Fourierovská optika a speciální optické aplikace
|
|
- Jindřich Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 Forieroská optika a speciální optické aplikace
2 Terminologie Vlnoá podstata sětla Difrakce Interference Vlnoý popis interakce foton optický sstém Holografie Optical compting
3 Forieroa transformace f ( t) komplení fnkce definoano oblasti reálných čísel t f ( t) je spojitá s konečným počtem bodů nespojitosti f ( t) je absoltně integroatelná tzn. f ( t) dt < F 1 F( ν ) f ( t) = F( ν) e dν 2π 1 j2πν t j2 () ( ν ) = () πν t F f t F f t e dt
4 Hgensů princip lnoplocha lnoplocha kloá lna z j( k k kz z ) U z = Ae + + ( )
5 Popis ln z ( ) U r Sférická Paraboloidní Roinná ( ) ( ) jk 2 z jkz U ( ) e ( r) e e jkz e jk z ( ) + ( ) 2 2 U r Fresneloo přiblížení r = + + z = z +Θ = z + Θ Θ + ( ) ( )
6 Geometrie difrakce jkr j e du1( z) = U0( 0 0 z0) cosγ da λ r A apertra s daným průběhem transparence U 0 -harmonická kloá lna dopadající na stínítko P každý bod stínítka se stáá elementárním zdrojem lnění j cosγ λ ( ) ( ) r = + + z Inklinační faktor - úhloo záislost zařoání sekndární ln na úhl normál sekndární ln směřjící do bod Směroý ektor
7 Geometrie difrakce jkr j e U1( z) = U0( 0 0 z0) cosγ da λ r A cosγ = z r jkr jz e U z U z da. ( ) ( ) = λ r A ( ) = ( ) ( ) ( ) jk + + z jz e U z U z da. ( ) ( ) λ A z Hgensů Fresnellů difrakční integrál
8 Sperpozice roinných ln Komplení amplitda z = z ( ) U z = Ae ( z ) jk+ k+ kz k = k = k + k + k = z 2 π. λ
9 Vlnoý popis sstém Transparence stpního prk j2πν ( + ν) f F e. ( ) = ( ν ν ) f() Vstpní roina Optický sstém g() Výstpní roina Θ k k Θ k kz z f() = U(z=0) k Θ Výstpní lna j2 ( ) jkz z U z πν ν F ν ν e + e dν dν. ( ) = ( ) z=0 z=d z g() = U(z=d)
10 Realizace optické Foriero transformace Daleké pole separace prostým rozběhntím roinných ln V dostatečné zdálenosti od transparent se Foriero komponent oddělí přirozeným způsobem roina transparent ( = 0 = 0 z = 0) f ( ) 0 z=0 Θ U( z) Θ d ( z = d) k 0 Forieroa roina ( ) F( ν ν ) g z z=d ν = ν = λd λd
11 Spojná (sférická) čočka Transparence sférické čočk t j jk λ f e ( ) ep π ep( Δ) Vli geometrie čočk na fázi ln která prochází jπ 2 2 ( + ) λ f Přiblížení dalekého pole do konečné zdálenosti Změna liem nenloé tlošťk čočk e jkδ Pro zdálené pole lze zanedbat t( ) ep jπ λ f
12 Oddělení roinných ln sfér. čočko f ( ) U( z) Forieroa frekenční roina Θ k =Θ f z g( ) f f z = 0 z = 2 f
13 4f sstém (korelátor)
14 Optická filtrace prostoroého spektra
15 Optická integrace = S ( ) I dd.
16 Diskrétní optické procesor Intenzitní zpracoání (0 a 1) podle úroně Křížení sazk Paralelnost proces Rchlost ýpočt Eperimentální spořádání násobení matice ektor Šmoá odolnost Elektroptická a optoelektrická konerze Prostoroé rozlišení
17 Epanze ektor do matice m111 m122 m133 m144 m m m m m311 m322 m333 m34 4 m m m m m m m m m211 + m222 + m m m311 + m322 + m333 + m m411 + m422 + m433 + m444 4 stpní ektor álcoá čočka matice M
18 Násobení s jedno álcoo čočko álcoá čočka praený stpní ektor matice M ýstpní ektor
19 Dě álcoé čočk álcoé čočk stpní ektor matice M stpní ektor Realizace transparence např. LCD panel
20 JTC Joint Transform Correlation
21 JTC Joint Transform Correlation ( ) = FT[ ( r( a ) + s( a ) )] 2 I + 2 * * ( ) + S( ) = R( ) R ( ) + S( ) S ( )+ = R + R * * ( ) S ( ) ep( i2πa) + S( ) R ( ) ep( i2πa)
22 f f f f L L ( ) ( ) a s a r + ( ) ( ) 2 S R + ( ) ( ) S R + a ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) a s r a r s r r s s a a 2a ( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ] a j R S a j S R 2 2 ep 2 2 ep π π + + ( ) ( ) ( ) [ ] ( ) ( ) = + = + + = 2 2 S R a s a r FT I ( ) ( ) ( ) ( )+ + = S S R R * * JTC Joint Transform Correlation
23 Holografie Denis Gabor (1948) narhl dostpňoý proces nazýaný rekonstrkce lnoploch (holografie) Vchází z: Vžití interference sětla Koherence Yongů poks
24 Michelsonů interferometr Pomocí interferometrů lze měřit: lastnosti optických prků. lnoé lastnosti sětla procházejícího interferometrem. malé změn zdáleností.
25 Holografický záznam Referenční lna * * p r p r p r p r I = U + U = U + U + U U + U U = { } { } = I p + Ir + 2 I pircos arg U p arg U + r
26 Rekonstrkce hologram U = U I = U I + U I + U I + U U 2 * r r r r p p r r p.
27 Literatra M. Řeřábek Optická Forieroa transformace DP FEL ČVUT Praha Klíma M. - Páta P.: Optical JTC Applications in Biomedical Image Processing In: Biomedical Engineering and Edcation. Prage: CTU 2002 s Klíma M. Páta P. Kaiser J.: Výka fotonických metod zpracoání informace. Praha. Katedra radioelektronik
Simulace zpracování optické obrazové informace v Matlabu. Petr Páta, Miloš Klíma, Jaromír Schindler
Simulace zpracování optické obrazové informace v Matlabu Petr Páta, Miloš Klíma, Jaromír Schindler Katedra radioelektroniky, K337, ČVUT FEL Praha, Technická, 166 7, Praha 6 E-mail: pata@fel.cvut.cz, klima@fel.cvut.cz,
VíceEXPERIMENTÁLNÍ A SIMULAČNÍ SADA ÚLOH Z FOTONIKY
EXPERIMENTÁLNÍ A SIMULAČNÍ SADA ÚLOH Z FOTONIKY Martin Řeřábek, Petr Páta ČVUT, Fakulta elektrotechnická, katedra Radioelektroniky Abstrakt V rámci přípravy nového předmětu Obrazová otonika byla vytvořena
VícePříklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)
Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do
Vícez ), který je jejím Fourierovým obrazem. Naopak obrazová funkce g ( y, objeví v obrazové rovině bude Fourierovým obrazem funkce E(µ,ν).
Prostorová filtrace Uvažujme uspořádání na obr. PF-1. Koherentně osvětlený předmět leží v předmětové rovině yz yz. Optickým systémem je v rovině yz (obrazová rovina) vytvořen obraz tohoto předmětu. V ohniskové
Více3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým
VíceSvětlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
VíceKonstrukční varianty systému pro nekoherentní korelační zobrazení
Konstrukční varianty systému pro nekoherentní korelační zobrazení Technický seminář Centra digitální optiky Vedoucí balíčku (PB4): prof. RNDr. Radim Chmelík, Ph.D. Zpracoval: Petr Bouchal Řešitelské organizace:
VícePraktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
Víceů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť
Víceé č í é ě í ž ý Ú á í ž ý í ý Á Í ÁŘ É Á áš í ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é á í í ó á í é č á ú ě ý á í ý žň á í í é ó ó é í á ěř í č í á ů ř ě é ář é á í ář é á á
VíceŠ Á ž Ě Ý ž ř Ě Í š ž ž š ř ů š ř ó ó ř ú é ž é é ž ř Á Š Í Á ž Ě Ý Ě Á Í ž é ú ř é ž é é é ů é š ú ž é é ř é ž é š ů ž ř é é ž ř é é ž ř é é ž š ř é é ž é ů ř ž š ů ž ř ů ž é ů ř ú ř é é š ů ž é ů ř é
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 10: Interference a ohyb
VíceAplikace III. příprava prostorových stavů světla. využití digitální holografie. výpočet hologramu. t A. U + U ref. optická rekonstrukce.
OPT/OZI L10 Aplikace III příprava prostorových stavů světla využití digitální holografie výpočet hologramu t A U + U ref 2 optická rekonstrukce obvykle nakloněná rovinná vlna U out t A U 2 + U ref 2 +
VíceFourierovské metody v teorii difrakce a ve strukturní analýze
Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze
VíceMĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbranu, část
MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbran, část 3-12-1 Výkový materiál Číslo projekt: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výky prostřednictvím ICT
VíceVibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Více4 Příklady Fraunhoferových difrakčních jevů
47 4 Příklady Fraunhoferových difrakčních jevů 4.1 Fraunhoferova difrakce na obdélníkovém otvoru 4.2 Fraunhoferova difrakce na stěrbině 4.3 Fraunhoferova difrakce na kruhovém otvoru 4.4 Fraunhoferova difrakce
VíceDUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla
projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická
VíceFyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Víceš ě É š é Ř É Á é Áě Ž é ě ě ě é ů ž ě ě š ž é ě ůž ě ě ž ě Ž ě é é ů ě Ž Á É ů ž é ě ů ž é ě š ě ě š ě ďé ě ě ě š ž é é š é ť Ť š ď ě ě ě é ě é ž é š ě ž ě ž ě é Ž ě ě é ď é ě ž ě ůž ž ů ě š ě ě ě š ůž
VíceAnalýza a ověření metody měření indexu lomu vzduchu pro laserovou interferometrii
Analýza a ověření metody měření indexu lomu vzduchu pro laserovou interferometrii Vedoucí práce: Ing. Zdeněk Buchta, Ph.D. Bc. Tomáš Pikálek 21. června 216 Obsah 1. Cíle práce 2. Motivace 3. Metody měření
Více2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
VíceCZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24
MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní
Více??): Radiová oblast vlnové délky od kilometrů po 0.1 m, záření se generuje a detekuje pomocí
Měření spektra světla Spektroskopie označuje metody určení frekvence ν resp. vlnové délky λ = c/ν elektromagnetického záření. Celé elektromagnetické spektrum lze rozdělit do podoblastí (viz obr.??): Radiová
Více#(, #- #(!!$!#$%!! [2], studiu difraktivních. #!$$&$.( &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!(#!! #!!! $ % *! $! (!
. Úvod!"!!!#$%!!!&'!!#$%!!!& # vlnovým!!*!!#$*$! #!!&!!!$%!# #!!$ % '!!&!&!!#$!!!$!!!$ s #!!!*! '! $ #, #- #!!$!#$%!! [], studiu difraktivních #!$$&$. &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!#!!
VíceFyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
VíceFyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
VíceLaboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan
VíceRecenzent prof. RNDr. Jan Peřina, DrSc.
Recenzent prof. RNDr. Jan Peřina, DrSc. Výsledek publikovaný v této monografii byl získán za finančního přispění Ministerstva školství, mládeže a tělovýchovy v rámci podpory projektu výzkumu a vývoje LN00A015.
VíceJméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Více1 Zadání. 2 Úvod. Název a číslo úlohy 6 - Dvouvlnové směšování ve fotorefraktivním materiálu a fázová konjugace. Měření provedli Marek Vlk Vypracoval
Název a číslo úlohy 6 - Dvouvlnové směšování ve fotorefraktivním materiálu a fázová konjugace Datum měření 7.12.2015 Měření provedli Marek Vlk Vypracoval Marek Vlk Datum 2.1.2016 Hodnocení 1 Zadání 1.
Víceš Í ň ů ď š ů š ů š Ú Í Žď ň ů ú ů š ů š ů Ž ú ú Ž ůž ů Í ú š Ž š Ž š š ů ů Ž ů š ů š ů š Ž ů Ž ů š ů š ů ť ť ů ú ů ů š š ú š š š ú š š ů ů š Ž š š ů š Á ů Ž š ůž ú ů š ů š ů ů š ů ů ůž ů ú š ů š ú š ú
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Víceť Ť Ť Ť Š Á ň É ť Š ň ÍÍ ň ť ň Ť Ť Ť Í Í Ó Ť Ť Í ň ň Ť Ť Ť Í ň ť Ť ň ň ň Ť ň ň ň Ť ň Í ř Ť ť ň Ť Ž ň Ť Ó Ť ť ň ň ř Í Í Ť ň Ť ň Í ř Ť Í ň ň ň ň ť Ť ť ť ň ť ť ň Ť ť Í Ť Í Í ň Í Í ň Ý Ě ň Ť Í Ť ň É Ť Í Í
Více- Ideálně koherentním světelným svazkem se rozumí elektromagnetické vlnění o stejné frekvenci, stejném směru kmitání a stejné fázi.
P7: Optické metody - V klasické optice jsou interferenční a difrakční jevy popisovány prostřednictvím ideálně koherentních, ideálně nekoherentních, později také částečně koherentních světelných svazků
Více(. ) NAVIER-STOKESOVY ROVNICE. Symetrie. Obecně Navier-Stokesovy rovnice: = + u. Posuv v prostoru. Galileova transformace g U : t, r,
NAVIER-STOKESOVY ROVNICE Symetrie Obecně Navier-Stokesovy rovnice: D = +. = g Ω p + ν + Dt t D +. = 0 Dt (. ) Posv v prostor space g : t, r, v t, r +, v IR time Posv v čase g τ : t, r, v t + τ, r, v τ
VíceHolografie pro střední školy
FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CENTRE OF COMPUTER GRAPHICS AND VISUALIZATION Holografie pro střední školy CZECH REPUBLIC Petr Lobaz
VíceTeorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
VíceZobrazování s využitím prostorového modulátoru světla
Zobrazování s využitím prostorového modulátoru světla Technický seminář Centra digitální optiky vedoucí balíčku (PB4): prof. RNDr. Radim Chmelík, Ph.D. Řešitelské organizace: Pracovní balíček Zobrazování
VícePřednáška Omezení rozlišení objektivu difrakcí
Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové
VíceOptika a nanostruktury na KFE FJFI
Optika a nanostruktury na KFE FJFI Marek Škereň 28. 11. 2012 www: email: marek.skeren@fjfi.cvut.cz tel: 221 912 825 mob: 608 181 116 Skupina optické fyziky Fakulta jaderná a fyzikálně inženýrská České
VíceTransformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
VíceÁ ÁŽ É Á ž Č ěž ě Č Č Í ě š ú ž ě ě ň ň ť Č ě Ý ě ž ďě Ú Č ě Č ť ě Í ě ď ž ž ž ě ě Í ě ž ň Č Ž š Í ě ě Č ž ě ě Č ě ě ě ž ě š ň ě ě ě Í š ž ž ě ž ž ě Í ě ž ě š š š ž š Ž š ó Í Ž Í Í Ó ž ě Č ž ě ě ě ž Č
VíceFYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.
Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,
VíceVLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
VíceObsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dě konstrukční úlohy dle části po. bodech a jedna úloha ýpočetní úloha dle části za bodů. Ústní část jedna
VíceProč (a jak) učit lineární algebru na technických školách. Zdeněk Dostál
Nadpis Proč a jak čit lineární alger na technických školách Zdeněk Dostál Katedra aplikoané matematiky 470 FE VŠB-U Ostraa Projekt MLeden 00 Osnoa Náze prezentace Motiace a cíl přednášky Přehled základních
VícePoznámky k Fourierově transformaci
Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené
VíceVÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI DIFRAKČNÍCH JEVŮ V OPTICE
VÝUKOVÝ SOFTWRE RO NLÝZU VIZULIZCI DIFRKČNÍCH JEVŮ V OTICE J. Novák,. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v raze bstrakt Difrakcí se rozumí ty odchylky v chování elektromagnetického
VíceÚloha č.6 Dvouvlnové směšování ve fotorefraktivním materiálu a fázová
Úloha č.6 Dvouvlnové směšování ve fotorefraktivním materiálu a fázová konjugace 1 Teoretický úvod Dvouvlnové směšování neboli dvouvlnová interference ve fotorefraktivním (FRV) materiálu je proces, který
Více12 Rozvinutelné a zborcené plochy
1 Rozinutelné a zborcené plochy ÚM FSI VUT Brně Studijní text 1 Rozinutelné a zborcené plochy 1. 1 Délka analytické křiky 1. Délka analytické křiky: je rona součtu délek oblouků l ohraničených body t ;
VíceInterference a ohyb světla
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Interference a ohyb světla Jméno: Ondřej Ticháček Pracovní skupina: 7 Kruh: ZS 7 Datum měření: 25.3.2013 Klasifikace: Interference a ohyb světla 1 Zadání
VíceM I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
VíceHolografie. Marek Škereň. Základní praktikum z optiky a optoelektroniky 12ZPOP
Holografie Základní praktikum z optiky a optoelektroniky 12ZPOP Marek Škereň Skupina optické fyziky Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze http://optics.fjfi.cvut.cz
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
Víceť š ď š š Ž š š š ž š Ž š š š žď ď Ž Ž š šť ť ž žď ú š š ž ž š ž ů ž š Žď š š ž ž ž š ž ž ž ž š š š ž Ů ť ž ž ž Ě š š ď ž ž ď Á Ž ž Ž ď ž š š ť š ž ž Á ť š ž ž ž ž š š ď šš ž š š ž š š ť Ý Ú ž š ž š ž
VíceMezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,
Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je
VíceMetody digitální holografické interferometrie ve fyzice dielektrik
Fakulta mechatroniky, informatiky a mezioborových studií Metody digitální holografické interferometrie ve fyzice dielektrik Pavel Mokrý Otázka!? 11mm 15mm Tloušťka 1mm 10. 2. 2017 TESEUS udržitelné a efektivní
VíceSpektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
VíceFRESNELOVA NEKOHERENTNÍ KORELAČNÍ HOLOGRAFIE (FINCH)
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PHYSICAL ENGINEERING FRESNELOVA NEKOHERENTNÍ
VíceKTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
VíceK Mechanika styku kolo vozovka
Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li
VíceEXPERIMENTÁLNÍ METODY I 17. Optické vizualizační metody
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 17. Optické vizualizační metody OSNOVA 17. KAPITOLY Úvod do optických
VíceFRESNELOVA NEKOHERENTNÍ KORELAČNÍ HOLOGRAFIE (FINCH)
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PHYSICAL ENGINEERING FRESNELOVA NEKOHERENTNÍ
VíceMaticová optika. Lenka Přibylová. 24. října 2010
Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek
VíceĚ Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í
VíceZÁKLADNÍ ČÁSTI SPEKTROMETRŮ
ZÁKLADNÍ ČÁSTI SPEKTROMETRŮ pro atomovou spektrometrii valenčních elektronů (c) -2010 Dělení metod atomové spektrometrie (z hlediska instrumentace) Atomová spektrometrie valenčních elektronů UV a Vis (+
VíceOd kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
VíceMěření malé deformace předmětu pomocí metody korelace. polí koherenční zrnitosti
Měření malé deformace předmětu pomocí metody korelace polí koherenční zrnitosti Pavel Horváth, Petr Šmíd, Ivana Vašková, Miroslav Hrabovský Koherenční zrnitost [1, 2] je velmi známý optický jev. Lze jej
VícePOČÍTAČOVÁ SIMULACE VLIVU CHYB PENTAGONÁLNÍHO HRANOLU NA PŘESNOST MĚŘENÍ V GEODÉZII. A.Mikš 1, V.Obr 2
POČÍTAČOVÁ SIMULACE VLIVU CHYB PENTAGONÁLNÍHO HRANOLU NA PŘESNOST MĚŘENÍ V GEODÉZII A.Mikš 1, V.Obr 1 Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:
VíceSvětlo elektromagnetické vlnění
FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla
VíceVÝUKA OPTIKY V MATLABU. Antonín Mikš, Jiří Novák katedra fyziky, Fakulta stavební ČVUT v Praze
VÝUKA OPTIKY V MATLABU Antonín Mikš, Jiří Novák katedra fyziky, Fakulta stavební ČVUT v Praze 1. Úvod Optika je vědní obor zabývající se vznikem, šířením, interakcí s látkou a detekcí optického záření
VíceUniverzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
VíceAkustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceDifrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Více1 3D snímání: Metody a snímače
1 3D snímání: Metody a snímače Nejprve je potřeba definovat, že se v rámci tohoto předmětu budeme zabývat pouze bezkontaktními metodami zisku hloubkové informace. Metody pro 3D snímání lze dělit v podstatě
Více18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách
18 SMĚRY HLAVNÍCH DIFRAKČNÍCH MAXIM PŘI DIFRAKCI NA MŘÍŽKÁCH 1 18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách V odst. 2.1 bylo vysvětleno že vlnová funkce záření difraktovaného
VíceSvazková optika Zdeněk Bouchal Učební pomůcka pro studenty oboru Přístrojová optika 2. ročník (1 h př./ 1 h cv. týdně)
Inovace a zvýšení atraktivity studia optiky reg. č.: CZ.1.07/..00/07.089 Svazková optika Zdeněk Bouchal Učební pomůcka pro studenty oboru Přístrojová optika. ročník (1 h př./ 1 h cv. týdně) Tento projekt
VíceNeideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
VíceMASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář
MASARYKOA UNIERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE květen 2008 I Měření vzdáleností ve vesmíru 1) ýpočet hodnoty pc a ly ze známé AU a převod těchto hodnot. 1 AU = 150 10 6 km Z definice paralaxy
VíceModelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
VíceProblémy slunečních pozorování a úvod do jejich zpracování
Problémy slunečních pozorování a úvod do jejich zpracování Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Problémy (nejen) spektroskopických
VíceAkustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
VíceChemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
VíceMartin Ferus. Ústav fyzikální chemie Jaroslava Heyrovského
Martin Ferus Ústav fyzikální chemie Jaroslava Heyrovského OPTOAKUSTIKA FTIR ÚFCHJH LASER Princip infračervené spektroskopie I E ψ ( x ) = E sin( kx) B I 2 = ψ k E = hν 0,01 1 10 2 10 4 10 5 10 6 10 8 10
Více7.4 Domácíúkol-Hopík. mgz z >0 z <0. 1. Řešení pomocí WKB metody:
7.4 Domácíúkol-Hopík Částice o hmotnosti m hopká v homogennímnapř. gravitačním) poli, přičemž od podložky se odráží bez ztráty energie. Uvažovaný potenciál je { mgz z > Vz) z
VíceMetody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
VíceÁ Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
VíceInterference a ohyb světla
nterference a ohyb světla Pomůcky: železná deska s magnetickými stojánky, He-Ne laser Lasos LGK 752P (594 nm, 5 mw), He-Ne laser Lasos LGK 7770 (543 nm, 5 mw), 2 zrcadla, dělič svazku (Abbeho kostka),
VíceĚ É Ě ů ř ů ř ř ů ď Ú ď ů ž Í ř úř ů ř ů ž ž ď ů ů ů Ž ř ř ů ž ř ů ř ů Ť ž Ž ř ů ř ž ř ř ř ť ž ř ú ř Ž ř Ž ů ů ž ř ř ř ú ž ř ž ž ž ž ž ů ř ž ů ž ů ž ž ž ž ž ř ú žď ď Ž ř řď ů ž Ž ž ž ř ů ž ž ř ú Í ů ď
Více1 Rezonátorová optika
1 Rezonátorová optika Optické rezonátory jsou zařízení, ve kterých lze akumulovat optickou energii. Mohou také působit jako frekvenční filtr. Obojího se využívá v laseru, kde je aktivní prostředí, které
VíceLineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Více