2.2 Kalibrace a limity její p esnosti
|
|
- Tadeáš Mašek
- před 8 lety
- Počet zobrazení:
Transkript
1 UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p esnosti Vypracoval: Ing. Adolf Goebel, Ph.D. VPÍerov,.záÍí 000
2 ..1 Lineární kalibrace Stanovení obsahu K O v pigmentovém oxidu titaničitém Pro stanovení obsahu K O v pigmentovém oxidu titaničitém metodou rentgenové fluorescenční analýzy bylo připraveno 7 standardních vzorků s odstupňovaným obsahem oxidu draselného. Koncentrace K O ve standardech byla stanovena metodou atomové absorpční spektrometrie - metoda standardního přídavku bez korekce pozadí pro obsahy do 0,1 % K O; pro obsahy nad 0,1 % K O metoda kalibrační přímky, plamen vzduch-acetylen při vlnové délce λ = 766,5 nm. Výsledky stanovení pro kalibrační závislost jsou uvedeny v tabulce I. U jednotlivých standardů byla změřena intenita vrcholu draslíku za použití rentgenového fluorescenčního spektrometru Philips PW Vyhodnocení kalibrační závislosti bylo provedeno počítačovým programem ADSTAT, Trilobyte Pardubice metodou nejmenších čtverců. Tabulka I - Koncentrace K O ve standardech Koncentrace K O [%] Intenzita vrcholu [kcp/s] 0,001 0,0343 0,045 0,718 0,10 1,7556 0,00,919 0,40 3,4641 0,450 6,741 0,486 6,7943
3 Vyhodnocení I. Regresní diagnostika Zvolená strategie regresní analýzy: Omezení, P: Transformace: Ne Váhy: Ne Absolutní člen zahrnut: Ano Podmínky a kvantily pro statistické testy: Hladina významnosti, α: 0,050 Počet bodů, n: 7 Počet parametrů, m: Kvantil Studentova rozdělení t(1-α/, n-m):,571 Kvantil rozdělení χ (1-α, m): 5,991 Odhady parametrů a testy významnosti: Test H : B = 0 vs. H : B U 0 0 j A j Parametr Odhad Směrodatná odchylka t-kritérium hypotéza H je 0 B 0,0897 0,0310,8915 Zamítnuta 0 B 13,830 0, ,31 Zamítnuta 1 Statistické charakteristiky regrese: Vícenásobný korelační koeficient, R: 0,9998 Koeficient determinace, R : 0,9997 Predikovaný korelační koeficient, R p : 0,9997 Střední kvadratická chyba predikce, MEP: 0,0037 Akaikeho informační kritérium, AIC: - 40,034 Odhad reziduálního rozptylu, σ (e): 0,095 Testování regresního tripletu (data + model + metoda): Fisher-Snedocorův test významnosti regrese,f: 1, Tabulkový kvantil, F(1-α, m-1, n-m): 6,6079 Závěr: Navržený model je přijat jako významný Scottovo kriterium multikolinearity, M: -1, Závěr: Navržený model je korektní 3
4 Cook-Weisbergův test heteroskedasticity, S : 7,607 f Tabulkový kvantil, χ (1-α, 1): 3,8415 Závěr: Rezidua vykazují heteroskedasticitu Jarque-Berraův test normality reziduí, L(e): 0,3700 Tabulkový kvantil, χ (1-α,): 5,9915 Závěr: Normalita je přijata Waldův test autokorelace, W : 0,1188 a Tabulkový kvantil, χ (1-α, 1): 3,8415 Závěr: Rezidua nejsou autokorelována Znaménkový test, D : 0,788 t Tabulkový kvantil, N(1-α/): 1,6449 Závěr: Rezidua nevykazují trend Ze závěru testování plyne, že regresní model je použitelný pro kalibraci. II. Kalibrace Parametry kalibrace: Test H : B = 0 vs. H : B U 0 0 j A j Parametr Odhad Směrodatná odchylka t-kritérium hypotéza H je 0 B 0,0897 0,0310,8915 Zamítnuta 0 B 13,830 0, ,31 Zamítnuta 1 Tabulka II - Kalibrační meze Signál [kcp/s] Koncentrace K O [%] Kritická úroveň, y c: 0,169 x c: 0,0058 Limita detekce, y d: 0,47 x d: 0,0114 Mez stanovitelnosti, y s: 0,596 x s: 0,0366 4
5 Obr. 1 Tabulka III -Kalibrační tabulka Měřená hodnota Přímý odhad Konfidenční interval [kcp/s] % K O dolnímez hornímez 0,6430 0,040 0,09 0,051,876 0,159 0,149 0,169 4,5410 0,3 0,31 0,33 Závěr: Stanovení obsahu draslíku v pigmentovém oxidu titaničitém má pro zamýšlené použití dostatečnou citlivost a nízkou limitu detekce. Metoda je použitelná pro účely mezioperační a výstupní kontroly výroby pigmentového oxidu titaničitéhoiproúčely výzkumu. 5
6 Příklad Nelineární kalibrace Stanovení p-dichlorbenzenu v chlorbenzenu Stanovení p-dichlorbenzenu v chlorbenzenu se provádí metodou plynové chromatografie na vnitřní standard toluen. Proměřením kalibračních roztoků byla získána závislost poměru ploch p-dichlorbenzenu a vnitřního standardu na procentickém obsahu p-dichlorbenzenu. Proměřením dvou vzorků chlorbenzenu byly získány odezvy 0,04 a 0,048. Úkolem je posoudit vhodný tvar kalibrační závislosti a zjistit obsah p-dichlorbenzenu v obou vzorcích. Tabulka I - Koncentrace p-dichlorbenzenu v chlorbenzenu, standardy Obsah p-dichlorbenzenu [%] Naměřená odezva 0,01 0,013 0,0 0,07 0,03 0,040 0,04 0,048 0,05 0,053 0,08 0,070 0,10 0,090 0,15 0,10 0,0 0,150 0,30 0,0 0,40 0,70 0,50 0,30 6
7 Vyhodnocení I. Lineární kalibrace I.3 Regresní diagnostika Zvolená strategie regresní analýzy: Omezení, P: Transformace: Ne Váhy: Ne Absolutní člen zahrnut: Ano Podmínky a kvantily pro statistické testy: Hladina významnosti, α: 0,050 Počet bodů, n: 1 Počet parametrů, m: Kvantil Studentova rozdělení t(1-α/, n-m):,8 Kvantil rozdělení χ (1-α, m): 5,991 Odhady parametrů a testy významnosti: Test H : B = 0 vs. H : B U 0 0 j A j Parametr Odhad Směrodatná odchylka t-kritérium hypotéza H je B0, , ,339 Zamítnuta -3 - B1 6, , ,651 Zamítnuta Statistické charakteristiky regrese: Vícenásobný korelační koeficient, R: 0,9971 Koeficient determinace, R : 0,9943 Predikovaný korelační koeficient, R p : 0,9945 Střední kvadratická chyba predikce, MEP: 1, Akaikeho informační kritérium, AIC: -113,93 Odhad reziduálního rozptylu, σ (e): -5 6, Testování regresního tripletu (data + model + metoda): Fisher-Snedocorův test významnosti regrese,f: 1734,8 Tabulkový kvantil, F(1-α, m-1, n-m): 4,9646 Závěr: Navržený model je přijat jako významný Scottovo kriterium multikolinearity, M: -4, Závěr: Navržený model je korektní 7
8 Cook-Weisbergův test heteroskedasticity, S : 6,15 f Tabulkový kvantil, χ (1-α, 1): 3,84 Závěr: Rezidua vykazují heteroskedasticitu Jarque-Berraův test normality reziduí, L(e): 0,570 Tabulkový kvantil, χ (1-α,): 5,99 Závěr: Normalita je přijata Waldův test autokorelace, W :,4896 a Tabulkový kvantil, χ (1-α, 1): 3,84 Závěr: Rezidua jsou autokorelována Znaménkový test, D : -0,5749 t Tabulkový kvantil, N(1-α/): 1,645 Závěr: Rezidua nevykazují trend II. Nelineární kalibrace Další možností je použití spline pro danou kalibrační závislost. Postupně jsou vyhodnoceny lineární, kvadratický a kubický spline vždy s jedním, dvěmi a třemi uzlovými body - tabulka II. Jako výsledek hodnocení je srovnávána limita detekce koncentrace x a odhad směrodatné D odchylky reziduí σ e. Za nejlepší kalibrační model se považuje takový, který má nejnižší limitu detekce koncentrace x a odhad směrodatné odchylky reziduí σ při nejnižším počtu uzlových bodů. D Tabulka II - Vyhodnocení kalibrační závislosti pomocí spline a) lineární spline e Parametry lineární spline uzlové body x D [%] 1, , , σe 4, , ,
9 b) kvadratický spline Parametry kvadratický spline uzlové body x D [%] 1, , σe 4, , , , c) kubický spline Parametry kubický spline uzlové body x D [%] 1, , , σe 4, , , Z tabulky II c) plyne použití kubického spline se dvěma uzlovými body jako nejlepšího kalibračního modelu. Kalibrační rovnice má tvar: 3 Y = a.x + bx + cx + d pro k[i-1] < x k[i] Koeficienty kalibrační rovnice jsou uvedeny v tabulce III a graf rovnice je uveden na obr.1. Tabulka III - Koeficienty kalibrační rovnice bod k[i] a b c d 0,173 10,561-4,45 1,154 5, ,337-6,431 4,593-0,378 0,0936 0,500 9,89-11,830 5,15-0,57 9
10 Tabulka IV Kalibrační tabulka Měřená hodnota Inverzní odhad Konfidenční interval koncentrace [%] koncentrace [%] y [i] x [i] dolní mez Llx [i] horní mez Lux [i] exp vyp vyp vyp 0,04 0,017 0,01 0,0 0,048 0,043 0,039 0,048 Obr. 1 Závěr Ze statistické analýzy různých kalibračních modelů se jeví jako nejlepší model kubický spline s dvěma uzlovými body. U tohoto modelu je limita detekce x D = 0,0133 % p- dichlorbenzenu. Vzorku se signálem 0,04 je možné přiřadit inverzní odhad koncentrace 0,017 % [0,01;0,0], vzorku se signálem 0,048 odhad 0,043 [0,039;0,048]. 10
11 Tabulka III Kalibrační tabulka Měřená hodnota Přímý odhad Konfidenční interval [kcp/s] % ZnO dolnímez hornímez 1,789 0,074 0,058 0,089 5,9407 0,46 0,30 0,61 11,66 0,483 0,467 0,498 Závěr: Stanovení obsahu zinku v pigmentovém oxidu titaničitém má dostatečnou citlivost a nízkou limitu detekce. Metoda je použitelná pro účely mezioperační a výstupní kontroly výroby pigmentového oxidu titaničitého. 11
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Kalibrace a limity její přesnosti
SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti 005/006 Ing. Petr Eliáš 1. LINEÁRNÍ KALIBRACE 1.1 Zadání Povrchově upravená suspenze TiO je protiproudně promývána v kaskádě Dorrových usazováků. Nejvíce
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS 1. VÝPOČET OBSAHU
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie KALIBRACE A LIMITY JEJÍ PŘESNOSTI Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2016
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Univerzita Pardubice
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Lineární regrese Ing. Jan Balcárek, Ph.D. vedoucí Centrálních laboratoří Precheza
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.2 KALIBRACE A LIMITY JEJÍ PŘESNOSTI Příklad 1 Lineární kalibrace Příklad 2 Nelineární kalibrace Příklad 3 Rozlišení mezi lineární a nelineární
Fakulta chemicko technologická Katedra analytické chemie
Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Tvorba lineárních a kalibračních modelů při analýze dat Pavel Valášek Školní rok 2001 02 OBSAH 1 POROVNÁNÍ
Tvorba lineárních regresních modelů
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Zdravotní ústav
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba lineárních regresních modelů 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha 1 Porovnání regresních přímek u jednoduchého lineárního regresního modelu Porovnání
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Kalibrace a limity její přesnosti Vedoucí licenčního studia Prof. RNDr. Milan Meloun,
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet
KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE
Tvorba lineárních regresních modelů při analýze dat
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS
Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271
1 Příklad 1. Porovnání dvou regresních přímek Při výrobě automatových ocelí dané jakosti byla porovnávána závislost obsahu uhlíku v posledním zkušebním vzorku (odebraném z mezipánve na ZPO a analyzovaném
TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce Licenční studium Galileo Předmět Nelineární regrese Jiří Danihlík Olomouc, 2016 Obsah... 1 Hledání vhodného
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.
Semestrální práce str. 1. Semestrální práce. 2.1 Tvorba lineárních regresních modelů při analýze dat. 2.3 Kalibrace a limity její přesnosti
Semestrální práce str. Semestrální práce 2. Tvorba lineárních regresních modelů při analýze dat 2.3 Kalibrace a limity její přesnosti Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného
Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce
Licenční studium Galileo: Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Porovnání dvou regresních přímek u jednoduchého
Tvorba nelineárních regresních
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba nelineárních regresních modelů v analýze dat Zdravotní ústav
Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat
Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří
Aproximace a vyhlazování křivek
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Přednášející: Prof. Ing. Jiří Militký, Csc 1. SLEDOVÁNÍ ZÁVISLOSTI HODNOTY SFM2 NA BARVIVOSTI
Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat
FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat DOMINIKA BURKOŇOVÁ 4.ročník 2000/2001 Dominika Burkoňová Příklad č.1
Licenční studium Galileo: Statistické zpracování dat. Kalibrace a limity její přesnosti. Semestrální práce
Licenční studium Galileo: Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Lineární kalibrace... 3 1.1 Zadání... 3 1.2 Data... 3 1.3
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba nelineárních regresních modelů v analýze dat. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba nelineárních regresních modelů v analýze dat 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha Nalezení vhodného modelu pro popis reakce TaqMan real-time PCR
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
http: //meloun.upce.cz,
Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565,
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA
Posouzení linearity kalibrační závislosti
Posouzení linearity kalibrační závislosti Luděk Dohnal Referenční laboratoř pro klinickou biochemii,úkbld 1.LF UK a VFN, Karlovo nám. 32, 12111 Praha 2, ludek.dohnal@lf1.cuni.cz Paul Faigl FCDD, University
Posouzení linearity kalibraèní závislosti
Posouzení linearity kalibraèní závislosti Ludìk Dohnal Referenèní laboratoø pro klinickou biochemii,úkbld 1.LF UK a VFN, Karlovo nám. 32, 12111 Praha 2, ludek.dohnal@lf1.cuni.cz Paul Faigl FCDD, University
Tvorba lineárních regresních modelů při analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba lineárních regresních modelů při analýze dat Seminární práce Monika Vejpustková leden 2016
Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Licenční studium Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat RNDr. Lada Kovaříková České technologické centrum
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Příklad 4 Vícerozměrný lineární regresní model 2/24 V Ústí nad Orlicí dne: 20.8.2000
FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE. Semestrální práce z CHEMOMETRE. TOMÁŠ SYROVÝ 4.ročník
FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRE TOMÁŠ SYROVÝ 4.ročník OBSAH: 1.Příklad C112 CHYBY A VARIABILITA INSTRUMENTÁLNÍCH MĚŘENÍ... 3 2. Příklad H207 PRŮZKUMOVÁ
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální
ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
Analýza rozptylu ANOVA
Licenční studium Galileo: Statistické zpracování dat ANOVA ANOVA B ANOVA P Analýza rozptylu ANOVA Semestrální práce Lenka Husáková Pardubice 05 Obsah Jednofaktorová ANOVA... 3. Zadání... 3. Data... 3.3
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
SEMESTRÁLNÍ PRÁCE UNIVERZITA PARDUBICE. Fakulta chemicko - technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko - technologická Katedra analytické chemie Licenční studium chemometrie: Počítačové zpracování dat při kontrole a řízení jakosti SEMESTRÁLNÍ PRÁCE Předmět: Aproximace
KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)
KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami
III. Semestrální práce
Licenční studium GALILEO STATISTICKÁ ANALÝZA DAT III. Semestrální práce 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Ing. Marek Bilko listopad, 2015 OBSAH 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Aproximace křivek a vyhlazování křivek
Univerzita Pardubice Fakulta chemicko - technologická Katedra analytické chemie Dvouleté licenční studium: Počítačové zpracování dat při kontrole a řízení jakosti Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce 2009 RNDr. Markéta
přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod
přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod Měření Pb v polyethylenu 36 různými laboratořemi 0,47 0 ± 0,02 1 µmol.g -1 tj. 97,4 ± 4,3 µg.g -1 Měření
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
12. licenční studium Statistické zpracování dat při managementu jakosti. Lenka Hromádková
12. licenční studium Statistické zpracování dat při managementu jakosti Lenka Hromádková Desinfekční přípravky slouží k zneškodňování mikroorganismů (MO) vyvolávající onemocnění člověka nebo zvířat Druhy
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba nelineárních regresních modelů v analýze dat Seminární práce Monika Vejpustková červen 2016
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
Univerzita Pardubice
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce 2000 2.2 - Kalibrace a limity její přesnosti Přednášející: Prof. RNDr. Milan Meloun, DrSc. Vypracoval: Ing.
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
PYTHAGORAS Statistické zpracování experimentálních dat
UNIVERZITA PARDUBICE Fakulta chemicko-technologická, Katedra analytické chemie SEMESTRÁLNÍ PRÁCE Květen 2008 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Předmět 1.4 ANOVA a
POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
Tabulka 1 Příklad dat pro kalibraci
Kalibrace Menu: QCExpert Kalibrace Modul Kalibrace je určen především pro analytické laboratoře a metrologická pracoviště. Nabízí kalibrační modely pro lineární a nelineární kalibrační závislosti s možností
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
Univerzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat Semestrální práce Interpolace, aproximace a spline 2007 Jindřich Freisleben Obsah
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Viktor Kanický Kurs ICP Přírodovědecká fakulta Masarykovy univerzity
Kalibrace a diagnostika spektrometru Viktor Kanický Kurs ICP 2009 Spektroskopická společnost Jana Marka Marci Přírodovědecká fakulta Masarykovy univerzity Analytické parametry X = b 0 + b 1. c X L = B
Úlohy. Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3)
Úlohy Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3) Úloha B8.01 Závislost hmotnosti očních čoček na stáří králíků Dudzinksi a Mykytowycz (1961) ukázali, že hmotnost vysušených