání s odmocninami a mocninami s racionálním exponentem Určí množinu výčtem nebo charakteristickou vlastností prvků Používá množinové operace (průnik, sjednocení, rozdíl množin, doplněk množiny, podmnožina) množina prvek prázdná množina konečná a nekonečná množina podmnožina rovnost množin Vennovy diagramy používá při řešení slovních úloh požadujících určení počtu prvků konečných množin a provádí množinově logickou analýzu textu průnik sjednocení rozdíl množin doplněk množiny Chápe interval jako množinu reálných čísel a používá množinové operace při řešení úloh s intervaly Vennovy diagramy Základní poučení o výrocích Rozhodne, zda je daná věta výrok, určuje pravdivostní hodnotu výroku. Pomocí logických spojek tvoří výrok pravdivostní hodnota výroku negace výroku konjunkce užití výrokové logiky pro přesné vyjadřování jasnost, přesnost sdělení;
3 složené výroky (konjunkce, disjunkce, implikace, ekvivalence) a určuje jejich pravdivostní hodnotu pomocí tabulky pravdivostních hodnot disjunkce implikace věta obměněná a obrácená ekvivalence vzájemná kooperace při skupinové práci Český jazyk větná skladba Neguje složené výroky Neguje výroky s výrazy nejvýše n, aspoň n, právě n Vysvětlí význam obecného a existenčního kvantifikátoru a neguje výroky s těmito kvantifikátory tautologie obecný a existenční kvantifikátor důkaz přímý-nepřímý- sporem OSV Spolupráce a soutěž Skupinové řešení slovních úloh (Výroková logika) Elementární teorie čísel Vysvětlí pojmy prvočíslo a složené číslo Rozloží složené číslo na součin prvočinitelů. Určí nejmenší společný násobek a největšího společného dělitele skupiny přirozených čísel znaky dělitelnosti násobek a dělitel čísla nejmenší společný násobek a největší společný dělitel čísla soudělná a nesoudělná OSV Seberegulace, organizační dovednosti a efektivní řešení problémů Samostatné řešení každé úlohy, ověření správnosti postupu, hledání řešení při skupinové práci. Mocniny s přirozeným a celým mocnitelem Vysvětlí základní pravidla pro počítání s mocninami a vhodně je používá při úpravě výrazů mocnina základ exponent
4 Mnohočleny Ovládá pojmy: člen, koeficient a stupeň mnohočlenu; uspořádání mnohočlenu, hodnota mnohočlenu Rozloží mnohočlen na součin vytýkáním před závorku a pomocí vzorců včetně rozkladu kvadratického trojčlenu na součin lineárních dvojčlenů výraz konstanta proměnná obor proměnné definiční obor výrazu hodnota výrazu mnohočlen n-tého stupně absolutní člen lineární člen kvadratický člen člen n-tého stupně stupeň mnohočlenu opačný mnohočlen rozklad mnohočlenu na součin Rovnice a nerovnice Rovnice, nerovnice a jejich řešení Rozlišuje pojmy: rovnost rovnice, nerovnost nerovnice Vysvětlí rozdíl mezi ekvivalentními a důsledkovými úpravami rovnic a nerovnic a význam zkoušky při použití důsledkových úprav Používá ekvivalentní úpravy k řešení lineárních rovnic rovnost rovnice nerovnost nerovnice levá a pravá strana rovnice/nerovnice obor proměnné definiční obor rovnice/nerovnice environmentální témata při řešení slovních úloh - rovnice a nerovnice, posloupnosti a řady, základy statistiky Chemie - využití matematického aparátu při řešení úloh o směsích
5 Některé rovnice a nerovnice s jednou neznámou, které lze převést na lineární Lineární rovnice a nerovnice s více neznámými a jejich soustavy Kvadratické rovnice a nerovnice a rovnice vyšších stupňů s jednou neznámou a k vyjádření neznámé ze vzorce Řeší graficky jednoduché lineární rovnice, nerovnice a jejich soustavy Řeší rovnice a nerovnice v součinovém a podílovém tvaru Vysvětlí definici absolutní hodnoty reálného čísla a řeší jednoduché lineární rovnice a nerovnice s absolutní hodnotou. Efektivně řeší soustavy lineárních rovnic s více neznámými Graficky znázorní řešení soustav lineárních rovnic/nerovnic s dvěma neznámými Řeší slovní úlohy užitím soustavy lineárních rovnic Co nejefektivněji řeší všechny typy kvadratických rovnic Při řešení uplatňuje vztah mezi kořeny a koeficienty kvadratické rovnice (Vietovy vzorce) Graficky řeší kvadratické rovnice řešení kořen nulové body geometrický význam absolutní hodnoty reálného čísla geometrický význam absolutní hodnoty rozdílu dvou reálných čísel srovnávací metoda substituční metoda sčítací metoda Gaussova eliminační metoda kvadratická rovnice kvadratický člen lineární člen absolutní člen normovaná kvadratická rovnice ryze kvadratická rovnice
6 Při řešení kvadratických nerovnic používá početní i grafické řešení kvadratická rovnice bez absolutního členu diskriminant a jeho význam pro počet kořenů kvadratické rovnice rozklad kvadratického trojčlenu na součin kořenových činitelů Některé rovnice a nerovnice, které lze převést na kvadratické a lineární rovnice Rovnice a nerovnice s parametry Řeší složitější rovnice a nerovnice v součinovém a podílovém tvaru, složitější rovnice a nerovnice s absolutními hodnotami, jednoduché iracionální rovnice Řeší soustavy lineárních a kvadratických rovnic s více neznámými nulový bod lineárního dvojčlenu metoda nulových bodů absolutní hodnota reálného čísla a její geometrický význam význam zkoušky při řešení iracionálních rovnic parametr Při řešení složitějších rovnic používá substituci Řeší rovnice a nerovnice s parametrem Planimetrie I. Geometrické útvary v rovině Charakterizuje geometrické pojmy (bod, přímka, polopřímka, rovina, polorovina) a vztahy mezi nimi Definuje geometrické útvary bod přímka a její části polorovina úhel historie matematiky Estetická výchova
7 (úsečka, úhel, rovinný pás, trojúhelník, čtyřúhelník, konvexní n-úhelník, kružnice, kruh) pomocí množinových operací a pomocí charakteristické vlastnosti bodů Pozná, zda je geometrický útvar konvexní nebo nekonvexní Rozhodne o vzájemné poloze dvou geometrických útvarů Definuje odchylku dvou přímek, vzdálenost bodu od přímky, vzdálenost dvou rovnoběžných přímek Aktivně ovládá pojmy úhel, velikost úhlu v míře stupňové i obloukové. Pojmenuje dvojice úhlů (vrcholové, vedlejší, souhlasné, střídavé); středový a obvodový úhel Sestrojí trojúhelník ze zadaných prvků Používá pojmy: těžnice, výška, střední příčka, kružnice opsaná a vepsaná, jejich definice a vlastnosti. Aplikuje věty o určenosti trojúhelníku, věty dvojice úhlů velikost úhlu stupeň radián strany trojúhelníku vrcholy vnitřní a vnější úhly trojúhelník trojúhelníková nerovnost střední příčka trojúhelníku výška těžnice kružnice opsaná a vepsaná těžiště věty o shodnosti trojúhelníků koeficient podobnosti věty o podobnosti trojúhelníků hranice mnohoúhelníku úhlopříčka n-úhelníku konvexní/nekonvexní mnohoúhelník čtverec obdélník
8 o stranách a úhlech v trojúhelníku Vysloví a používá věty o shodnosti a podobnosti trojúhelníků, větu Pythagorovu a Euklidovy věty o výšce a odvěsně Zná zpaměti a používá pro výpočet vzorce pro obvod a obsah trojúhelníku. Aktivně ovládá pojmy čtyřúhelník, rovnoběžník (čtverec, kosočtverec, kosodélník, obdélník), lichoběžník; vlastnosti stran a úhlů, úhlopříček ve čtyřúhelníku Zná zpaměti a používá vzorce pro obvod a obsah čtverce, obdélníku, kosočtverce, kosodélníku, lichoběžník. Ovládá pojmy mnohoúhelník, pravidelný n-úhelník; počet úhlopříček, součet vnitřních a vnějších úhlů Odvodí vztah mezi délkou strany a, poloměrem r kružnice opsané a poloměrem kružnice vepsané lichoběžník tečnový a tětivový čtyřúhelník deltoid kružnice kruh kruhový oblouk půlkružnice kruhová úseč kruhová výseč tečna sečna vnější přímka kružnice soustředné mezikruží středový a obvodový úhel úsekový úhel
9 pravidelnému n-úhelníku a tento vztah používá k výpočtu jeho obvodu a obsahu Aktivně ovládá pojmy kružnice, kruhový oblouk, kruh, tětiva, kruhová úseč, kruhová výseč, mezikruží Zná zpaměti a používá vzorce pro obvod a obsah kruhu Určí délku kruhového oblouku, obsah kruhové výseče, úseče, mezikruží
Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr
Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Předmět: MATEMATIKA Ročník: 6.
Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01
matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami
Pythagorova věta Pythagorova věta slovní úlohy
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
Maturitní okruhy z matematiky ve školním roce 2010/2011
Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC
Volitelné předměty Matematika a její aplikace
Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky
Matematika - 6. ročník
Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, Kruhy a válce, Úměrnost, Geometrické konstrukce, Výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)
Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA
Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,
Vyučovací předmět: Matematika Ročník: 7.
Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika
9. Matematika 104 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu Obsahové, časové a organizační
Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
pracovní listy Výrazy a mnohočleny
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 8. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení vybírat a využívat pro efektivní
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 6.
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. ROZPRACOVANÉ OČEKÁVANÉ VÝSTUPY - čte, zapisuje a porovnává přirozená čísla - provádí početní operace s přirozenými
Matematika Název Ročník Autor
Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná
Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém
TEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
II. Nástroje a metody, kterými ověřujeme plnění cílů
MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni
TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
Matematika - 6. ročník
Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru
Matematika a její aplikace. Matematika a její aplikace
Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5
Matematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
MATEMATIKA Charakteristika vyučovacího předmětu
MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny
TEMATICKÝ PLÁN VÝUKY
TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/01 Strojírenství Zaměření: Předmět: Matematika Ročník: 1. Počet hodin 4 Počet hodin celkem: 136 týdně: Tento plán vychází z Rámcového vzdělávacího programu
Matematika-průřezová témata 6. ročník
Matematika-průřezová témata 6. ročník OSV 1: OSV 2 žák umí správně zapsat desetinnou čárku, orientuje se na číselné ose celých čísel, dovede rozpoznat základní geometrické tvary a tělesa, žák správně používá
PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy
PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje
Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 7. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace
Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy
PŘEDMĚT: MATEMATIKA ROČNÍK: PRIMA Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy Žák: rozlišuje pojmy násobek, dělitel definuje prvočíslo, číslo složené, sudé a liché číslo, čísla soudělná
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
Cvičení z matematiky - volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu
Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno:
Autoevaluační karta Škola: Obchodní akademie Pelhřimov, Jirsíkova 875 Obor: obchodní akademie Zaměření: ekonomika, účetnictví, daně Školní rok: Předmět: matematika Třída: 1. A Jméno: TEMATICKÝ CELEK: Znalosti
Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:
Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,
Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy
Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. Žák: čte, zapisuje a porovnává přirozená čísla provádí početní operace s přirozenými čísly zpaměti a písemně provádí
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává
TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.
MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení
5.2.2 Matematika - 2. stupeň
5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika
Učitelství 1. stupně ZŠ tématické plány předmětů matematika
Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)
MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení
MATEMATIKA 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Obsah vyučovacího předmětu Matematika je totožný s obsahem vyučovacího oboru Matematika a její aplikace.
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Matematika 3. období 8. ročník Počet hodin : 144 Učební texty : J.Coufalová : Matematika pro 8.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro
Matematika I. Katedra matematiky a deskriptivní geometrie mdg.vsb.cz
Matematika I Úvod Mgr. Iveta Cholevová, Ph. D iveta.cholevova@vsb.cz A 829, 597 324 146 Mgr. Jaroslav Drobek, Ph. D. jaroslav.drobek@vsb.cz, A 837, 597 324 101 Mgr. Arnošt Žídek arnost.zidek@vsb.cz, A
-Zobrazí čísla a nulu na číselné ose
Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel
Vyučovací předmět: Matematika Ročník: 6.
Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá
Výstupy Učivo Průřezová témata
5.2.4.2. Vzdělávací obsah vyučovacího předmětu VZDĚLÁVACÍ OBLAST: Matematika a její aplikace PŘEDMĚT: Matematika ROČNÍK: 6. Výstupy Učivo Průřezová témata - provádí početní operace s přirozenými čísly
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 6. ročník J.Coufalová : Matematika pro 6.ročník ZŠ (Fortuna) O.Odvárko,J.Kadleček : Sbírka úloh z matematiky pro 6.ročník ZŠ (Prometheus)
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím
1. ÚVOD. Arnošt Žídek, Iveta Cholevová. 15. října 2013 FBI VŠB-TUO
FBI VŠB-TUO 15. října 2013 Kontaktní informace Mgr. Iveta Cholevová, Ph. D. iveta.cholevova@vsb.cz A829, 597 324 146 Mgr. Arnošt Žídek, Ph. D. arnost.zidek@vsb.cz A832, 597 324 177 Předpokládané znalosti
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
množiny sčítání, odčítání,násobení a dělení přirozených čísel F jednotky času
prima Přirozená čísla Úhel Kladná a záporná čísla Desetinná čísla užívá pojmu přirozené číslo, počítá s přirozenými čísly, umí využívat vlastností početních operací při jednodušších výpočtech seznámí se
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence
Vzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost