MIKROBIOLOGIE V BIOTECHNOLOGII
|
|
- Martin Urban
- před 8 lety
- Počet zobrazení:
Transkript
1 Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie se zabývá výrobou komerčních produktů produkovaných metabolickou činností živých organismů Moderní biotechnologie předpokládá použití geneticky modifikovaných organismů Mikroorganismy jsou v biotechnologii využívány přímo jako zdroj produktů nebo jako nástroj pro genetické manipulace jiných organismů Průmyslový biotechnologický proces Příprava mikroorganismu a surovin nutných pro růst mikroorganismu a produkci požadovaného produktu (upstream processing) Fermentace a biotransformace Kultivace mikroorganismu a tvorba požadovaného produktu Purifikace produktu z kultivačního média nebo buněčné masy (downstream processing) Tradiční biotechnologie Primárně využívá přirozených metabolických schopností mikroorganismů Efektivita procesu zpočátku optimalizována na úrovni konstrukce bioreaktoru, upstream a downstream zpracování Zvýšení výtěžku produktu na genetické úrovni realizováno pomocí klasických metod šlechtění Mutace indukovány chemickými mutageny nebo zářením Náhodné Selekce produkčních kmenů Zdlouhavé a drahé Zlepšení již existujících dědičných vlastností Molekulární biotechnologie Využívá geneticky modifikované (mikro)organismy Vyžaduje znalost genů a manipulaci s nimi Zásadní roli měl rozvoj technologie rekombinantní DNA Techniky izolace genů a jejich přenosu z jednoho organismu do druhého Umožňuje přímější optimalizaci biotransformačního stupně biotechnologického procesu Vytváření vysoce produktivních mikrobiálních kmenů, často s novými vlastnostmi Rostliny a živočichové jako bioreaktory První komerční produkt molekulární biologie = inzulin 1978 Escherichia coli Genové inženýrství Proces záměrné genetické modifikace buněk změnou nukleotidové sekvence Geneticky upravená buňka (organismus) Buňka (organismus) jejíž genom byl pozměněn metodami genového inženýrství Buňka (organismus) obsahující klonované geny, které jsou exprimovány 2 důležité rysy: DNA může pocházet z různých zdrojů (do E. coli mohou být klonovány geny z člověka, rostlin, jiných bakterií) Izolace těchto genů a jejich zavedení do hostitelské buňky se děje ve zkumavce (in vitro) a ne v přirozeném prostředí bakterií (organismů) 1
2 Principy genového inženýrství Techniky genového inženýrství jsou založeny na základních principech molekulární genetiky a biochemie Nutnost znalosti replikace, transkripce, translace a regulace kontroly těchto procesů Techniky vycházejí z přirozených procesů v buňce, ale DNA může pocházet z různých organismů (rostlina, člověk, bakterie) Transgen Gen jednoho organismu, který byl vložen do jiného organismu Transgenní organismy Technologie rekombinantní DNA Soubor technik, které zahrnují manipulaci DNA ve zkumavce a jejichž výsledkem je vytvoření nové DNA molekuly Rekombinantní DNA DNA molekula obsahující DNA, která pochází ze dvou nebo více zdrojů Vytvořena in vitro Vytváření rekombinantní DNA Obecný postup klonování genů Klonování genů Odstranění genu z jejich běžné DNA sekvence, vložení do vektoru (plasmid nebo bakteriofág) a jeho množení v novém hostiteli (obvykle E. coli) Exprese genů Pro využití rekombinatní DNA v biotechnologii je nezbytná funkční exprese klonovaných genů Izolace a fragmentace zdrojové DNA Připojení fragmentů ke klonovacímu vektoru Zavedení a udržení klonované DNA v hostitelském organismu Učebnice Madigan a kol., obr. 12.5, str. 317 Klonování technikou shotgun Náhodné klonování DNA fragmentů (tvorba genové knihovny) Jsou klonovány všechny geny organismu a teprve potom je identifikován gen, o který se zajímáme Zdrojem DNA je celková genomová DNA Využití také pro sekvenování genomů Hlavní kroky shotgun techniky 1. Uvolnění a izolace DNA z buňky 2. Konstrukce rekombinantní DNA molekuly (restrikční endonukleasy, zapojení DNA do plasmidu) 3. Zavedení rekombinantní DNA do hostitelského organismu (E. coli) procesem DNA transformace 4. Výběr hostitelských buněk, které obsahují rekombinantní DNA (obvykle inokulací na medium obsahující antibiotikum) 5. Identifikace buněk obsahujících požadovaný rekombinantní DNA klon (hybridizace) 2
3 Konstrukce rekombinantní DNA molekuly Šťepení DNA restrikčními enzymy (endonukleasami) Rozpoznávají a připojují se na specifické sekvence bazí v DNA a přeruší fosfoesterovou vazbu DNA se musí připojit k vektoru DNA molekula, která je schopna nezávislé replikace v hostitelském organismu Plasmidy Snadná izolace a purifikace Množení v mnoha kopiích Přítomnost selekčních markerů Viry Připojení k vektoru pomocí DNA ligasy Vytvoří kovalentní vazbu mezi DNA vektoru a klonovanou DNA Genová knihovna Soubor všech genů organismu, které byly vloženy do klonovacích vektorů Učebnice Madigan a kol., tab. 12.1, str. 315 Zavedení rekombinantní DNA do hostitelského organismu Funkce restrikční endonukleasy a DNA ligasy Hostitel Rychlý růst v levném médiu Mikroorganismy Prokaryotní (E. coli) Eukaryotní (S. cerevisiae, Pichia pastoris, buněčné kultury) Metoda transformace DNA je přenesena přes buněčnou stěnu a cytoplasmatickou membránu Kompetentní buňky Elektroporace Na buňku se působí elektrickým proudem, který způsobí otvory v buněčné stěně a DNA vstupuje do buňky Selekce buněk obsahujících rekombinatní DNA Ne všechny buňky byly transformovány (neobsahují rekombinantní DNA) Využití klonování do plasmidu, který obsahuje gen pro rezistenci k určitému antibiotiku Přímá selekce na médiu obsahujícím antibiotikum Vektor musí být rezistentní k antibiotiku, hostitel citlivý Kanamycin, ampicilin Identifikace rekombinantního klonu Metoda hybridizace nukleových kyselin DNA nebo RNA sonda (próba) Molekula DNA nebo RNA (i část), která má stejnou sekvenci nukleotidů jako hledaný gen Značení pomocí radioaktivní, fluorescenční nebo barevné značky Využití komplementarity bazí Jako vzorek slouží DNA Southern hybridizace Pokud je gen exprimován, je možné sledovat přítomnost proteinu Kultivace kolonie na specifickém médiu 3
4 Další zdroje DNA pro klonování Učebnice Madigan a kol., obr , str. 333 Gen amplifikovaný pomocí PCR Klonování známého genu DNA syntetizovaná z mrna Reverzní transkriptasa Eukaryotické geny Syntetická DNA Využití známé sekvence proteinu Postup klonování obdobný jako u shotgun metody Obvykle postačí jednoduchá selekce transformantů Identifikace rekombinantního klonu PCR PCR = polymerase chain reaction (polymerasová řetězová reakce) Úseky DNA mohou být znásobeny in vitro až 10 9 x během 1 hodiny Výsledkem je velké množství specifických genů pro klonování, sekvenování a cílené mutace Využití i pro identifikaci mikroorganismů, které nemohou být kultivovány Postup při PCR Příprava reakční směsi Vzorek DNA DNA polymerasa Směs nukleotidů Primery Krátké syntetické úseky DNA homologní k zesilované DNA Vždy 2 PCR cyklus Denaturace DNA (teplem, vlákna se oddělí) Připojení DNA primerů na oba konce kopírované DNA (po ochlazení) Syntéza dvou vláken z primerů, každé komplementární k jednomu z původních vláken Termostabilní DNA polymerasa (Thermus aquaticus, Pyrococcus furiosus) Opakování cyklu Termocykler Exprese klonovaných genů Klonování je úspěšné jen tehdy, je li klonovaný gen exprimován (tj. funkční) v novém hostiteli Hostitelská buňka musí rozpoznat promotor, vazebné místo ribozomu, startovací a koncový signál pro transkripci a translaci Původní promotorová oblast a vazebné místo ribozomu může být nahrazeno odpovídajícími sekvencemi E. coli Expresní vektory Regulace kontroly exprese Fúze klonovaného genu s promotorem a operátorem Technika PCR 4
5 Exprese klonovaných genů Klonování genu pomocí mrna Exprese eukaryotických genů v bakteriích není snadná Eukaryotické geny obsahují introny, které bakterie neumí odstranit a geny nejsou exprimovány v E. coli Odstranění intronů před klonováním Klonování pomocí mrna Získání genu pomocí známé sekvence proteinu (syntetický gen) Geny musí být umístěny pod bakteriálním promotorem Účinnost translace je ovlivněna preferencí kodonů Řada posttranslačních modifikací u savčích proteinů, kterých bakterie nejsou schopny Čím více jsou organismy příbuzné, tím je pravděpodobnější, že geny budou exprimovány Využití eukaryotických hostitelů Kvasinky, buněčné kultury, zvířata, rostliny Pro klonování eukaryotických genů Izoluje se mrna (bez intronů) Využití poly A řetězce k separaci mrna od ostatní RNA In vitro se syntetizuje komplementární DNA vlákno Reverzní transkriptasa To je převedeno na dvouvláknovou DNA, která je potom naklonována do vektoru Učebnice Madigan a kol., obr. 26.1, str. 763 Klonování genu pomocí proteinu Skládání a stabilita proteinů Syntéza genu na základě známé sekvence proteinu Reverzní translace In silico Problémem je degenerace genetického kódu Příprava syntetické DNA Učebnice Madigan a kol., obr. 26.2, str. 764 Degradace vytvořeného proteinu proteasami Toxicita eukaryotních proteinů pro prokaryotického hostitele Tvorba inkluzních tělísek Problémy ze solubilizací proteinů Nesprávné skládání proteinu Aplikace genového inženýrství v biotechnologii (Mikro)organismy mohou být manipulovány za vzniku nových vlastností a metabolických schopností Množství proteinu kódovaného genem může být u mikroorganismů zvýšeno naklonováním genu do plasmidu vyskytujícího se v mnoha kopiích Výroba klinicky důležitých proteinů Vakcíny Zemědělství Další aplikace Klinicky významné proteiny E. coli a kvasinky se využívají pro výrobu klinicky důležitých proteinů Hormony Inzulín Růstové faktory Krevní proteiny Faktor VII, VIII, IX (proteiny nutné pro srážlivost krve) Imunomodulátory Interferon (antivirová a protinádorová aktivita) Interferon léčba sklerózy Lysozym (protizánětlivá aktivita) Terapeutické enzymy DNAasa (léčba cystické fibrosy) 5
6 Vakcíny Suspenze mrtvých nebo modifikovaných bakterií a virů Jsou používány k imunizaci proti nemocem, vyvolávají imunitní odezvu Hepatitida A ab, spalničky, vzteklina, chřipka, obrna, cytomegalovirus Tetanus, záškrt Vakcíny Rekombinantní vakcíny Delece virulentních genů Vektorové vakcíny Přidání genů udělujících imunitu relativně nepatogennímu organismu Polyvalentní vakcíny Kombinace obou přístupů Imunita k více patogenům Subjednotkové vakcíny Klonování pouze specifických proteinů nebo jejich imunizujících částí Např. obalové proteiny viru Využití eukaryotních hostitelů (glykosylace) DNA vakcíny Využití genetického materiálu patogenu k imunizaci Tvorba imunogenního proteinu v organismu Bioremediace Upravené mikroorganismy se využívají pro degradaci zdraví škodlivých látek (např. olejové skvrny, těžké kovy, herbicidy) Konstrukce metabolických drah Sestavování nových nebo vylepšování existujících metabolických drah Vyšší produkce požadovaných metabolitů Obvykle u mikroorganismů Jednodušší manipulace než u vyšších organismů Geny kódující enzymy metabolické dráhy mohou pocházet z jednoho nebo více organismů, musí však být klonovány a exprimovány synchronizovaným způsobem Modifikované mikroorganismy jsou využity pro výrobu různých produktů Ethanol Rozpouštědla Aditiva Barviva Antibiotika Aplikace v zemědělství Obvykle nepřímý způsob využití mikroorganismů Využití mikrobiálních genů a jejich produktů Využití mikroorganismů pro klonování Transgenní rostliny Transgenní zvířata Transgenní rostliny Rostliny jsou geneticky upravovány tak, aby získaly různé formy rezistence Rezistence k hmyzu, virovým a bakteriálním onemocněním, herbicidům Rezistence ke stresovým podmínkám (sucho, salinita atd.) Zlepšení vlastností Oddálení kažení Zlepšení výživových hodnot Zvýšení výnosu Výroba lidských protilátek, proteinů, vakcín ( jedlé vakcíny ) Využití pro odstraňování těžkých kovů z půdy Geny se zavádějí do rostlinného organismu pomocí bakterie Agrobacterium tumefaciens 6
7 Agrobacterium tumefaciens Způsobuje nádory na rostlinách Schopna přenášet geny do rostlin pomocí Ti (tumorinducing) plasmidu, jehož část (T DNA) se zabudovává do chromozomu rostlinné buňky T DNA kóduje enzymy pro syntézu rostlinných hormonů Geny pro syntézu hormonů mohou být nahrazeny jinými geny, které budou přeneseny do rostliny a začleněny do rostlinné DNA Pro expresi genu v rostlině je nutné použít rostlinný promotor, vazebné místo ribozomu a stop signál Učebnice Madigan a kol., obr. 26.9, str. 775 Princip transformace rostlin pomocí Agrobacteria tumefaciens Bakteriální toxiny jako insekticidy Bacillus thuringiensis Bttoxin Syntetizuje proteinový krystal v době vytváření endospory Různé kmeny syntetizují různé toxiny Toxický pro larvy motýlů a molů Některé kmeny i toxiny proti larvám brouků a much Klonování do Pseudomonas nebo přímo do rostlin (Bt kukuřice, Bt bavlna) Rezistence k herbicidům Rezistence ke glyfosátu Normálně inhibuje syntézu aromatických aminokyselin Klonování genu kódujícího rezistentní formu klíčového enzymu a transformace do zemědělsky významných plodin Gen izolován z mutantních bakterií rezistentních ke glyfosátu Sója Transgenní zvířata Klonované geny jsou vneseny do oplozeného vajíčka mikroinjekcí Transgenní myši jako modelový systém pro studium fyziologie savců Zvířecí modely pro studium lidských onemocnění Produkce proteinů farmaceutického významu (pharming) Užitečné zejména pro produkci lidských proteinů vyžadujících specifické posttranslační modifikace Zlepšování vlastností hospodářských zvířat Produkce methioninu díky zavedeným bakteriálním genům Degradace organického fosfátu (Enviropig TM ) Zvýšená produkce omega 3 mastných kyselin Rychle rostoucí losos Genové inženýrství a výzkum mikroorganismů Využití v základním výzkumu mikroorganismů Vytváření nových mikrobiálních kmenů poskytuje nástroj pro studium základních mikrobiálních procesů (vztah struktury a funkce, buněčný růst, regulace enzymů, mikrobiální ekologie) Využití cílené mutace, přerušení genů, knockout mutace pro studium mutovaného organismu Geny mohou být různě označeny pro zlepšení identifikace proteinu (reportérový gen), zjednodušení purifikačního postupu Fúzní proteiny 7
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Molekulární biotechnologie. Nový obor, který vznikl koncem 70. let 20. století (č.1)
Molekulární biotechnologie Nový obor, který vznikl koncem 70. let 20. století (č.1) Molekulární biotechnologie je založena Na přenosu genů z jednoho organismu do druhého Jeden organismus má gen, který
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Klonování a genetické modifikace Sci-fi Skutečnost 6. Molekulární biotechnologie a transgenní organismy Dolly the Sheep Nadexprese proteinů Genetické modifikace a
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
ZÁKLADY BAKTERIÁLNÍ GENETIKY
Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 2.4 GENETICKÉ MANIPULACE in vitro - nekonvenční techniky, kterými lze modifikovat rostlinný
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Klonování gen a genové inženýrství
Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Program / Obor Povinný okruh Volitelný okruh (jeden ze tří) Mikrobiologie a buněčná biologie Mikrobiologie životního prostředí Obor: Mikrobiologie Bioinženýrství
analýza dat a interpretace výsledků
Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
Exprese rekombinantních proteinů
Exprese rekombinantních proteinů Exprese rekombinantních proteinů je proces, při kterém můžeme pomocí různých expresních systémů vytvořit protein odvozený od konkrétního genu, nebo části genu. Tento protein
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci
Okruhy otázek ke zkoušce
Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Hybridizační metody v diagnostice Mgr. Gabriela Kořínková, Ph.D. Laboratoř molekulární
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci)
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 2011 B.Mieslerová (KB PřF UP v Olomouci) VYUŽITÍ HOUBOVÝCH ORGANISMŮ V GENOVÉM INŽENÝRSTVÍ MIKROORGANISMY
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
Molekulární biotechnologie č.10c. Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy.
Molekulární biotechnologie č.10c Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy. Využití škrobu, cukrů a celulózy Zejména v potravinářském průmyslu Škrob je hydrolyzován
Polymerázová řetězová reakce. Základní technika molekulární diagnostiky.
Polymerázová řetězová reakce Základní technika molekulární diagnostiky. Kdo za to může? Kary Mullis 1983 Nobelova cena 1993 Princip PCR Polymerázová řetězová reakce (polymerase chain reaction PCR) umožňuje
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
Replikace, transkripce a translace
Replikace, transkripce a translace Pravděpodobnost zařazení chybné báze cca 1:10 4, reálně 1:10 10 ; Proč? Výběr komplementární base je zásadní pro správnost mezigeneračního předávání genetické informace
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií
Téma bakalářské práce: Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Nové odvětví molekulární biologie se zabývá RNA molekulami, které se nepřekládají do proteinů, ale slouží
Izolace, klonování a analýza DNA
Izolace, klonování a analýza DNA Ing. Pavel Kotrba, Ph.D., Ing. Zdeněk Knejzlík, Ph.D., Ing. Zdeněk Chodora Ústav biochemie a mikrobiologie, VŠCHT Praha HTpavel.kotrba@vscht.czTH, HTzdenek.knejzlik@vscht.czTH,
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
BAKTERIÁLNÍ REZISTENCE
BAKTERIÁLNÍ REZISTENCE Petr Zouhar, Fyziologický ústav AV ČR, v. v. i.; UK v Praze, PřF, Katedra fyziologie V této úloze se v hrubých rysech seznámíte s některými metodami používanými v běžné molekulárně
OBORU MINERÁLNÍ BIOTECHNOLOGIE
Státní závěrečné zkoušky OBORU MINERÁLNÍ BIOTECHNOLOGIE akademický rok 2016/2017 magisterské studium Moderní metody biotechnologie 1. Základy cytogenetiky stavba a funkce chromozómů, organizace chromozómů
Nové směry v rostlinných biotechnologiích
Nové směry v rostlinných biotechnologiích Tomáš Moravec Ústav Experimentální Botaniky AV ČR Praha 2015-05-07 Praha Prvních 30. let transgenních rostlin * V roce 2014 byly GM plodiny pěstovány na ploše
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Molekulární diagnostika
Molekulární diagnostika Odry 11. 11. 2010 Michal Pohludka, Ph.D. Buňka základní jednotka živé hmoty Všechny v současnosti známé buňky se vyvinuly ze společného předka, tedy buňky, která žila asi před 3,5-3,8
Speciace neboli vznik druhů. KBI/GENE Mgr. Zbyněk Houdek
Speciace neboli vznik druhů KBI/GENE Mgr. Zbyněk Houdek Co je to druh? Druh skupina org., které mají společné určité znaky. V klasické taxonomii se jedná pouze o fenotypové znaky. V evoluční g. je druh
Elektronoptický snímek viru mozaikové choroby tabáku. Mozaiková choroba tabáku. Schéma viru mozaikové choroby tabáku
Obecná virologie Viry lat. virus šťáva, jed, v lékařské terminologii infekční činitel 1879 1882: první pokusný přenos virového onemocnění (mozaiková choroba tabáku) 1898: první pokusný přenos živočišného
Možné účinky XENOBIOTIK
Možné účinky XENOBIOTIK přímý toxický účinek -látka působí pouhou svou přítomností na kritickém místě v organismu biochemický účinek - látka interaguje s cílovou molekulou (receptorem), ovlivní nějaký
Biologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
Obsah. IMUNOLOGIE... 57 1 Imunitní systém... 57 Anatomický a fyziologický základ imunitní odezvy... 57
Obsah Předmluva... 13 Nejdůležitější pojmy používané v textu publikace... 14 MIKROBIOLOGIE... 23 Mikroorganismy a lidský organismus... 24 Třídy patogenních mikroorganismů... 25 A. Viry... 25 B. Bakterie...
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 2.2.2018 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci RNasami
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN Možnosti stanovení Listeria monocytogenes popis metod a jejich princip Mária Strážiková Aleš Holfeld Obsah Charakteristika Listeria monocytogenes Listerióza Metody detekce
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
Úvod do mikrobiologie
Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Ekologie a aplikovaná biotechnologie rostlin BOT/EABR Garant: Božena Navrátilová
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních
doc. RNDr. Milan Bartoš, Ph.D.
doc. RNDr. Milan Bartoš, Ph.D. Konference Klonování a geneticky modifikované organismy Parlament České republiky, Poslanecká sněmovna 7. května 2015, Praha Výroba léků rekombinantních léčiv Výroba diagnostických
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 8.2.2019 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Modifikace dědičné informace rostlin I. modifikace
Modifikace dědičné informace rostlin I Klasická genetická modifikace Lukáš Fischer, KEBR Legislativa: Genetická modifikace (GM) = vnesení genetické informace (úseku DNA) či změna > 20 nt způsobem, který
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci
Transgeneze u ptáků: očekávání vs. realita
Transgeneze u ptáků: očekávání vs. realita Proč ptáci? Kuře - základní model v anatomii, embryologii, vývojové biologii množství získaného proteinu nižší riziko cross reaktivity s tím spojená možnost produkce
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
Tématické okruhy pro státní záv rečné zkoušky
Tématické okruhy pro státní záv rečné zkoušky Program/Obor Povinný okruh Volitelný okruh (jeden ze t í) Obor: Obecná a aplikovaná Obecná biochemie Biochemie mikroorganism a rostlin biochemie Molekulární
Libor Hájek, , Centrum regionu Haná pro biotechnologický a zemědělský výzkum, Přírodovědecká fakulta, Šlechtitelů 27, Olomouc
Centrum regionu Haná pro biotechnologický a zemědělský výzkum Setkání ředitelů fakultních škol Centrum regionu Haná pro biotechnologický a zemědělský výzkum polní pokusy OP Výzkum a vývoj pro inovace:
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 5. Metody molekulární biologie II DNA footprinting hledání interakcí DNA s proteiny Polymerázová řetězová reakce (Polymerase chain reaction PCR) Malé