4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

Rozměr: px
Začít zobrazení ze stránky:

Download "4EK213 Lineární modely. 12. Dopravní problém výchozí řešení"

Transkript

1 4EK213 Lineární modely 12. Dopravní problém výchozí řešení

2 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování reklamy) Směšovací problémy Nutriční problém (spec. případ směšovacího problému) Úlohy o dělení materiálu (řezné problémy) Rozvrhování pracovníků Distribuční úlohy (dopravní problém a další) Mgr. Sekničková Jana, Ph.D. 2

3 12. Distribuční úlohy LP Úkolem celé velké skupiny distribučních úloh je zajistit distribuci (tj. rozdělení) určité homogenní komodity (např. zboží) z jedné oblasti (např. dodavatelé) do druhé oblasti (např. odběratelé). Proměnné: přiřazení jednotky z první skupiny k jednotce z druhé skupiny (např. doprava od daného dodavatele k danému odběrateli), hodnoty určují, zda k přiřazení dojde či ne (0/1) nebo jak intenzivní přiřazení je (množství převáženého zboží) Omezení: kapacity a požadavky Cíl: obvykle minimalizace nákladů Mgr. Sekničková Jana, Ph.D. 3

4 12. Distribuční úlohy LP dopravní problém kontejnerový dopravní problém obecný distribuční problém přiřazovací problém úloha o pokrytí okružní dopravní problém výrobně-přepravní problém atd. Mgr. Sekničková Jana, Ph.D. 4

5 12. Distribuční úlohy LP Liší se od běžných úloh LP svým specifickým matematickým modelem Řada z nich je charakteristická požadavkem celočíselnosti proměnných Řeší se proto specifickými metodami Nejjednodušším reprezentantem je dopravní problém (DP) Mgr. Sekničková Jana, Ph.D. 5

6 12.1 Dopravní problém (DP) DP řeší distribuci homogenní látky od dodavatelů k odběratelům Je dán: počet dodavatelů m (index i = 1, 2,, m) počet odběratelů n (index j = 1, 2,, n) kapacity dodavatelů a i požadavky odběratelů b j cena (náklady, vzdálenost atd.) za dodání jedné jednotky od i-tého dodavatele k j-tému odběrateli c ij Kapacity dodavatelů jsou zadány ve stejných jednotkách jako požadavky odběratelů Mgr. Sekničková Jana, Ph.D. 6

7 12.1 Dopravní problém (DP) Úkol: určit, kolik jednotek dodá každý dodavatel každému odběrateli Cíl: uspokojit požadavky odběratelů tak, aby hodnota stanoveného cíle byla minimální Mgr. Sekničková Jana, Ph.D. 7

8 12.1 Příklad - zadání V okolí Mladé Boleslavi působí mimo jiné tři zemědělská družstva: Sever Loukovec, Čistá u Mladé Boleslavi a Luštěnice. Družstva disponují 15, 20 a 25 kombajny. Je potřeba posekat tři pole s obilím, přičemž na první je potřeba poslat 22 kombajnů, na druhé 20 a na třetí 18. Vzdálenosti mezi jednotlivými družstvy a poli jsou uvedeny v tabulce. Určete přepravované počty kombajnů z jednotlivých družstev na pole tak, aby počet ujetých kilometrů byl minimální. Mgr. Sekničková Jana, Ph.D. 8

9 12.1 Příklad - zadání [km] Pole 1 Pole 2 Pole 3 Kapacity Sever Loukovec Čistá u Mladé Boleslavi Luštěnice Požadavky Pole km Luštěnice Mgr. Sekničková Jana, Ph.D. 9

10 4.1 Příklad - proměnné Proměnné označíme x ij Hodnota proměnné x ij určuje množství kombajnů v kusech dodaných i tým dodavatelem (družstvem) j tému odběrateli (poli) Proměnných je m n = 3 3 = 9 Vektor proměnných má složky x = x 11, x 12, x 13, x 21, x 22, x 23, x 31, x 32, x 33 T Na obrázku byla znázorněna volba náhodně zvolené proměnné x 32 Mgr. Sekničková Jana, Ph.D. 10

11 4.1 Dopravní problém formulace MM Proměnné v DP označíme x ij (dvojitý index) Hodnota proměnné x ij určuje množství homogenní látky dodané i tým dodavatelem j tému odběrateli Počet proměnných: m n Vektor proměnných má složky x = x 11, x 12,, x 1n, x 21, x 22,, x 2n,, x m1, x m2,, x mn T Předpokládá se rovnost součtu kapacit a součtu požadavků (vyrovnaný DP)* Omezení jsou proto formulována v rovnicích Mgr. Sekničková Jana, Ph.D. 11

12 4.1 Příklad matematický model minimalizovat za podmínek: c ij O1 O2 O3 a i D D D b j z = 9x x x 33 x 11 + x 12 + x 13 = 15 x 21 + x 22 + x 23 = 20 x 31 + x 32 + x 33 = 25 x 11 + x 21 + x 31 = 22 x 12 + x 22 + x 32 = 20 x 13 + x 23 + x 33 = 18 x ij O1 O2 O3 a i D1 x 11 x 12 x D2 x 21 x 22 x D3 x 31 x 32 x b j x ij 0, i = 1, 2, 3, j = 1, 2, 3 Mgr. Sekničková Jana, Ph.D. 12

13 4.1 Příklad matematický model minimalizovat z = 9x x x 33 za podmínek: x 11 +x 12 +x 13 = 15 x 21 +x 22 +x 23 = 20 x 31 +x 32 +x 33 = 25 x 11 +x 21 +x 31 = 22 x 12 +x 22 +x 32 = 20 x 13 +x 23 +x 33 = 18 Mgr. Sekničková Jana, Ph.D. 13

14 4.1 Zvláštnosti MM DP Matice strukturních koeficientů A se skládá pouze z nul a jedniček Vektor strukturních koeficientů proměnné x ij má jedničku na i-tém a j + m-tém místě, ostatní prvky jsou rovny nule Ve vyrovnaném DP je vždy jedno vlastní omezení lineární kombinací ostatních Hodnost rozšířené matice A b vyrovnaného DP je vždy m + n 1 Všechny proměnné, kapacity i požadavky jsou ve stejných jednotkách Mgr. Sekničková Jana, Ph.D. 14

15 4.1 Dopravní problém formulace MM Počet omezení DP je m + n m pro dodavatele (řádková omezení, zajišťují kapacitu) x i1 + x i2 + + x in = a i, i = 1, 2,, m n j=1 x ij = a i, i = 1, 2,, m n pro odběratele (sloupcová omezení, zajišťují požadavky) x 1j + x 2j + + x mj = b j, j = 1, 2,, n m i=1 x ij = b j, j = 1, 2,, n Mgr. Sekničková Jana, Ph.D. 15

16 4.1 Dopravní problém formulace MM Podmínky nezápornosti: x ij 0, i = 1, 2,, m, j = 1, 2,, n Účelová funkce: minimalizovat z = c 11 x 11 + c 12 x c mn x mn z = m n i=1 j=1 c ij x ij Mgr. Sekničková Jana, Ph.D. 16

17 4.1 Dopravní problém obecný model minimalizovat za podmínek: m n z = c ij x ij i=1 j=1 n j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, n x ij 0, i = 1, 2,, m, j = 1, 2,, n Mgr. Sekničková Jana, Ph.D. 17

18 4.1 Dopravní problém formulace MM Každý vyrovnaný dopravní problém m a i = n i=1 j=1 má vždy přípustné řešení i optimální řešení Každý nevyrovnaný dopravní problém m a i i=1 j=1 lze převést na vyrovnaný dopravní problém Mgr. Sekničková Jana, Ph.D. 18 n b j b j

19 4.1 Dopravní problém dopravní tabulka Zejména z důvodu přehlednosti Řádek tabulky odpovídá řádkovému omezení Sloupec tabulky odpovídá sloupcovému omezení Řádky a sloupce vymezují políčka Políčko tabulky odpovídá jedné dopravní cestě mezi dodavatelem a odběratelem, tj. jedné proměnné x ij O j D i c ij x ij Mgr. Sekničková Jana, Ph.D. 19

20 4.1 Příklad dopravní tabulka z = 411 c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D x D 2 x7 21 x 23 D x x b j Mgr. Sekničková Jana, Ph.D. 20

21 4.1 Dopravní problém nevyrovnaný DP Každý nevyrovnaný dopravní problém m a i n i=1 j=1 lze převést na vyrovnaný dopravní problém Buď přidáním fiktivního dodavatele Nebo přidáním fiktivního odběratele b j Mgr. Sekničková Jana, Ph.D. 22

22 4.1 Příklad - zadání Předpokládejme nyní, že Pole 3 je již posekané. Všechny ostatní informace zůstávají beze změny. Určete přepravované počty kombajnů z jednotlivých družstev na pole tak, aby počet ujetých kilometrů byl minimální. [km] Pole 1 Pole 2 Kapacity Sever Loukovec Čistá u Mladé Boleslavi Luštěnice Požadavky / 60 Mgr. Sekničková Jana, Ph.D. 23

23 4.1 Příklad fiktivní odběratel c ij O1 O2 a i D D D b j Cenové koeficienty fiktivního odběratele jsou nulové O 1 O 2 F 3 a i D D D b j Mgr. Sekničková Jana, Ph.D. 24

24 4.1 Dopravní problém nevyrovnaný DP Přebytek kapacit nad požadavky m a i > n i=1 j=1 Přidání fiktivního odběratele (sloupec) s požadavkem m b n+1 = a i b j n i=1 j=1 Představuje neodeslané zboží (nevyčerpaná kapacita) b j Mgr. Sekničková Jana, Ph.D. 25

25 4.1 Příklad - zadání Předpokládejme nyní, že oproti původnímu zadání má zemědělské družstvo Sever Loukovec celodružstevní dovolenou a jejich kombajny nemohou sekat. Všechny ostatní informace zůstávají beze změny. Určete přepravované počty kombajnů z jednotlivých družstev na pole tak, aby počet ujetých kilometrů byl minimální. [km] Pole 1 Pole 2 Pole 3 Kapacity Čistá u Mladé Boleslavi Luštěnice Požadavky / 45 Mgr. Sekničková Jana, Ph.D. 26

26 4.1 Příklad fiktivní dodavatel c ij O1 O2 O3 a i D D b j Cenové koeficienty fiktivního dodavatele jsou nulové O 1 O 2 O 3 a i D D F b j Mgr. Sekničková Jana, Ph.D. 27

27 4.1 Dopravní problém nevyrovnaný DP Přebytek požadavků nad kapacitami m a i < n i=1 j=1 Přidání fiktivního dodavatele (řádek) s kapacitou n a m+1 = b j b j m j=1 i=1 Představuje nedodané zboží (nesplněný požadavek) a i Mgr. Sekničková Jana, Ph.D. 28

28 4.2 Vlastnosti DP Definice 1: Přípustné řešení DP Přípustné řešení DP je vektor x = (x 11, x 12,, x mn ) T, jehož složky vyhovují všem omezením (vlastním i podmínkám nezápornosti) Mgr. Sekničková Jana, Ph.D. 29

29 4.2 Vlastnosti DP Věta 1: Každý DP má přípustné řešení. Důkaz: Položme x ij = a i b j K, pro všechna i a j, kde K = m i=1 Ukažme, že takové řešení je přípustné. n a i = j=1 b j Mgr. Sekničková Jana, Ph.D. 30

30 4.2 Vlastnosti DP Důkaz: Položme x ij = a i b j, pro všechna i a j, K kde K = m n i=1 a i = j=1 b j Dosaďme do řádkových omezení: n j=1 x ij = n j=1 n j=1 x ij = a i, i = 1, 2,, m ai b j K = a n i b K j = a i K K = a i j=1 Mgr. Sekničková Jana, Ph.D. 31

31 Důkaz: 4.2 Vlastnosti DP Totéž pro sloupcová omezení: m i=1 x ij = m i=1 Řešení je přípustné i=1 x ij = b j, j = 1, 2,, n m ai b j K = b n j a K i = b j K K = b j j=1 Nevyrovnaný DP bychom nejprve vyrovnali a dokázali stejně Mgr. Sekničková Jana, Ph.D. 32

32 4.2 Vlastnosti DP Definice 2: Základní přípustné řešení DP Základní přípustné řešení DP je přípustné řešení, které má nejvýše (m + n 1) kladných složek. Vektory strukturních koeficientů u kladných složek tvoří lineárně nezávislou soustavu. Mgr. Sekničková Jana, Ph.D. 33

33 4.2 Vlastnosti DP Věta 2: Každý DP má základní přípustné řešení. Důkaz: Položme x rs = min(a r, b s ), kde a r a b s jsou upravené požadavky a kapacity po vyškrtnutí řádku či sloupce (viz příklad). V posledním kroku vyškrtneme řádek i sloupec. Obsadíme tedy maximálně m + n 1 políček (základních proměnných). Mgr. Sekničková Jana, Ph.D. 34

34 4.2 Vlastnosti DP Definice 3: Optimální řešení DP Optimální řešení je přípustné řešení, které minimalizuje účelovou funkci Mgr. Sekničková Jana, Ph.D. 35

35 Věta 3: 4.2 Vlastnosti DP Každý DP má optimální řešení. Důkaz: Již jsme ukázali, že každý DP má přípustné řešení. Jedinou možností, jak nemít OŘ, by byla neomezená hodnota účelové funkce. Podmínky nezápornosti však z omezují zdola. Mgr. Sekničková Jana, Ph.D. 36

36 4.3 Duální problém k DP Duální proměnné přiřazené řádkovým omezením označíme u i Duální proměnné odpovídající sloupcovým omezením označíme v j Počet duálních proměnných je m + n Počet vlastních omezení je m n Vlastní omezení jsou nerovnice typu Účelovou funkci maximalizujeme minimalizovat z = za podmínek: Mgr. Sekničková Jana, Ph.D. 37 n j=1 m i=1 m i=1 n j=1 c ij x ij x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, n x ij 0, i = 1, 2,, m, j = 1, 2,, n

37 4.3 Příklad duální problém minimalizovat z = 9x x x x x x x x x 33 za podmínek: 1 x x x x x x x x x 33 = 15 0 x x x x x x x x x 33 = 20 0 x x x x x x x x x 33 = 25 1 x x x x x x x x x 33 = 22 0 x x x x x x x x x 33 = 20 0 x x x x x x x x x 33 = 18 u 1 u 2 u 3 v 1 v 2 v 3 x ij 0, i = 1, 2, 3, j = 1, 2, 3 Mgr. Sekničková Jana, Ph.D. 38

38 4.3 Příklad duální problém maximalizovat f = 15u u u v v v 3 za podmínek: u 1 + v 1 9 u 1 + v 2 3 u 1 + v 3 2 u 2 + v 1 7 u 2 + v 2 8 u 2 + v 3 4 u 3 + v 1 5 u 3 + v 2 6 u 3 + v 3 11 u i, v j libovolné, i = 1, 2, 3, j = 1, 2, 3 c ij O1 O2 O3 a i D D D b j Mgr. Sekničková Jana, Ph.D. 39

39 minimalizovat z = za podmínek: n j=1 m i=1 4.3 Duální problém k DP m i=1 n j=1 c ij x ij x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, n x ij 0, i = 1, 2,, m, j = 1, 2,, n maximalizovat f = m i=1 a i u i + n j=1 b j v j za podmínek: u i + v j c ij, i = 1, 2,, m, j = 1, 2,, n u i, v j - libovolné Nesymetrický duální problém Mgr. Sekničková Jana, Ph.D. 40

40 4.4 Výchozí řešení DP DP by bylo možné řešit simplexovou metodou A většina softwarů to tak dělá Díky struktuře modelu DP používáme pro ruční výpočty dopravní tabulku a tzv. MODI metodu (modifikovaná distribuční metoda), Ta svým postupem v podstatě odpovídá simplexové metodě v kombinaci s řešením duální úlohy Mgr. Sekničková Jana, Ph.D. 41

41 4.4 Výchozí řešení DP 1. krok Nalezení výchozího základního přípustného řešení 2. krok zlepšování řešení až do okamžiku, kdy je nalezeno optimální řešení Mgr. Sekničková Jana, Ph.D. 42

42 4.4 Výchozí řešení DP 1. krok Nalezení výchozího základního přípustného řešení Výchozím řešením může být libovolné základní přípustné řešení DP podle definice 2 Výchozí řešení lze vypočítat přímo (není třeba pomocných proměnných) Z řady aproximačních metod si představíme tři typické: metodu severozápadního rohu (SZR) indexní metodu (metoda maticového minima) Vogelovu aproximační metodu (VAM) Mgr. Sekničková Jana, Ph.D. 43

43 4.4 Výchozí řešení DP Metoda severozápadního rohu (SZR) 1. Vybereme neobsazené políčko, které je nevíce nahoře (sever) a nejvíce vlevo (západ). Tím určíme základní proměnnou - x rs. (Začneme: x 11, r = 1, s = 1, a r = a r, b s = b s ) 2. Hodnotu této základní proměnné určíme x rs = min a r, b s = t 3. Upravíme zbytkovou kapacitu a požadavek: a r = a r t b s = b s t Mgr. Sekničková Jana, Ph.D. 44

44 4.4 Výchozí řešení DP Metoda severozápadního rohu (SZR) 4. Pokud a r = 0, vyškrtneme r-tý řádek (tj. ostatní proměnné v řádku jsou nezákladní). 5. Pokud b s = 0, vyškrtneme s-tý sloupec (tj. ostatní proměnné ve sloupci jsou nezákladní). 6. Pokračujeme od bodu 1. Mgr. Sekničková Jana, Ph.D. 45

45 4.4 Výchozí řešení DP Metoda severozápadního rohu (SZR) Obsazujeme, dokud r < m a s < n Obsadíme tak m + n 2 políček (základních proměnných) Poslední políčko obsadíme zbytkovou kapacitou (a zbytkovým požadavkem): x mn = t = a m = b n Mgr. Sekničková Jana, Ph.D. 46

46 4.4 Příklad VŘ - SZR z = 528 c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D x 11 D x x 22 D x b j x18 33 Mgr. Sekničková Jana, Ph.D. 47

47 4.4 Výchozí řešení DP Metoda maticového minima indexní (IND) 1. Obsazujeme vždy neobsazené políčko s nejnižší cenou. Tím určíme základní proměnnou - x rs. Další postup je analogický s postupem u metody severozápadního rohu 2. Určíme hodnotu vybrané základní proměnné podle bodu 2 3. Vypočteme zbytkové kapacity a požadavky podle bodu Vyškrtneme řádek či sloupec analogicky bodům 4 a Vracíme se k bodu 1 tohoto algoritmu. Mgr. Sekničková Jana, Ph.D. 48

48 4.4 Výchozí řešení DP Metoda maticového minima indexní (IND) Pokud se stane, že máme více políček s minimální cenou: Obsadíme políčko s vyšší možnou hodnotou proměnné (t) Tzn., že obsadíme políčko s minimální cenou, do kterého se vejde nejvíce Je li např. c 14 = 1 a x 14 = min(100, 200) = 100 a c 42 = 1 a x 42 = min(300, 200) = 200, obsadíme políčko proměnné x 42 Mgr. Sekničková Jana, Ph.D. 49

49 4.4 Výchozí řešení DP Metoda maticového minima indexní (IND) Poznámky: V posledním řádku či sloupci můžeme políčka obsazovat již v libovolném pořadí Máme-li model s fiktivním dodavatelem či odběratelem, jsou ceny fiktivních proměnných nulové Tyto proměnné obsazujeme až nakonec Mgr. Sekničková Jana, Ph.D. 50

50 4.4 Příklad VŘ - IND z = 306 c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D 1 15 x D 2 x17 23 x3 23 D x 31 x b j Mgr. Sekničková Jana, Ph.D. 51

51 4.4 Výchozí řešení DP Vogelova aproximační metoda (VAM) 1. V každém řádku a sloupci vypočteme rozdíl (diferenci) dvou nejnižších cen u neobsazených políček (2. nejnižší cena mínus nejnižší cena) 2. Ze všech takto vypočtených diferencí najdeme nejvyšší (největší rozdíl) tím identifikujeme řádek či sloupec. 3. V identifikovaném řádku nebo sloupci vybereme políčko s nejnižší cenou. Tím určíme základní proměnnou - x rs. 1. min c ij 2. max d 3. min c ij Mgr. Sekničková Jana, Ph.D. 52

52 4.4 Výchozí řešení DP Vogelova aproximační metoda (VAM) Další postup je analogický s postupem u metody severozápadního rohu 4. Určíme hodnotu vybrané základní proměnné podle bodu 2 5. Vypočteme zbytkové kapacity a požadavky podle bodu 3 6. Vyškrtneme řádek či sloupec analogicky bodům 4 a 5 7. Vracíme se k bodu 1 tohoto algoritmu. Mgr. Sekničková Jana, Ph.D. 53

53 4.4 Výchozí řešení DP Vogelova aproximační metoda (VAM) Pokud se stane, že máme více políček s maximální diferencí: Vybereme teoreticky obsazované políčko (kandidát) pro každou maximální diferenci Následně obsadíme to políčko, která má nejnižší cenu Pokud by i tak bylo kandidátů více, vybereme to s vyšší možnou hodnotou proměnné (t) Tzn., že obsadíme políčko s maximální diferencí, které má nejnižší cenu (příp. do kterého se vejde nejvíce) Mgr. Sekničková Jana, Ph.D. 54

54 4.4 Výchozí řešení DP Vogelova aproximační metoda (VAM) Poznámky: Vyškrtneme-li řádek, stačí přepočítat jen sloupcové rozdíly Vyškrtneme-li sloupec, stačí přepočítat jen řádkové rozdíly V posledním řádku či sloupci můžeme políčka obsazovat již v libovolném pořadí Máme-li model s fiktivním dodavatelem či odběratelem, jsou ceny fiktivních proměnných nulové Tyto proměnné obsazujeme klasicky podle algoritmu VAM, považujeme je za proměnné s nejnižší cenou Mgr. Sekničková Jana, Ph.D. 55

55 4.4 Příklad VŘ - VAM O j c ij D i x ij c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D x D D 3 b j d = 1 20 d = 3 25 d = 1 d = 2 d = 3 d = 2 Mgr. Sekničková Jana, Ph.D. 56

56 4.4 Příklad VŘ - VAM O j c ij D i x ij c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D 1 x D D 3 18 x 23 b j d = 3 25 d = 1 d = 2 d = 32 d = 27 Mgr. Sekničková Jana, Ph.D. 57

57 4.4 Příklad VŘ - VAM O j c ij D i x ij c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D 1 x15 12 D D x b j d = 31 x d = 1 d = 2 d = 32 Mgr. Sekničková Jana, Ph.D. 58

58 4.4 Příklad VŘ - VAM z = 261 c ij O1 O2 O3 a i D D D b j O 1 O 2 O 3 a i D 1 x15 12 D x 23 D x 31 x b j x Mgr. Sekničková Jana, Ph.D. 59

59 Detaily k přednášce: skripta, kapitola 6 KONEC Mgr. Sekničková Jana, Ph.D. 60

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1 4EK311 Operační výzkum 4. Distribuční úlohy LP část 1 4. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování

Více

4EK201 Matematické modelování 5. Speciální úlohy lineárního programování

4EK201 Matematické modelování 5. Speciální úlohy lineárního programování 4EK201 Matematické modelování 5. Speciální úlohy lineárního programování 4. Typické úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Směšovací problémy

Více

4EK311 Operační výzkum. 2. Lineární programování

4EK311 Operační výzkum. 2. Lineární programování 4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x

Více

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK213 Lineární modely. 5. Dualita v úlohách LP 4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického

Více

4EK213 Lineární modely. 10. Celočíselné programování

4EK213 Lineární modely. 10. Celočíselné programování 4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

4EK212 Kvantitativní management. 3. Typické úlohy LP

4EK212 Kvantitativní management. 3. Typické úlohy LP 4EK212 Kvantitativní management 3. Typické úlohy LP 3. Typické úlohy LP a ILP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního

Více

4EK213 Lineární modely. 4. Simplexová metoda - závěr

4EK213 Lineární modely. 4. Simplexová metoda - závěr 4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu

Více

4EK201 Matematické modelování. 2. Lineární programování

4EK201 Matematické modelování. 2. Lineární programování 4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených

Více

4EK201 Matematické modelování. 4. Typické úlohy lineárního programování

4EK201 Matematické modelování. 4. Typické úlohy lineárního programování 4EK201 Matematické modelování 4. Typické úlohy lineárního programování 4. Typické úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Směšovací problémy

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

4EK212 Kvantitativní management. 2. Lineární programování

4EK212 Kvantitativní management. 2. Lineární programování 4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programování, dopravní úloha. 1 Úvodní pojmy Metody na podporu rozhodování lze obecně dělit na: Eaktní metody metody zaručující nalezení optimální řešení, např. Littlův algortimus,

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

RNDr. Sousedíková Radmila, Ph.D.

RNDr. Sousedíková Radmila, Ph.D. INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Eaktní metody rozhodování - operační výzkum RNDr. Sousedíková Radmila,

Více

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU Distanční opora RNDr. Miroslav Liška, CSc. OSTRAVA 2002 1 Simplexová metoda je iterační výpočetní postup pro nalezení optimálního

Více

4EK311 Operační výzkum. 3. Optimalizační software a stabilita řešení úloh LP

4EK311 Operační výzkum. 3. Optimalizační software a stabilita řešení úloh LP 4EK311 Operační výzkum 3. Optimalizační software a stabilita řešení úloh LP 3.1 Příklad matematický model Lis: 1 x 1 + 2 x 2 120 [min] Balení: 1 x 1 + 4 x 2 180 [min] Poptávka: 1 x 1 1 x 2 90 [krabiček]

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

7. Důležité pojmy ve vektorových prostorech

7. Důležité pojmy ve vektorových prostorech 7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních

Více

4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP

4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP 4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu 4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:

Více

Problém lineární komplementarity a kvadratické programování

Problém lineární komplementarity a kvadratické programování Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Kvantitativní metody v rozhodování. Marta Doubková

Kvantitativní metody v rozhodování. Marta Doubková Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA... 3 2 DISTRIBUČNÍ ÚLOHA... 7 3 ANALÝZA KRITICKÉ CESTY METODA CPM... 13 4 MODEL HROMADNÉ

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. GARANT KURZU Prof. Ing. Josef Jablonský, CSc. Místnost: NB 437 Konzultační hodiny: úterý 13:00 15:00 E-mail: jablon@vse.cz

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Systémové modelování. Ekonomicko matematické metody I. Lineární programování Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a

Více

3. ANTAGONISTICKÉ HRY

3. ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

1.Modifikace simplexové metody

1.Modifikace simplexové metody .Modifikace simplexové metody Simplexová metoda, v podobě popsané v prvním tématu, je vhodná zejména pro řešení úloh LP menších rozměrů, především pak pro ruční výpočty. Algoritmus metody je jednoduchý,

Více

P ílohy. P íloha 1. ešení úlohy lineárního programování v MS Excel

P ílohy. P íloha 1. ešení úlohy lineárního programování v MS Excel P ílohy P íloha 1 ešení úlohy lineárního programování v MS Excel V této p íloze si ukážeme, jak lze ešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

6 Simplexová metoda: Principy

6 Simplexová metoda: Principy 6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Lineární programování

Lineární programování Lineární programování Úlohy LP patří mezi takové úlohy matematického programování, ve kterých jsou jak kriteriální funkce, tak i všechny rovnice a nerovnice podmínek výhradně tvořeny lineárními výrazy.

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Simplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25

Simplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25 Simplexové tabulky z minule (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25 Simplexová metoda symbolicky Výchozí tabulka prom. v bázi zákl. proměné přídatné prom. omez. A E b c T 0 0 Tabulka po přepočtu

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

pro řešení soustav lineárních rovnic. Gaussova eliminační metoda pro řešení soustavy lineárních rovnic sestává ze dvou kroků:

pro řešení soustav lineárních rovnic. Gaussova eliminační metoda pro řešení soustavy lineárních rovnic sestává ze dvou kroků: Kapitola 2 Gaussova eliminace Název druhé kapitoly je současně názvem nejčastěji používané metody (algoritmu) pro řešení soustav lineárních rovnic. Gaussova eliminační metoda pro řešení soustavy lineárních

Více

Transformace souřadnic

Transformace souřadnic Transformace souřadnic Odpřednesenou látku naleznete v kapitolách 8.2 a 8.3 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01AG 5.11.2015: Transformace souřadnic 1/17 Minulá přednáška

Více

Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice

Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b, Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

SOUSTAVY LINEÁRNÍCH ROVNIC

SOUSTAVY LINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA SOUSTAVY LINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více