MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
|
|
- Blanka Kopecká
- před 6 lety
- Počet zobrazení:
Transkript
1 MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při klasické mutagenezi 2. úplná blokáda transkripce a translace zasažených genů dosažení plně mutantního fenotypu 3. silný polární účinek (zejména na operony) 4. ve většině případů jen jediná mutace na buňku (inzerce jediného transpozonu) 5. možnost přímé selekce mutant (geneticky podle markeru na transpozonu, nebo s využitím sekvence transpozonu jako sondy) Inzerce transpozonu pro účely mutageneze nemohou být směrovány do určitého genu. Technika využívá jen skutečnosti, že inzerční místa transpozonu jsou víceméně náhodná. Požadované mutace jsou skrínovány mezi větším počtem inzerčních mutant normálním způsobem. Vlastnosti transpozonu vhodného pro mutagenezu: a) začleňování do náhodných míst (Tn5, Tn7, Mu) b) stabilita inzerce (odstranění genu pro transponázu)
2 Charakteristika mutací způsobených transpozony 1. Transpozony mohou být začleněny do velkého počtu různých míst na bakteriálním chromozomu a plazmidech (prakticky v každém genu nebo v jeho blízkosti). 2. Geny se začleněným transpozonem ztrácejí plně svou funkci (nulové mutace). 3. Fenotyp inzerčních mutací je doprovázen rezistencí k antibiotikům podmíněnou genem transpozonu (snadná selekce mutace v novém hostiteli selekcí AntR). 4. Inzerční mutanty lze po transpozonové mutagenezi detekovat s vysokou frekvencí (kmeny s více mutacemi jsou vzácné). 5. Inzerční mutace revertují přesnou excizí transpozonu, doprovázenou ztrátou transpozonu (frekvence zpětné mutace je ale velmi nízká).
3 6. Inzerce v operonech jsou silně polární. Lze určit, zda geny jsou součástí operonu (a jejich pořadí). 7. Transpozony mohou vyvolat delece v okolí svého začlenění. Lze tak připravit deleční mutanty vhodné pro mapování genů. 8. Transpozony představují přenosné oblasti homologie. Lze pomocí nich vnést do genomu další genetické elementy rekombinací. 9. Inzerce se při genetickém mapování chovají jako bodové mutace (transdukční křížení). 10. Lze získat specifické inzerce poblíž genu zájmu, nikoliv v něm samém (vnesení promotorů a dalších sekvencí na transpozonu reportérové geny)
4 gen A gen B
5 SITUACE VHODNÉ PRO VYUŽITÍ TRANSPOZONOVÉ MUTAGENEZE a. hledaná mutace má obtížně selektovatelný fenotyp snížení počtu klonů, které nutno prověřit (mutanty Nif- deficientní v symbióze s rostlinou: genotyp může být nod- nebo nif- ), identifikace genů, které jsou zapínány při poškození DNA nebo po vystavení buněk specifickým faktorům (transpozony s reportérovými geny) b. studovaný druh (kmen) je klasické mutagenezi nepřístupný mutanty v metabolických drahách, např. auxotrofní c. kmen má několik podobných aktivit, znemožňujících přímý skríning na fenotyp gen je nejdříve klonován v jiném hostiteli (E. coli) a po mutagenezi je přenesen do původního kmene, kde se alely zamění homologní rekombinací ( reverzní genetika - u druhů dosud geneticky málo prostudovaných)
6 SEBEVRAŽEDNÉ VEKTORY Vektory používané pro dopravení transpozonu do buněk, v nichž mají navodit mutaci A. Vektory odvozené od fága lambda obsahující mutace sus - replikují se v buňkách E. coli obsahujících supresory; v buňkách sup- se chovají sebevražedně B. Vektory odvozené z promiskuitních plazmidů (konjugativních nebo mobilizovatelných) po přenosu do cílové buňky se nereplikují C. Vektory s ts mutacemi v replikačním aparátu (při vyšší teplotě se nereplikují) D. Inkompatibilní plazmidy: první plazmid nese transpozon, po přenosu je z buňky vytěsněn druhým plazmidem
7 AB r = ANT ANT rezistence rezistence na T X = gen, který má být mutován
8 selekce s využitím markerů antibiotikové rezistence nesených na plazmidu a na transpozonu chromozomu
9 MUTAGENEZE POMOCÍ TRANSPOZONU Tn5 Sebevražedný mobilizovatelný ColE1 Náhodná mutageneze plazmidů - Vnesení Tn5 do buňky na sebevražedném vektoru G- bakterie: ColE1 se nereplikuje Selekce na plotnách s kanamycinem Izolace plazmidové DNA TRANSFORMACE, SELEKCE BUNĚK KanR Inzerce Tn5 do chromozomu Vytváření mutací na plazmidu nebo v klonované DNA
10 1. Klonování genu nif v E. coli, provedení mutageneze (gen je přerušen transpozonem)
11 Klonování genu pela z erwinie do E. coli, selekce fenotypu PelA+ klonování vysokokopiový plazmid (pbr322) Lambda Hopper Selekce klonu v němž se Tn5 začlenil do plazmidu (pii) (vysoká konc. kanamycinu) (eliminace buněk, v nichž je Tn5 začleněn do chromozomu) Selekce klonu PelA- (inzerce Tn5 do pela)
12 PŘENOS ALELY reca- PO OZNAČENÍ TRANSPOZONEM donor Kmen E. coli s mutací reca Tn začleněn poblíž lokusu reca recipient rekombinant Selekce TcR, rec- = UV-senzitivní
13 STANOVENÍ FYZICKÉ LOKALIZACE GENŮ NA REPLIKONECH A MAPOVÁNÍ GENŮ Zjištění, zda geny s určitou funkcí jsou umístěny na plazmidu nebo na chromozomu nebo zda jsou distribuovány na více replikonech není snadná úloha. Transpozon targeting (cílené začlenění transpozonů) do genů napomáhá v řešení těchto úloh, jak dokresluje tento příklad: Předpokládalo se, že funkce (geny) týkající se onkogeneze u rostlin infikovaných A. tumefaciens se nacházejí na Ti plazmidu. Bylo izolováno 37 inzerčních mutant Tn5 v kmenech obsahujících Ti plazmid a vykazujících změněnou virulenci. V každém z mutantních kmenů byly transpozony fyzicky lokalizovány na replikonech. Plazmidová a chromozomová DNA z těchto mutant byla separována za užití standardních technik (rozdíl ve velikosti a nebo GC obsahu). Každá DNA byla hybridizována se značeným Tn5. Dvanáct mutací bylo chromozomálních a 25 nesených na plazmidu.
14 TRANSPOZONOVÁ MUTAGENEZE IN VITRO Nevýhody mutageneze in vivo: částečná životaschopnost sebevražedných vektorů --- falešně pozitivní výsledky omezená velikost cílového genu --- nutný rozsáhlý skríning nebo selekce mutant u některých bakteriálních druhů nejsou k dispozici vhodné transpozony Průběh mutageneze in vitro: Výchozí předpoklad: transponáza je schopna provést většinu reakcí též in vitro k cílové DNA je přidána donorová DNA s transpozonem a enzym transponáza lze použít mutovanou transponázu se zvýšenou účinností transpozice lze použít transpozony postrádající gen pro transponázu (stabilní inzerce) cílovou DNA mohou být replikony nebo lineární úseky DNA, které lze pak zavést do buněk, kde se rekombinací začlení do chromozomu Použití tranpozozomů Transpozozom : transpozon, na nějž byl in vitro navázán enzym transponáza Transpozozom se připraví in vitro v prostředí bez Mg-iontů, čímž dojde k rozštěpení donorové DNA, ale transponáza zůstává přichycena na koncích. Tento meziprodukt - transpozozom - se do buněk přenese elektroporací, v nichž transponáza katalyzuje transpozici transpozonu do cílového místa. Enzym je brzy rozložen, takže k další transpozici nemůže docházet. Následně proběhne selekce pro vyhledání žádaných klonů.
15 Transpozon vyštěpený z donorové molekuly pomocí vhodné RE transponáza transpozozom In vivo integrace Mu-transpozozomu sestaveného in vitro. Tetramer transponázy MuA a konce mini-mutranspozonu vytvoří in vitro stabilní komplex protein DNA. Po přenosu do buňky elektroporací se za přítomnosti Mg-iontů transpozon začlení do chromozomu bakterie.
16 RE RE Tn5 gen REP primery (nebo do něhož se Tn začlenil)
17 Klonování (vyprošťování) genů mutovaných transpozony Využití Klonování dosud neznámých genů, jejichž mutace vedou ke změně fenotypu, zvláště u bakterií, které se obtížně kultivují nebo udržují v laboratoři (analýza projevu genů se provádí po přenosu do E. coli) plasmid rescue vyproštění genu Přenos do E. coli Příprava sondy pro vyhledání wt genu v původním hostiteli
18 MODIFIKACE TRANSPOZONŮ ROZŠIŘUJE MOŽNOSTI JEJICH POUŽITÍ 1. Náhrada genů pro rezistence k antibiotikům: deriváty Tn5 nesoucí sadu různých rezistencí k antibiotikům. Jsou vhodné v kmenech, kde rezistence ke kanamycinu není účinně exprimována. 2. Přidání oriv z plazmidu Sel01 do Tn5 přeměnila tento transpozon na plazmid, který se může replikovat v E. coli. 3. Zavedení orit (mob) sekvence z RK2 dovoluje mobilizaci chromozomu, do něhož je modifikovaný transpozon inzertován, za předpokladu, že v donorové buňce je přítomen pomocný konjugativní plazmid RK2. Možnost křížení kmenů konjugací. 4. Do blízkosti konců transpozonu lze zavést in vitro sekvence odpovídající místům pro RE. Jestliže je takto modifikovaný transpozon integrován do plazmidu, který tato restrikční místa nemá, představují pak koncové sekvence transpozonu jedinečná místa pro klonování a restrikční mapování. 5. Fyzikální separací transponázového genu od zbytku elementu se vytváří minitranspozon. Když jsou tyto dvě části přítomny ve stejné buňce (na stejném nebo různých vektorech), exprese transponázy (obvykle pod kontrolou jiného, inducibilního promotoru) dovoluje transpozici minitranspozonu do cílového místa nebo míst - transponovaný element (minitranspozon) v místě začlenění se sám nemůže dále transponovat a tak představuje stabilní marker a irreverzibilní mutaci.
19
20 použití
21 BAKTERIOFÁG Mu - GENETICKÁ MAPA Oblast zodpovědná za transpozici Fág Mu infikuje široké spektrum G- bakterií
22 MINITRANSPOZONY = INZERČNĚ-DELEČNÍ DERIVÁTY FÁGA Mu
23 GENOVÉ FÚZE IN VIVO Využití modifikovaných transpozonů pro přípravu genových fúzí Mud(ApR, lacz) je modifikovaný fág Mu, u něhož byly deletovány geny pro lytické funkce a nahrazeny genem bla (AmpR)(selekce) z Tn3 a lacz (reportér) z E. coli K12. Byly připraveny dvě serie Mud (Ap, lacz): 1. U první serie byly zachovány translační signály (rbs) genu lacz, ale byl deletován promotor tohoto genu. Gen lacz může být exprimován, když se Mud inzertuje distálně od jiného promotoru ve správné orientaci. Pozorování změn hladiny exprese β-galaktozidázy po změnách podmínek prostředí umožňuje studovat způsob regulace daného genu (nebo operonu). Tento způsob, zvaný operonové fúze, byl intenzívně využíván při studiu exprese genů, jejichž fenotyp se obtížně monitoruje.
24 GENOVÉ FÚZE IN VIVO 2. U druhé serie Mud je gen lacz zbaven místa rbs a též prvních nukleotidů kódující sekvence. Gen může být exprimován jen tehdy, když je transpozon Mud inzertován ve správném čtecím rámci ve směru transkripce od kompletních expresních signálů jak pro transkripci, tak pro translaci (promotor a rbs). Transpozon v tomto případě navozuje translační fúze. 3. Pro vyhledávání genů, jejichž produkty jsou exportovány do periplazmy nebo do prostředí, byl zkonstruován TnPho. Tento transpozon nese gen pho, který kóduje alkalickou fosfatázu (protein E. coli exportovaný do periplazmatického prostoru). Je aktivní jen jako dimer. Translací vzniká dlouhý prekurzor se signálním peptidem, který je při transportu do periplazmatického prostoru odštěpen. Selekce pomocí XP (5-bromo-4-chloro-3-indolylfosfát)
25 Transkripční (operonová) fúze jeden transkript, dva produkty Translační (proteinová) fúze jeden transkript, jeden produkt MudI = operonové fúze, MudII = genové fúze
26 Reportérové transkripční (operonové) a translační (genové) fúze mají řadu využití, např. mohou být použity ke stanovení, zda regulace genové exprese probíhá na transkripční nebo translační úrovni. Když je gen regulován na transkripční úrovni, bude β-galaktozidáza exprimována jak v případě operonových tak i genových fúzí a indukována nebo reprimována v podobném rozsahu jako gen, do něhož je transpozon začleněn. Jestliže je gen regulován na úrovni translace, nebude v případě operonové fúze β-galaktozidáza ani indukována ani reprimována, ale v případě genové fúze bude exprese β-galaktozidázy regulována.
27 Exprese lacz je řízena signály pro transkripci genu X Mud MudI MudII Tvorba galaktozidázy je ovlivněna translačními signály genu X
28 Signální sekvence genu vir Sekretovaný fúzní protein - pho je aktivní Transpozon TnPho začleněn do genu vir periplazmatický fúzní protein - pho je aktivní cytoplazmatický fúzní protein - pho je inaktivní
29 Buňka kmene obsahující Mudlac a Mu (pomocný fág) IZOLACE GENOVÝCH FÚZÍ PO NÁHODNÉM ZAČLENĚNÍ Mud(AmpR; lac) Indukce profágů, vznik smíšeného fágového potomstva Buňky rostou na Amp a mohou exprimovat β-galaktozidázu Na plotnách s X-gal se selektují klony s Mud začleněným za promotor specificky regulovaného genu
30 DOČASNÁ CIS-KOMPLEMENTACE; ZPŮSOB, JAK ZAČLENIT TRANSPOZON STABILNĚ DO REPLIKONU MudJ Mud1 zdroj MudJ pomocí fága P22 Chybí geny his, nemůže dojít k rekombinaci Frekvence mutací v konkrétním genu 1:3 000
31 Vnesení Mud do buňky a jeho náhodné začlenění do genu X Růst buněk za přítomnosti různých indukčních agens vyběr klonů, které vykazují změnu v regulaci a expresi lacz za různých podmínek (např. různá konc. Fe, různá teplota) Mud je začleněn do genu, který je aktivován jen při nízké koncentraci Fe Objasnění způsobu regulace Klonování neporušeného genu, jehož exprese je ovlivněna změnou podmínek
32 Identifikace genů din aktivovaných po poškození DNA din = damage inducible 1. Přenos Mud (AmpR, lac) do E. coli 2. Izolace transduktantů AmpR Razítkování jednotlivých transduktantů na plotny s X-gal (A) a na plotny s X-gal + činidlem poškozujícím DNA (B) A B Modré kolonie = transpozon se začlenil do genu aktivovaného po poškození DNA
33 KLONOVÁNÍ IN VIVO POMOCÍ MINI-MU A. Po infekci buněk pomocným fágem Mu se mini-mu z plazmidu transponuje do náhodných míst na chromozomu. B. Do fágových hlav jsou zabalovány dva sousední mini-mu spolu s částí chromozomu mini-mu C. Po přenosu do další buňky dochází k rekombinaci mezi mini-mu za tvorby kružnicové DNA, která má charakter plazmidu, v němž je naklonován úsek chromozomu
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy)
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy) Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
ZÁKLADY BAKTERIÁLNÍ GENETIKY
Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
SYSTÉMY ZPROSTŘEDKOVANÉHO PŘENOSU DNA
SYSTÉMY ZPROSTŘEDKOVANÉHO PŘENOSU DNA A. Transdukce E. coli, S. typhimurium, Bacillus, Klebsiella, Staphylococcus, Streptococcus Nespecifická (P22, P1, SPβ, φ11) abortivní Specifická (fág lambda) Jsou
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Využití vektorů při klonování DNA
školní rok 2015/2016, kurz Bi6400 Využití vektorů při klonování DNA Jan Šmarda Ústav experimentální biologie Přírodovědecká fakulta MU 1 Klonování = proces tvorby klonů Klon: soubor geneticky identických
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Výhody a nevýhody klonování v E. coli
Výhody a nevýhody klonování v E. coli Výhody: detailně prostudovaný druh snadný přenos DNA vysoká účinnost transformace k dispozici jsou R - mutanty existuje řada expresních vektorů, s regulovatelnými
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
MOLEKULÁRNÍ BIOLOGIE PROKARYOT podzim 2016 TRANSDUKCE. Ivana Mašlaňová.
MOLEKULÁRNÍ BIOLOGIE PROKARYOT podzim 2016 TRANSDUKCE Ivana Mašlaňová iva.maslanova@gmail.com SYSTÉMY ZPROSTŘEDKOVANÉHO PŘENOSU DNA Přenos bakteriální DNA (chromozomové nebo plazmidové) bakteriofágem.
Konjugace. Přenos DNA zprostředkovaný konjugativními plazmidy. Donor recipient transkonjugant
Konjugace Přenos DNA zprostředkovaný konjugativními plazmidy Donor recipient transkonjugant (Exkonjuganti - v rámci téhož druhu, transkonjuganti - v rámci různých druhů) Přenášené typy elementů (DNA):
Klonování gen a genové inženýrství
Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace
analýza dat a interpretace výsledků
Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval
Výhody a nevýhody klonování v E. coli
Výhody a nevýhody klonování v E. coli Výhody: detailně prostudovaný druh snadný přenos DNA vysoká účinnost transformace k dispozici jsou R - mutanty existuje řada expresních vektorů, s regulovatelnými
Rezistence patogenů vůči antimikrobialním látkám. Martin Hruška Jan Dlouhý
Rezistence patogenů vůči antimikrobialním látkám Martin Hruška Jan Dlouhý Pojmy Patogen (patogenní agens, choroboplodný zárodek nebo původce nemoci) je biologický faktor (organismus), který může zapřičinit
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA po jednom cyklu Kmeny E. coli K a K(P1) + mají vzájemně odlišnou hostitelskou specifitu (K a P1) = obsahují odlišné RM-systémy Experimentální důkaz přítomnosti a působení
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií
Téma bakalářské práce: Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Nové odvětví molekulární biologie se zabývá RNA molekulami, které se nepřekládají do proteinů, ale slouží
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Struktura a organizace genomů
CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut
Exprese rekombinantních proteinů
Exprese rekombinantních proteinů Exprese rekombinantních proteinů je proces, při kterém můžeme pomocí různých expresních systémů vytvořit protein odvozený od konkrétního genu, nebo části genu. Tento protein
Na rozdíl od genomiky se funkční genomika zaměřuje na dynamické procesy, jako je transkripce, translace, interakce protein - protein.
FUNKČNÍ GENOMIKA Co to je: Oblast molekulární biologie která se snaží o zpřístupnění a využití ohromného množství dat z genomových projektů. Snaží se popsat geny, a proteiny, jejich funkce a interakce.
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci)
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 2011 B.Mieslerová (KB PřF UP v Olomouci) VYUŽITÍ HOUBOVÝCH ORGANISMŮ V GENOVÉM INŽENÝRSTVÍ MIKROORGANISMY
Zajištění exprese klonovaných genů a její optimalizace
Zajištění exprese klonovaných genů a její optimalizace 1 Faktory ovlivňující expresi klonovaných genů A. Regulační sekvence pro genovou expresi 1. Transkripční úroveň Síla promotoru a jeho charakter Terminátor
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
Zajištění exprese klonovaných genů a její optimalizace
Zajištění exprese klonovaných genů a její optimalizace Faktory ovlivňující expresi klonovaných genů A. Regulační sekvence pro genovou expresi 1. Transkripční úroveň Síla promotoru a jeho charakter Terminátor
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Zajištění exprese klonovaných genů a její optimalizace
Zajištění exprese klonovaných genů a její optimalizace Faktory ovlivňující expresi klonovaných genů A. Regulační sekvence pro genovou expresi 1. Transkripce Síla promotoru Terminátor transkripce Stabilita
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU
TRANSFORMACE = PŘÍJEM EXOGENNÍ DNA BAKTERIÁLNÍ BUŇKOU 1928: Griffith - Streptococcus pneumoniae - změny virulence 1944: Avery, MacLeod, McCarty - důkaz transformující aktivity DNA Streptococcus pneumoniae
Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému
Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému regenerujícího ATP v mitochondriích, - spojení DNA s histony
MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve
Evoluce bakteriálních genomů
Evoluce bakteriálních genomů Charakteristické rysy: Rychlé a rozsáhlé změny ve struktuře a informačním obsahu genomu - Vnitřní přestavby - Získávání a ztráty genů a genetických elementů Vývoj kmenů v rámci
BAKTERIÁLNÍ REZISTENCE
BAKTERIÁLNÍ REZISTENCE Petr Zouhar, Fyziologický ústav AV ČR, v. v. i.; UK v Praze, PřF, Katedra fyziologie V této úloze se v hrubých rysech seznámíte s některými metodami používanými v běžné molekulárně
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 2.4 GENETICKÉ MANIPULACE in vitro - nekonvenční techniky, kterými lze modifikovat rostlinný
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému
Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému regenerujícího ATP v mitochondriích, - uspořádání DNA v
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Definice genového inženýrství
Definice genového inženýrství Genové inženýrství se zabývá vytvářením pozměněných či nových genů nebo přípravou nových ( nepřirozených ) kombinací genů a jejich zaváděním do genomu organizmů s cílem rekonstruovat
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1
Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1 1 Ústav hematologie a krevní transfuze, Praha 2 Všeobecná fakultní nemocnice, Praha MDS Myelodysplastický syndrom (MDS) je heterogenní
Základy genetiky prokaryotické buňky
Základy genetiky prokaryotické buňky Chromozomová (jaderná) DNA U prokaryot (bakterie, archea) dvouřetězcová většinou kružnicová U eukaryot dvouřetězcová lineární U DNA-virů dvouřetězcová lineární, jednořetězcová
Kyselina hyaluronová. Kyselina hyaluronová. Streptococcus equi subsp. produkovaná kyselina hyaluronová a. Autor prezentace: Mgr.
Kyselina hyaluronová Streptococcus equi subsp. zooepidemicus a jím produkovaná kyselina hyaluronová a glukuronidáza Marcela Tlustá Biotechnologická laborato Meyer a Palmer, 1934 Extracelulární matrix,
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Využití rekombinantní DNA při studiu mikroorganismů
Využití rekombinantní DNA při studiu mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 1 2 Obsah přednášky 1) Celogenomové metody sekvenování 2) Sekvenování H.
Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly
Zaměření bakalářské práce na Oddělení genetiky a molekulární biologie
Zaměření bakalářské práce na Oddělení genetiky a molekulární biologie 1) Zadávání témat dle studovaného oboru 2) Přehled řešených témat v minulosti 3) Vědecko-výzkumné zaměření OGMB 4) Přehled externích
Klasifikace plazmid. Charakteristikaplazmid dsdna kružnicová nebo lineární, velikost: kb
Charakteristikaplazmid dsdna kružnicová nebo lineární, velikost: 1-1000 kb Základní typyplazmid : kryptické - funkce neznámá epizomální - reverzibilní intergace do chromozomu hostitele konjugativní - schopné
Proměnlivost organismu. Mgr. Aleš RUDA
Proměnlivost organismu Mgr. Aleš RUDA Faktory variability organismů Vnitřní = faktory vedoucí k proměnlivosti genotypu Vnější = faktory prostředí Příčiny proměnlivosti děje probíhající při meioze segregace
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Arabidopsis thaliana huseníček rolní
Arabidopsis thaliana huseníček rolní Arabidopsis thaliana huseníček rolní - čeleď: Brassicaceae (Brukvovité) - rozšíření: kosmopolitní, od nížin až do hor, zejména na výslunných stráních - poprvé popsána
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa
VÝZNAM HORIZONTÁLNÍHO PŘENOSU GENETICKÉ INFORMACE PRO VZNIK ANTIBIOTICKÉ REZISTENCE. V. Bencko 1, P. Šíma 2
V. Bencko 1, P. Šíma 2 1 Ústav hygieny a epidemiologie 1. LF UK a VFN, Praha 2 Laboratoř imunoterapie, Mikrobiologický ústav, v. v. i. AV ČR, Praha VÝZNAM HORIZONTÁLNÍHO PŘENOSU GENETICKÉ INFORMACE PRO
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 2.2.2018 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. Z.1.07/2.2.00/07.0354 Předmět: KBB/OPSB íl přednášky: Dokončení problematiky Molekulární podstaty genetické informace, objasnění principu replikace
Zaměření bakalářské práce na Oddělení genetiky a molekulární biologie
Zaměření bakalářské práce na Oddělení genetiky a molekulární biologie 1) Zadávání témat dle studovaného oboru 2) Přehled řešených témat v minulosti 3) 4) Přehled externích školících pracovišť Zaměření
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 8.2.2019 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Modifikace dědičné informace rostlin I. modifikace
Modifikace dědičné informace rostlin I Klasická genetická modifikace Lukáš Fischer, KEBR Legislativa: Genetická modifikace (GM) = vnesení genetické informace (úseku DNA) či změna > 20 nt způsobem, který
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v