DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika"

Transkript

1 DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

2 Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla (řec.) Základní fyzikální veličinou je zde síla Síla je vektorová veličina, její základní jednotkou je 1 N Pokud působí více sil najednou, můžeme určit výslednici sil

3 Dynamika Zakladateli tzv. klasické dynamiky byli zejména Galileo Galilei, Christian Huygens a zejména Isaac Newton Klasickou dynamiku nelze aplikovat na tělesa pohybující se velmi vysokými rychlostmi a také na tělesa z oblasti mikrokosmu. Teorii klasické dynamiky doplnil na počátku 20. století Albert Einstein svou Teorií relativity a dalšími pracemi Teorii klasické dynamiky doplnil na počátku 20. století Max Planck a další o tzv. kvantovou mechaniku

4 Vzájemné působení těles Při vzájemném působení dvou těles rozlišujeme dva účinky síly: deformační - dochází k deformaci tělesa pohybové - dochází ke změně pohybového stavu tělesa Z hlediska vzájemného působení rozlišujeme tyto případy: vzájemné působení přímým stykem vzájemné působení prostřednictvím silových polí

5 Newtonovy pohybové zákony Newton shrnul v 17. století poznatky dynamiky do třech pohybových zákonů izolované těleso = těleso, na nějž nepůsobí žádné síly toto těleso budeme nahrazovat izolovaným hmotným bodem Izolované těleso, které je v dané vztažné soustavě v klidu, v klidu setrvá.

6 Newtonovy pohybové zákony Izolované těleso je jen myšleným modelem Takový model budeme realizovat jako těleso, na které působí síly takové, že jejich výslednice je nulová. Izolované těleso, které je v pohybu, má stále stejnou rychlost, pohybuje se rovnoměrným přímočarým pohybem.

7 První Newtonův pohybový zákon Každé těleso setrvává v klidu nebo v rovnoměrném přímočarém pohybu, pokud není nuceno vnějšími silami tento stav změnit. Tento zákon přináší pojem setrvačnost - proto se tento zákon nazývá také zákon setrvačnosti. Dává do rovnosti klid a rovnoměrný přímočarý pohyb - oba mají nulové zrychlení.

8 První Newtonův pohybový zákon Soustavy, v nichž platí první Newtonův pohybový zákon, se nazývají inerciální vztažné soustavy. Pokud je soustava inerciální, pak každá další, která je vůči této soustavě v klidu nebo se pohybuje rovnoměrně přímočaře, je také inerciální. Za inerciální soustavu obecně považujeme soustavu spojenou s povrchem Země.

9 a= F m Druhý Newtonův pohybový zákon Pokud na těleso v inerciální vztažné soustavě začne působit síla, změní se jeho pohybový stav. Tělesu je uděleno zrychlení. Velikost zrychlení hmotného bodu je přímo úměrná velikosti výslednice sil působících na hmotný bod a nepřímo úměrná hmotnosti hmotného bodu. Směr zrychlení je shodný se směrem výslednice sil.

10 Druhý Newtonův pohybový zákon Častěji se tento zákon udává ve tvaru: F = m a Tento vztah nazýváme pohybová rovnice. Tento vztah také definuje jednotku Newton: 1 N = 1 kg m s -2 Síla uděluje tělesu zrychlení nezávisle na tom, zda bylo původně v klidu nebo v pohybu rovnoměrně přímočarém. Tento zákon se také nazývá zákon síly.

11 m= F a Dynamická hmotnost má velký význam tehdy, pokud nemůžeme těleso změřit přímo vahami ( hmotnost částic apod. ) pokud známe výslednici působících sil a zrychlení, s nímž se těleso pohybuje, dynamickou hmotnost určíme jako:

12 Tíhová síla Ze zákona síly vyplývá, že na těleso pohybující se se stálým zrychlením, působí konstantní síla V případě tíhového zrychlení platí, že působící síla se nazývá tíhová síla a určíme ji:! F G = m! g

13 Příklad 1 Na těleso o hmotnosti 13 kg působí dvě navzájem kolmé síly o velikostech 60 N a 25 N. Určete velikost zrychlení tělesa a úhel, který svírá zrychlení se silou o velikosti 60 N.

14 Příklad 2 Vozík stojící na vodorovné podlaze roztlačoval chlapec vodorovnou silou o velikosti 80 N. Vozík nabyl za dobu 4 s rychlosti 2 ms -1. Jaká byla hmotnost vozíku? Tření a odpor vzduchu zanedbejte.

15 Hybnost veličina vyjadřující míru pohybu tělesa hybnost hmotného bodu je vektorová veličina! je definována jako součin hmotnosti a okamžité rychlosti hmotného bodu:! p= m v! jednotkou hybnosti je kg m s -1 Hybnost charakterizuje pohybový stav tělesa nebo hmotného bodu v dané vztažné soustavě.

16 Změna hybnosti Δ! p=! p 2! p 1 = m! v 2 m! v 1 = mδ! v!! Druhý pohybový zákon pak lze vyjádřit vztahem:! F = Δ! p Δt Výsledná síla působící na hmotný bod je rovna podílu změny hybnosti hmotného bodu a doby, po kterou síla působila. Tento vztah platí obecně, lze jej použít i v případě, že se hmotnost tělesa během pohybu mění.

17 Impuls síly Předchozí vztah lze psát ve tvaru:! FΔt = Δ p! Součin FΔt síly a času se nazývá impuls síly Jde o fyzikální veličinu vyjadřující časový účinek síly. Jednotka impulsu síly je N s

18 Příklad 3 Automobil o hmotnosti 1000 kg jede rychlostí 90 kmh -1. Jak velká je hybnost automobilu? Při jaké rychlosti má stejně velkou hybnost automobil o hmotnosti 3000 kg?

19 Příklad 4 Míč o hmotnosti 0,2 kg dopadl kolmo na pevnou stěnu rychlostí 20 ms -1 a odrazil se rychlostí 15 ms -1. Náraz trval po dobu 0,05 s. Jak velkou silou působila po dobu nárazu stěna na míč?

20 Třetí Newtonův pohybový zákon Silové působení těles je vždy vzájemné. Dvě tělesa na sebe navzájem působí stejně velkými silami opačného směru. Tyto síly vznikají a zanikají současně. Jednu sílu nazýváme akce, druhou reakce -proto se třetí Newtonův pohybový zákon nazývá zákon akce a reakce.

21 Příklad 5 Dvě dívky o hmotnostech 30 kg a 50 kg jsou na kolečkových bruslích a přitahují se k sobě pomocí provazu. Jedna dívka táhne za provaz silou 15 N, druhá jej jen pevně drží. Jak velkou silou táhne druhá dívka. Jak velká jsou zrychlení obou dívek? Tření a odpor vzduchu neuvažujte.

22 Zákon zachování hybnosti Mějme dvě různá tělesa v izolované soustavě. Celková hybnost soustavy je dána vztahem: p = p 1 + p 2 Celková hybnost izolované soustavy těles se vzájemným silovým působením těles nemění. Platí zde také zákon zachování hmotnosti: Celková hmotnost izolované soustavy těles je konstantní. Zákon zachování hybnosti se uplatňuje zejména u srážek neboli rázů dvou těles.

23 Dokonale pružná srážka Jedno těleso se pohybuje a narazí do druhého tělesa, které je v klidu. První těleso se nárazem zastaví a předá svou celkovou hybnost druhému tělesu. Druhé těleso se pak dá do pohybu. Platí zde zákon zachování hybnosti. Pokud by před srážkou byla obě tělesa v pohybu, je třeba počítat ještě se zákonem zachování energie ( později ).

24 Dokonale nepružná srážka Jedno těleso se pohybuje a narazí do druhého tělesa, které je v klidu nebo se pohybuje. První těleso se nárazem spojí s druhým tělesem a dojde k částečnému předání hybnosti. Obě tělesa se pak spolu pohybují dál. Platí zde zákon zachování hybnosti.

25 Reaktivní motory Využívají zákona akce a reakce a zejména zákona zachování hybnosti Plynné spaliny motorů jsou tryskou vytlačovány ven, letoun nebo raketa se pak pohybují na opačnou stranu.

26 Příklad 6 Vozík o hmotnosti 4 kg jede po vodorovných kolejích rychlostí 0,5 ms -1 a narazí na vozík o hmotnosti 2 kg. Při nárazu se oba vozíky spojí a dále se pohybují společně. Určete jejich rychlost po srážce, jestliže se: a) druhý vozík pohybuje rychlostí 0,2 ms -1 ve stejném směru, b)druhý vozík pohybuje rychlostí 0,2 ms -1 v opačném směru, c) druhý vozík nepohybuje.

27 Příklad 7 Těleso o hmotnosti 4 kg se pohybuje rychlostí 2 ms -1, těleso o hmotnosti 3 kg rychlostí 6 ms -1. Vypočítejte velikost celkové hybnosti této soustavy dvou těles, jsou-li rychlosti těles: a) v téže přímce a mají stejný směr, b)v téže přímce a mají opačný směr, c) navzájem kolmé.

28 Příklad 8 Střela o hmotnosti 0,01 kg je vystřelena rychlostí 800 ms -1 z pušky o hmotnosti 4 kg. Vypočítejte zpětnou rychlost pušky.

29 Příklad 9 Prázdný nákladní železniční vůz o hmotnosti 10 t narazí se pohybuje rychlostí 0,9 ms -1 po vodorovné trati a narazí na naložený vůz o hmotnosti 20 t, který je v klidu. Určete rychlost naloženého vozu, jestliže se prázdný vůz po srážce zcela zastaví.

30 Smykové tření Je-li těleso v přímém styku s jiným tělesem, vzniká na styčné ploše třecí síla. Tato síla směřuje vždy proti směru rychlosti. Smykové tření - vzniká při vzájemném pohybu dvou styčných těles. Vzniká tak třecí síla F t Tato síla není nikdy nulová.

31 Smykové tření Třecí síla nezávisí na: velikosti styčných ploch rychlosti vzájemného pohybu Třecí síla závisí na: velikosti kolmé tlakové síly (normálové síly F N ) jakosti styčných ploch

32 Smykové tření Velikost třecí síly určíme následovně:! F t = f F N! f - součinitel smykového tření jde o tabulkovou hodnotu, která nemá jednotku

33 Klidové tření Síla potřebná k uvedení tělesa do pohybu je větší než síla, která jej v tomto pohybu udržuje. Působí zde totiž klidové tření. Součinitel klidového tření f 0 je za stejných podmínek vždy větší než součinitel smykového tření

34 Tření VS.

35 Valivý odpor Vzniká při valení tělesa po pevné podložce. Velikost valivého odporu určíme následovně:!! F r =ξ F N R ξ - rameno valivého odporu, jednotou je 1 metr Valivý odpor je při stejných podmínkách mnohem menší než tření

36 Příklad 10 Jak velkou silou musíme působit na bednu o hmotnosti 200 kg, abychom ji posouvali rovnoměrným pohybem po vodorovné podlaze, je-li součinitel smykového tření mezi bednou a podlahou 0,2?

37 Příklad 11 Jaká je nejkratší vzdálenost, na které muže zastavit automobil, který jede po vodorovné silnici rychlostí 72 kmh -1, je-li součinitel smykového tření mezi pneumatikami a vozovkou 0,25? Předpokládejte, že automobil jede s vyřazeným rychlostním stupněm, a všechny další odporové síly zanedbejte.

38 Příklad 12 Kvádr o hmotnosti 5 kg táhneme po vodorovné podložce vodorovnou silou o velikosti 30 N. Součinitel smykového tření mezi kvádrem a vodorovnou podložkou je 0,4. Určete velikost zrychlení kvádru.

39 Příklad 13 Na koncích vlákna vedeného přes pevnou kladku jsou zavěšena závaží o hmotnostech 2 kg a 3 kg. Určete velikost zrychlení obou závaží. Tření a hmotnost kladky neuvažujte.

40 Příklad 14 Určete velikost zrychlení těles o hmotnostech 2 kg a 3 kg, spojených vláknem podle obrázku. Jak velkou silou je lano napínáno? Síly působící proti pohybu: a) zanedbejte, b)uvažte, přičemž koeficient smykového tření mezi tělesem a podložkou je 0,2.

41 Příklad 15 Určete velikost zrychlení těles o hmotnostech 2 kg a 3 kg, spojených vláknem podle obrázku. Nakloněná rovina svírá s vodorovným směrem úhel 30. Jak velkou silou je lano napínáno? Síly působící proti pohybu: a) zanedbejte, b)uvažte, přičemž koeficient smykového tření mezi tělesem a podložkou je 0,2.

42 Příklad 16 Po nakloněné rovině, která svírá s vodorovnou rovinou úhel 30, sjíždí dřevěný kvádr. Určete velikost jeho zrychlení, je-li součinitel smykového tření mezi kvádrem a nakloněnou rovinou 0,4.

43 Dostředivá síla Působí na hmotný bod, který se pohybuje po kružnici. Směřuje vždy do středu kružnice. Je vždy kolmá na vektor rychlosti. Způsobuje zakřivení pohybu. Pro velikost této síly platí: F d = m v2 r = mω 2 r

44 Dostředivá síla Pokud přestane dostředivá síla působit, těleso se začne pohybovat ve směru tečny ke kružnici.

45 Příklad 17 Při hodu diskem roztáčí atlet disk o hmotnosti 2 kg po kružnici o poloměru 1,1 m, přičemž na něj působí dostředivou silou o velikosti 900 N. Jaké rychlosti disk dosáhne?

46 Příklad 18 Sportovec při hodu kladivem roztáčí kladivo o hmotnosti 7,25 kg po kružnici o poloměru 1,8 m tak, že vykoná jednu otočku za 0,45 s. Jak velkou dostředivou sílu musí vyvinout?

47 Neinerciální vztažné soustavy Každá soustava, která se k inerciální vztažné soustavě pohybuje jinak než rovnoměrně: soustava pohybující se rovnoměrně zrychleně / zpomaleně, soustava pohybující se křivočaře ( po kružnici ). Neplatí zde 1. ani 3. Newtonův pohybový zákon.

48 Neinerciální vztažné soustavy Setrvačná síla F s F s = ma

49 Neinerciální vztažné soustavy Setrvačná síla Fs!!!! Fa = FG Fb = FG + Fs Fc = FG Fs Speciálním případem situace c je volný pád výtahu a s tím spojený stav beztíže.

50 Neinerciální vztažné soustavy Při otáčivém pohybu zaznamená pozorovatel spojený s neinerciální vztažnou soustavou setrvačnou sílu: sílu odstředivou 2 v 2 Fo = m = mω r r

51 Příklad 19 Těleso o hmotnosti 2 kg je zavěšeno na vlákně, které vydrží maximálně namáhání silou o velikosti 60 N. Jaké nejvyšší zrychlení směrem svisle vzhůru můžeme tělesu pomocí vlákna udělit?

52 Příklad 20 Těleso o hmotnosti 5 kg je zavěšeno na siloměru v kabině výtahu. Jak velkou sílu ukazuje siloměr, jestliže se kabina pohybuje: stálou rychlostí, se zrychlením o velikosti 2 ms -2 směřujícím vzhůru, se zrychlením o velikosti 2 ms -2 směřujícím dolů?

53 Příklad 21 Letadlo opisuje rychlostí o stálé velikosti kružnici o poloměru 640 m ve svislé rovině. V nejvyšším bodě trajektorie je pilot na okamžik v beztížném stavu. Jak velkou rychlostí letadlo letí?

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony.

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony. Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 30. 8. 2012 Název zpracovaného celku: DYNAMIKA DYNAMIKA Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

Mechanika úvodní přednáška

Mechanika úvodní přednáška Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz,

Více

F - Dynamika pro studijní obory

F - Dynamika pro studijní obory F - Dynamika pro studijní obory Určeno jako učební text pro studenty dálkového studia a jako shrnující a doplňkový text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

F - Jednoduché stroje

F - Jednoduché stroje F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

1.2.10 Tření a valivý odpor I

1.2.10 Tření a valivý odpor I 1.2.10 Tření a valivý odpor I Předpoklady: 1209 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které

Více

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost).

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). Mechanika teorie srozumitelně www.nabla.cz Druhý Newtonův pohybový zákon Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). 1. úkol: Krabičku uvedeme strčením do pohybu.

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

BIOMECHANIKA. 2, Síly, vektory a skaláry. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. 2, Síly, vektory a skaláry. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 2, Síly, vektory a skaláry Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY Síla vzniká tahem, tlakem nebo prostřednictvím tíhového pole Země a vzniká

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.759 Název DUM: Newtonovy pohybové

Více

na dálku prost ednictvím silových polí Statický ú inek síly Dynamický ú inek síly dynamika Síla F je vektorová veli ina ur ená velikostí, p sobišt

na dálku prost ednictvím silových polí Statický ú inek síly Dynamický ú inek síly dynamika Síla F je vektorová veli ina ur ená velikostí, p sobišt 1.3. Dynamika V kapitole 1.2 Kinematika jsme se zabývali popisem pohybu těles, aniž bychom se zajímali o to proč k pohybu dochází. O příčině pohybu pojednává část mechaniky zvaná dynamika. 1.3.1. Síly

Více

Studentovo minimum GNB Dynamika hmotného bodu. Dynamika slovo odvozené z řeckého dynamis = síla studuje příčiny změny pohybu tělesa, tj.

Studentovo minimum GNB Dynamika hmotného bodu. Dynamika slovo odvozené z řeckého dynamis = síla studuje příčiny změny pohybu tělesa, tj. 1 Základní pojmy Dynamika slovo odvozené z řeckého dynamis = síla studuje příčiny změny pohybu tělesa, tj. síly zákony klasické dynamiky platí pro tělesa pohybující se rychlostmi malými ve srovnání s rychlostí

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

Základní škola Karviná Nové Město tř. Družby 1383

Základní škola Karviná Nové Město tř. Družby 1383 Základní škola Karviná Nové Město tř. Družby 1383 Projekt OP VK oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na středních školách Registrační číslo projektu: CZ.1.07/1.4.00/21.3526 Název projektu:

Více

FYZIKA Mechanika tuhých těles

FYZIKA Mechanika tuhých těles Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Mechanika. Fyzika 1. ročník. Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie. Mgr. Petr Kučera. MěSOŠ Klobouky u Brna

Mechanika. Fyzika 1. ročník. Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie. Mgr. Petr Kučera. MěSOŠ Klobouky u Brna Mechanika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie Mgr. Petr Kučera MěSOŠ Klobouky u Brna 1 Obsah témat v kapitole Mechanika Rovnoměrný pohyb Rovnoměrně

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ROVNOMĚRNÝ POHYB 1) První třetinu dráhy projel automobil rychlostí

Více

VY_32_INOVACE_G 19 01

VY_32_INOVACE_G 19 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

1.2.3 1. Newtonův zákon I

1.2.3 1. Newtonův zákon I 1.2.3 1. Newtonův zákon I Předpoklady: 1202 Pomůcky: váleček (100 g závaží), ovladač na plátno a obdélník na pevné těleso (jako nájezd), 2 sady na měření koeficientu tření. Dnešní hodina je nejdůležitější

Více

NÁKLONĚNÁ ROVINA A KYVADLO ROZUMÍME JIM?

NÁKLONĚNÁ ROVINA A KYVADLO ROZUMÍME JIM? NÁKLONĚNÁ ROVINA A KYVADLO ROZUMÍME JIM? Václav Piskač Gymnázium tř.kpt. Jaroše, Brno Abstrakt: příspěvek je zaměřen na dva běžně používané fyzikální modely nakloněnou rovinu a matematické kyvadlo. U obou

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV DYNAMIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV DYNAMIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA SOUBOR PŘÍPRAV PRO 2. R. OBORU 26-41-M/01 ELEKTRO- TECHNIKA - MECHATRONIKA Vytvořeno

Více

BIOMECHANIKA SPORTU ODRAZ

BIOMECHANIKA SPORTU ODRAZ BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí

Více

Mechanická práce, výkon a energie pro učební obory

Mechanická práce, výkon a energie pro učební obory Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

1.2.7 3. Newtonův pohybový zákon I

1.2.7 3. Newtonův pohybový zákon I 1..7 3. Newtonův pohybový zákon I Předpoklady: 101 Pedagogická poznámka: V klasickém pojetí se dá 3. Newtonův zákon probrat během 15 minut. Proti jeho znění se studenti bouřit nebudou. Teprve na příkladech

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C Řešení úloh. kola 49. ročníku fyzikální olympiády. Kategorie C Autořiúloh:J.Jírů(),P.Šedivý(2,3,4,5,6),I.VolfaM.Jarešová(7)..Označme v 0souřadnicirychlostikuličkyohmotnosti3mbezprostředněpředrázem a v

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

FYZIKY...1 1 FYZIKÁLNÍ VELI

FYZIKY...1 1 FYZIKÁLNÍ VELI LEXIKON POJMŮ FYZIKY LEXIKON POJMŮ FYZIKY...1 1 FYZIKÁLNÍ VELIČINY...2 2 MECHANIKA...11 2.1 OBECNÉ POJMY...11 2.2 KINEMATIKA HMOTNÉHO BODU...12 2.3 DYNAMIKA HMOTNÝCH BODŮ A TĚLES...15 2.4 GRAVITACE...18

Více

OBCHODNÍ AKADEMIE ORLOVÁ, P Ř ÍSPĚ VKOVÁ ORGANIZACE

OBCHODNÍ AKADEMIE ORLOVÁ, P Ř ÍSPĚ VKOVÁ ORGANIZACE OBCHODNÍ AKADEMIE ORLOVÁ, P Ř ÍSPĚ VKOVÁ ORGANIZACE MECHANIKA A TERMIKA U Č EBNÍ TEXT PRO DISTANČ NÍ FORMU VZDĚ LÁVÁNÍ Mgr. MICHAELA MASNÁ ORLOVÁ 006 Obsah Obsah: Úvod... 5 Používané symboly... 6 Měření...

Více

ÚLOHY Z MECHANIKY I Jednoduché soustavy spojené vláknem. Studijní text pro řešitele FO kategorie D a ostatní zájemce o fyziku

ÚLOHY Z MECHANIKY I Jednoduché soustavy spojené vláknem. Studijní text pro řešitele FO kategorie D a ostatní zájemce o fyziku ÚLOHY Z MECHANIKY I Jednoduché soustavy spojené vláknem Studijní text pro řešitele FO kategorie D a ostatní zájemce o fyziku Obsah Jan Prachař a Jaroslav Trnka Úvod 2 1 Zákon síly 3 1.1 Newtonovypohybovézákony.....

Více

Sbírka úloh z fyziky se zaměřením na oborovou problematiku

Sbírka úloh z fyziky se zaměřením na oborovou problematiku Sbírka úloh z fyziky se zaměřením na oborovou problematiku RNDr. František Staněk, Ph.D, Ph.D., Doc. RNDr. Karla Barčová, Ph.D., Doc. Dr. Ing. Michal Lesňák., Mgr. Jana Trojková. VŠB-TU Ostrava, HGF-Institut

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8.

VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8. VY_52_INOVACE_2NOV51 Autor: Mgr. Jakub Novák Datum: 17. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Nakloněná rovina Metodický

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: Vlastnosti sil, třecí síla Mirek Kubera žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření síla, velikost síly, siloměr, tření smykové, tření klidové,

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více