KEV/RT 2. přednáška. EK
|
|
- Viktor Netrval
- před 6 lety
- Počet zobrazení:
Transkript
1 KEV/T. řednáša Marin Janda EK
2 Oaování - lineární regulace P roorciální reguláor onsana malá odchyla malý výsu velé vhodné malé
3 Záladní myšlena návrhu reguláoru chceme co nerychleší reguláor, ale nesmíme o řehna, aby sousava nebyla říliš miavá nebo doonce nesabilní oužieme riérium sabiliy, erým budeme onrolova miavos Nyquisovo riérium ednoduché, osyue hodně informací e řeba zná: maemaicý ois regulované sousavy frevenční charaerisiy omy uzavřená a rozoená oevřená smyča
4 Obrazový řenos éž oeráorový K čemu o e: Vhodný maemaicý ois sousavy ro návrh reguláoru Definice: Poměr Lalaceových obrazů fcí na výsuu a vsuu do sousavy vsuf sousava výsuf Obrazový řenos sousavy: L f L f ozn.: v lierauře časo s míso
5 Nuné minimum z Lalaceovy ransformace a derivace inegrál nemiavé nelumené miy < 0 lumené miy e originál df d Ú f d e sin a a sin obraz - f0 - a - a
6 Obrazový řenos řílad U I L? u i L L U I L I U I L I U d di L i u U / /
7 Obrazový řenos řílad u u 0? U C U U d du C u u i u u i U U C - - -
8 Obrazový řenos řílad U U C U U U C U U C U U - C U U
9 Obrazový řenos výhody různé bloy z různých oborů maí yově sené řenosy, eorie regulace e roo univerzální ro všechny obory věšina sousav lze rozloži na něoli yových bloů V KEV/T osačí znalos 4 yů bloů na rozdíl od oisu nař. dif. rovnicí obsahue ouze aramery oisované sousavy nesou omíchány se vsuními/výsuními signály
10 revenční řenos analogicý s obrazovým, ouze míso Lalaceovy ransformace oužia ourierova ro odvození lze ouží symbolico-omlexní meodu maemaici mohou mí výhrady vsuf sousva výsuf
11 revenční řenos řílad U I L u i L L U I L I U I L I U U / / ro sousavy vysyuící se v rámci KEV/T lze mezi obrazovým a frevenčním řenosem řecháze oužiím formální záměny ω
12 revenční charaerisiy - oužií viz: KTE/TE vsu výsu A A zesílení: AA /A fázový osun: e-li výsu zožděn, <0 zesílení i fázový osun sou obecně závislé na graficé znázornění A, frevenční chary
13 revenční charaerisiy graficé vyádření frevenčního řenosu frevenční řenos omlexní číslo A e s aramerem ω ořeba ro návrh reguláoru i v běžném živoě slucháa v omlexní rovině A db 0 loga logarimicé Im e A
14 revenční chary řílad oužií vsu 7sin33 výsu,9 7sin33 -, A [db] 33 A9,dB, [rad/s] [rad/s] -40 [deg] -73 -,7rad
15 revenční chary souvislos s časovým růběhem Př.: odezva na ednoový so blou s řenosem 0. blo. řádu, éž zvaný aeriodicý blo odle nemiavé odezvy 0 A [db] [rad/s] [rad/s] -40 u u [deg] U U C -00
16 Σ..9, Σ.. Harmon.: 7, 9, 3, 5 revenční chary souvislos s časovým růběhem
17 Logarimicá osa logarimus na oliáou musím umocni zálad, abych dosal argumen logarimu ř.: log log A A logb N N logb log000 log0 3 3 log0 3 sočía nuly log0,00 log log0-3 sočía nuly loga B loga logb
18 Logarimicá osa K čemu o e? Na edné ose V ednom grafu lze řehledně zobrazi ohromadě malá a velá čísla. Co e o deáda? Vzdálenos mezi číslem a eho deseinásobem, res. deseinou. Tedy mezi 0, a e sená vzdálenos ao mezi 0 3 a 0 4, sená ao mezi,34 a 3,4, sená ao mezi a /0.
19 Logarimicá osa sou-li oisy osy vynesené ao mocniny čísla 0, exoneny voří lineární sunici. v ůlce mezi a 0, edy mezi 0 0 a 0 není 5, ale 0 0,5 0 3
20 Logarimicá osa vynesení čísla 3 ři zvoleném měříu deáda 40mm 3 0 log3 0,, aže leží, deády vravo od, res. 0, deády vravo od 0, což odovídá 44mm od res. 4,4 mm od 0
21 Logarimicá osa odečení čísla ležícího 7 mm vlevo od 0-3 ři měříu deáda 50mm 7mm 7/50 deád 0,54 deád číslo e 0-3-0,54 0-3,54,884e-4 - roože vlevo oli e deád mezi 0,456 a 9,87 0,4560-0,34 9,870 0,994 e mezi nimi 0,994--0,34,335 deád
22 zesilovač zesilue a-rá Zesílení v db nebo o A db, de A0 loga decibel, roč 0x a ne 0x? ůvodně ro ausicý výon, u výonů 0x zesílení 0x e sené ao zesílení o 0dB zesílení 000x e sené ao zesílení o 60dB zesílení o -40dB e sené ao zesílení 0,0x neboli zeslabení 00x
23 Záladní yové bloy onsana inegrační aeriodicý PI-reguláor blo druhého řádu PID-reguláor řenos rozbor chování frevenční charaerisiy
24 80 70 Záladní yové bloy rozdělení složiých řenosů na yo ednoduché [ C] změřené [s]
25 Záladní yové bloy - onsana řenos řílady: ideální zesilovač, roorciální reguláor frevenční charaerisiy: harmonicý signál bez ohledu na frevenci o vynásobení onsanou nemění fázi, ouze amliudu úměrně násobící onsaně
26 Záladní yové bloy - onsana frevenční charaerisiy:
27 Záladní yové bloy - onsana odezva na so: odezva na ednoový so zv. řechodová charaerisia, velmi užiečné ro rychlou hrubou idenifiaci neznámého miavos, zesílení odezva na Diracův imuls imulsní charaerisia
28 Záladní yové bloy - inegrace řenos časová onsana, nasavue rychlos inegrace čím menší, ím rychleší řílady: ohybová rovnice v m a m J Ú Ú m d dv d M d v0 0 m v
29 Záladní yové bloy - inegrace frevenční charaerisiy názorně: Ú sin d - cos sin - výsuní signál bez ohledu na frevenci vždy zožděn o / ři zvěšení frevence 0x. o ednu deádu se 0x zmenší zesílení. zmenší se o 0dB amliudová charaerisia má slon -0dB/deádu
30 Záladní yové bloy - inegrace frevenční charaerisiy sočené: A 0log 0log 0log 0log ˆ Á Ë Ê A db A 0 ro A db de - 0dB /
31 Záladní yové bloy - inegrace frevenční charaerisiy sočené: 0 } e{ } Im{ arcan - - arcan 0 arcan
32 Záladní yové bloy - inegrace neonečné zesílení ro ω0?
33 Záladní yové bloy - inegrace Odezva na ednoový so: vsu u ro 0.., očáeční sav výsuu y0 Y 0 výsu y Ú u d Y0 Úd Y0 Y říma locha od onsanou řibývá lineárně ro Y 0 0 nainegrue za s hodnou / ro Y 0 0 nainegrue za do 0
34 řenos Záladní yové bloy aeriodicý. řádu časová onsana, nasavue rychlos čím menší, ím rychleší saicé zesílení v usáleném savu, viz za chvíli časové růběhy řílady: vinuí mooru L na začáu řednášy, eloa ělesa řineseného do rosředí s onsanní eloou, moduláor PWM aeriodicý nemá eriodu nemiá viz za chvíli časový růběh
35 Záladní yové bloy aeriodicý. řádu Amliudová logarimicá frevenční charaerisia A db 0 log 0 log 0 log Asymoy >> ª A db 0 log 0 log - 0 log << ª A db 0log
36 Záladní yové bloy aeriodicý. řádu Průsečí asymo 0 log Z 0 log 0 log - 0 log Z 0 log 0 log Z 0 Z Z
37 Záladní yové bloy aeriodicý. řádu Nevěší odchyla suečné chary od asymoicé e v růsečíu asymo Suečná Ê 0logÁ Á Ë Asymoicá 0log Odchyla dB ˆ 0log - 0log
38 Záladní yové bloy aeriodicý. řádu A db Ê ˆ 0logÁ Ë 0log / Ê 0logÁ Á Ë ˆ
39 Záladní yové bloy aeriodicý. řádu ázová logarimicá frevenční charaerisia - - e - Im Ê arcgá Ë Æ 0 Æ Æ Im e ˆ Ê - Á Á arcg Á Á Ë 0 - ˆ arcg -
40 Záladní yové bloy aeriodicý. řádu velé ω chování ao inegrace malé ω chování ao roorce, zesílení
41 Záladní yové bloy aeriodicý. řádu Odezva na so: B A S Y S obraz U S veliosi so u U Y U Y Æ, S S S S Y S A B B A S A B A A B A S fi 0
42 Záladní yové bloy aeriodicý. řádu Odezva na so: ˆ Á Á Ë Ê - - ˆ Á Ë - Ê e S e S S y S S S S Y a e a - nemiavé
43 Záladní yové bloy PI reguláor řenos P I PI Ê Á Ë ˆ
44 Záladní yové bloy PI reguláor Amliudová logarimicá frevenční charaerisia db A log 0 log 0 ª << Asymoy log 0 log 0 log 0 - ª << db A db A log 0 ª >>
45 Průsečí asymo Záladní yové bloy PI reguláor 0log Z 0log 0 log - 0log 0 log 0log Z Z Z 0 Z
46 Záladní yové bloy PI reguláor Nevěší odchyla suečné chary od asymoicé e v růsečíu asymo Suečná Ê 0 logá Á Ë Asymoicá Ë ˆ 0log 0log 0log Odchyla 0 3dB
47 Záladní yové bloy PI reguláor A db 0log Ê Á 0 log Á Ë ˆ / Ê 0log Á Ë ˆ
48 Záladní yové bloy PI reguláor ázová logarimicá frevenční charaerisia e Im - Ê arcgá Ë Æ 0 Æ Im e Æ ˆ Ê arcg Á Ë ˆ - ozor na vadran!
49 Záladní yové bloy PI reguláor malé ω chování ao inegrace, velé zesílení ro ω0? velé ω chování ao roorce, zesílení
50 Záladní yové bloy PI reguláor Odezva na ednoový so: onsana inegrace
51 Záladní yové bloy ahá na courseare/cvičení
52 Uzavřená vs. rozoená oevřená smyča ořeba ro Nyquisovo riérium sabiliy o Y W Y W oevřená smyča ro Nyquisovo riérium sabiliy nesouvisí s řízením v oevřené smyčce raděi rozoená
53 Nyquisovo riérium sabiliy A db o řezu 0-80
54 Nyquisovo riérium sabiliy A db o na sabiliu uzavřené smyčy usuzueme z frevenční chary rozoené oevřené smyčy 0-80 B bezečnos ve fázi
55 Nyquisovo riérium sabiliy a naresli o Y o W Amliudová logarimicá charaerisia 0 log o 0 log 0 log 0 log Charaerisia o e součem charaerisi, eré sou zravidla ednoduché
56 Přenos uzavřené smyčy y x e y x y x Æ m m V Z W y y y y e y e y ± ± ± Æ m m na T bude zv W W ª fi << ª fi >>
57 Přílad návrhu P-reguláoru regulace rychlosi malého ss mooru na říšě čverečovaný aír, ahá měnič ova ohybová rovnice u ř u i
58 Přílad návrhu P-reguláoru regulace rychlosi malého ss mooru ime [s]
1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
VíceMěřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení
Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí
VíceSpektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský
Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového
VíceIMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
VíceI. Soustavy s jedním stupněm volnosti
Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé
Více1 - Úvod. Michael Šebek Automatické řízení
1 - Úvod Michael Šebek Auomaické řízení 2018 9-6-18 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka,
VíceSYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU
Křua Jiří, Víe Miloš (edioři). Sysémové onfliy. Vydání rvní, nálad, Vydavaelsví Univerziy Pardubice: Pardubice,, 56 s. ISBN 97887395443. SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Miroslav Barvíř Konec. a
Více1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi 23-2-16 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo)
VíceOBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI
OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka
Vícezadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.
Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)
VíceLABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická
Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní
Víceé ť ř ý ý ť ř ý ř ý ť ř ý ř é ř ť ř ý Ú Ů Č ř ú Ů ý Í ř é ř é ř ý ů š é š é š š ý
é é úř é ř ů ď ď ú ů ř é ř ř ú é Ž ř é é ů é ř ř ů é ř ř é ú ř ř š ů š é ř ř ř é ť ř ý ý ť ř ý ř ý ť ř ý ř é ř ť ř ý Ú Ů Č ř ú Ů ý Í ř é ř é ř ý ů š é š é š š ý ť ř ý úř Í ř ř ý Ž ý ý ř š Ť ý ů Ř ý Ť š
VíceREGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ
REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém
VíceMatematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI AKULTA ELEKTROTECHNICKÁ Katedra eletromechaniy a výonové eletroniy BAKALÁŘSKÁ PRÁCE Vývoj aliace ro výuu regulační techniy Václav Šeta 06 Vývoj aliace ro výuu regulační
Více1.5.4 Kinetická energie
.5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se
Víceě ř é š ó ó š Š Í ř ř ř ý ř é ř ě ě Ú ř Ú ž ž ř š ě ř š Í
Í š ě ř é š ó ó š Š Í ř ř ř ý ř é ř ě ě Ú ř Ú ž ž ř š ě ř š Í Í Á Í Ó Ú é š ě ý ě é é Ť ú ř é ě Ť š é ěř ů ý Í Š ě ů ť ě ě ť ř ř ěš š ú š ě ŽČ Í é ě ž Š ě ů ě Š é ř ě ěš é ř ý Í ý ř ě ěž ř é Žů Ž ě ě ř
VíceLaplaceova transformace
Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak
VíceOtázky ke Státním závěrečným zkouškám
Oázky ke Sáním závěrečným zkouškám jsou rozděleny do ří oblasí a sudenům bude oložena z každé oblasi vždy jedna oázka. Oblasi jsou rozděleny následovně :.Teorie řízení a umělá ineligence Sem aří okruhy
Víceé ř ř ř ě ř é é é é ž Č š é š ř ň ž ř ť Č š é é ú ě ě ů é š ž ě š ž é ř é ž ř ě š ě é š ž ě ě š ř ů ž é ě ž é š ž ě š ň ž ř ě ř ř ň é ř š é ř ř š ř š
ř é é é š ě ě Ú ř Ř Č ě ř š ř é ř ž ž Ř Č ř Ť é é ž ž é ž ž ů š ž ě š š ž ě ě š ř ů ř ě ř ř é ě ů é ě ř ž š ě ř Č é é ř ř ř ě ř é é é é ž Č š é š ř ň ž ř ť Č š é é ú ě ě ů é š ž ě š ž é ř é ž ř ě š ě é
Více14. Soustava lineárních rovnic s parametrem
@66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné
VíceČ š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š
ý š Ú ž š ž š ý ž ř Ť šť Č ý ň ř ž ú š ý ž ý ř ů ž ž ř ř ý ů š ň ý ú ř šť š ý ú ž ý ú ó ú š š ů ř Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ř Ž ý
VíceČ Á Í ě ů é ž ň ž ř é ě ř ě ň ř ň ě ý ě ý ó ů ř ž é Ř ů ě ž ř ý ž ú ě ř ř ě ěš é ů ň ů é ň ú Ý ó ú ů ú é ř ů ž é žň ž ž é ě ý ě ý ó ý ř é š ý ý ý ýň ó
é šš úř ě Č š ě ž é é ě ř ě ěš ý ř ě ěš ý é é é ž ě ž é é ě ě ěš ě ěš ý ž ž ě ž é ř ě ěž é ž ý ž ě š é é é ř é žň ř é ž ě ř š ě ž š ř ž ě Ů ž ě é ž é é ř š é é ě é Ů ý ř š ř é Ů ý é Ž ž ě ř é ž ž ý ů ů
VíceCVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
VíceČ Í Č ř ž é ě Ú ř ě ř ě ř ě š ě é é ř š é ž š é é ě ř š é á ě á ž á ž ž é ú ř ě é é á ů ř š é ě á ě é ř ř ů á ě é á á š ě é ář ř ů á ě é š ě á á é ů ů
Č Í Č Í ě ď Í Ň ŘÍ Ů Ů ř á é Č á ž ř ú Č ě á é á ě š ě á ř ů ř ě ě š ě ě ř ů ů é ř ě ů ž ů ě ž ř ůú ěš ě ů ů ř ě ě ěř é ř š ě ž ř ě ř š ř ů á ů á ů ě á š ě á Í á ě š é é é š ě ů á á á ě ě ě ř á ř ě á š
VíceZáklady elektrotechniky
Zálady eletrotechniy Přednáša Zesilovače s tranzistory, operační zesilovače Stpeň se společným emitorem (SE) Pracovní bod tranzistor je vázán: jeho charateristiami podle b h (i b, ) i h (i b, ) a rovnicí
Víceí í í ě á ří ě ó í ř í í í úř ř í á í í úř ří í úř í á í á í í úř á í í í í á ž í á ě á í í í í ú í á í í á ě í í á ě ří í ř í í í í áš í úř ě í ř á í
Í ÚŘ É ŘÍ í úř ří ž á ř ř ř á á ť Í Ř Í á á í úř ří í úř ří š í á Ú í á á í í řá í á ě í ě ší ř á í á ú í í íí í ř ž ž í á žá á í í í ě í í á ěí ěí á í á ďě ř á í á á í á áš ě šíú ě ú í ří í ř á í ú í
VíceÍ š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á
ě Ý á ě ř Ť ř ě é ě č á á č Í ě ě š ř ů á č č ú č ů ě ě š ř ů á ě ř š á ř šš é é ďě á á š á ě ě š ř ů á á ě č Ú á č č Í á ě úř á ě ř ě č á č č ř ě é á á Š á ř úč ř ě č ř ě é úč ř ě á Ť š ě č ů Ť š á ě
Víceč ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í
ňé ď ď É ý ě á ě ž ť á é áž ě ě ě ř á áž ě áž ě ň Í Í š Á Í Ó á ď ů á ď á á á ě á ý ě é Í Í é á ě é é Ú ý ů ň ě é á á ů ě á á áš é á á á á á á á ť Č ď ů ý ů ě á ď ý ď ď ý á ě ů á ď á á ů é á á ě ý á ý
Víceň ú Ž ů ů ů ú ů Č ú ú Ž ů ú ú ů ů ů ů ů ň ů Ť Ť ť
ť ň ú Ž ů ů ů ú ů Č ú ú Ž ů ú ú ů ů ů ů ů ň ů Ť Ť ť Č ú É Ť É Ť É Ť ď ď ň ď ď ů ů ů ť ů Ž ů ň ů ů ů Č ů ň ť ň ň ů ů Ú Ú Ý ů ů ů Č ů ú ů ů ů ů ů ů Ř ú ů ú ů ů ů Á Ů Á Ů Ú ů Š ů Š Č ů ů ů ů Č ů ú ď ů
Víceý ý ý ů ě ý ď ý ů ě ý ů ý Á ý ě ý ý ů Č Č Č Č Č ý ž ý Č š Č ČÍ š š Č Č ě ú Č Č ě Č ě ě ý ě ů ů Č Č š š Č Č Š Č Č š ž Č ž Č Č Č Č Č ú Č ě Č ě ú ú ž ý ý
ě ý ú š ž ě š ě š Ý ť ů ť ť ď ť ě ú ž ě ě Č Č š ě ý ý Á Í Á ÁŠ ě ý Ú Č š ě ě ě š ý ú ě ě ě ý ů ě ě š ů Ú ú ě ě š ů ž žď ý ú Č Č Č Č Č Ú Ú ČÍ Ú ČÍ Ú Ú ž ú Š ě Č š ě ý Č Č ý ý ý ý ó ů ě ý Č ý ý ý ů ě ý ď
Víceř ě ř Í ě ý ě ě ť ů ž Ú ř ž ř ž ť ž š ú ý ř š ů ž ž ř ý ů š ě á ž ž á ý ý ž ř ý ěř ý á á ě á ě ž á ů ěž Ž ě ý Ž áš š ř ý á ř á á ě ž ř ě š ř ě á ž ě ý á ě ý ý ž š ň ě ž á áš ě ě á á š š š á á ář ě ě ž
Víceé ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř
Á É Ý ú é ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř Á Ě Ýú é ě ú ě ě ř ů Ú ě ř ů ů ú ě ř ě ř ň é ř ř ň é ř ř é ř ř ř é ř ů ř ěž é ř é ů ř
Víceá í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý
á ě ý ďě ř ě á č ý ů ě ž ě ý ě ý ý ě á ř ě ý š é é á á á ě ů á ě á á š é ó ě é á č ý ďě ě á á ý ý á Í š ě á é Í ř řě ž á ý č é ě á ě ě ůé ý č ů é ž á á ř ž á ň ý á á ě ř ý á ů š č á á ž á é č é ó ě á ů
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
VíceÁ ř ř ú ř ú š ů ě ů ú ř ř ž ěž ř ů ř ř ž ř ž ú ú ě ů ř šš ž ě ú ř ů ř ž ě ú ě š ř ů ř ž ě ú ž ř ů ě ú ú ř ř ěž ř š ů ůž ň ř ů ě ú ě ě ě ú ě š ř ů š ě
Í ří ě ř ú ě ř ě ř ú ř Í Í ř ř ú ů ě ě š ř ů ř ě ě ě ě ů ě ě š ř ů ď ř ě ž ž ěž ř ů š ě ř ě š ě Ř Ě ř ě ří ú ě ř ř ží ú Ú É Í š ř š ú ě ú ě ů ř ě ť Ú ř ě Á ř ř ú ř ú š ů ě ů ú ř ř ž ěž ř ů ř ř ž ř ž ú
Více5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:
5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích
VíceKIV/PD. Sdělovací prostředí
KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály
Víceš ž ý é é ů Ú ž š ž ú ů ý š é Š šť ů ň ý ý ý š ž é š é é é š ý ý ú ů ý é é é é š š š š ů Š š š ý ý š š ý š ž š ý ů é ý é é š š ú š é š š ý ý ů ý ů é ý
Č É Á Ů š ž ý é é ů Ú ž š ž ú ů ý š é Š šť ů ň ý ý ý š ž é š é é é š ý ý ú ů ý é é é é š š š š ů Š š š ý ý š š ý š ž š ý ů é ý é é š š ú š é š š ý ý ů ý ů é ý ž šť ý š é ž ý ů š š š ý š š ž š ů ď ů ů ž
Více2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Víceč Á Á Ú Ě č č č č č ú ř č Ž ů ů Ť ň Ž Ž ř č Ú č š ž š č ň Ě ú č ř š ř č Ž ú č ó ň Ž ůč Ř ň ň Ž Í ů č Íú č ř Ž ř ů ř úč Ú úč Ú ř š ú Í š ú ů ř š č óň É
Ř ů Ó š č č ř ř Ú Ě ř ř ž ž ň ň ň ř Ž ú ú Ž ú čú Í ů č č Ž č Úč Ú Ú ž úč ž úč č Ú úč č ů č č ň č úř š ú ň Ž Í ú ř č ú ř š ú ů ú ř Ž ž š Ž ř ř ůč ů ů úč Ú Ž š Ž ř ř ůč ů ů ř š ů š č č ř Ž Í č ů š č ř š
Více4. LOCK-IN ZESILOVAČE
4. LOCK-IN ZESILOVAČE Záladní princip Fázově cilivý deeor (PSD) s řízeným směrňovačem - vlasnosi Fázově cilivý deeor (PSD) s číslicovým zpracováním signál - vlasnosi Vysoofrevenční Loc-in zesilovač X38SMP
Víceřá ó á ú ú š š ř č é ě ě á é č ě š č č á ě í Ž š ě ř č é ž ř č é šč š ž é á č ř á ě á ě á é é ž í ř á é ď ě šč í šč ěšť čš ó ž é é ě ž é ď é ší ě ž é
é é ě í ří í é č á é ě í Ž é í ě ú ť á ď á ý ž ů é ď á ř é č ě ěšť é ě č č ě ú é í í ě í á é ě š ě í ý ý í ú í ó ď ý í ěž í ě á á í ě ý š ě í í é ď Č Á Č ý á ě ě ě ůž ř ě š ě á ě í á é ž í í á ý á á ž
Víceé ú ž é ř ř é ř š é š é é ý ů ř ž š ž é ž ý ů ý Ť ř ř ř ů ýš ýš ř úř š ž š š ů é ř é ř é é é é ř úř ů é é é ý é éň é é ů ž ř ý ž ř ý ř ř é é ž ř ý š é
Á Í Í ÚŘ Í Áš š Ř ť Č é Č Ý Ů ý ů ř Í Í Ě Ř Ř ÁŠ Í Í ý é Č ř é ý ů Č ů ř ž é ř é ř ú é ý úř ý úř é ý úř ý úř úř ř š ý ř ý ú ř š ř ů ř ž ř é é ů ž ď ú é ý Ů ž ř ů Ů ž ř š ř ů š é ř ú é ý ú é ú ž é ř ř é
Víceú Ž ý Č ý č ů č ý č ř ý ě ř ř ř ě ě ř ý č ě š č ž ř ř ě ř ě ý ů ý ř ý ý Ú ě ýů Ž š ž š Ž š ň Ž ý ý ř Ž ě č ýů ů Ž č ó ž ě ř ě ž ý ě ý ě ž ř č ý č ě ě
ó Á Ý Š Ý Á ÁŠ ť ř š š Č ř ě ý ž ň č ř ř ž ý č š ř č ěž č ú Ž ý Č ý č ů č ý č ř ý ě ř ř ř ě ě ř ý č ě š č ž ř ř ě ř ě ý ů ý ř ý ý Ú ě ýů Ž š ž š Ž š ň Ž ý ý ř Ž ě č ýů ů Ž č ó ž ě ř ě ž ý ě ý ě ž ř č ý
Víceš š ů š ě ů ě ů ž ú ě ů š ě ď ů ž š Ž ó ó ž š ě ě ž ě ě ě ú ě ě ť ě ě ú ž ž ě ě š ě ě ž ě š ě ů ůž š šš ě Ž ě š ě ě ě ě ě š Ž ů ž ě š ě š š ě Ú ů ě ž
ž ď ě ó ě ě ž ě ě ž ú ě ť ě ž ú š ď ě ě ě ě Ú ě ě ě ě ž ě ě ě ě ž š ě ž ě ě ě ž ě ď ě ž ó ď š š ů š ě ů ě ů ž ú ě ů š ě ď ů ž š Ž ó ó ž š ě ě ž ě ě ě ú ě ě ť ě ě ú ž ž ě ě š ě ě ž ě š ě ů ůž š šš ě Ž ě
Vícea excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3.
Řešené úlohy na ohnisové vlasnosi uželoseče Řešené úlohy onsruce uželosečy z daných podmíne řílad: Sesroje uželoseču, je-li dáno její ohniso F 1, ečna = T s bodem T doyu a excenricia e; F 1 [0; 0], T [5;
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
Víceč í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á
í úř úň ž ň ř ř í š ň í ó ř á ů á ň ň á í š ě áš ý ř ó š á á á íó á ň á Ř Á í ří ů á ý á í í řú ů ě í ě š ř ú á á ž ň í í í á á ň ř á í ú á Č ó Čá Ó í Č É řžňá ř ž ň ý á ň ó á ž ó ř ú ň á á ť ú á ěí ú
VíceKOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI
Koplexní dvobrany http://www.sweb.cz/oryst/elt/stranky/elt7.ht Page o 8 8. 6. 8 KOMPEXNÍ DVOJBNY - PŘENOSOVÉ VSTNOSTI Intergrační a derivační článek patří ezi koplexní dvobrany. Integrační článek á vlastnost
VíceĚ É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř
VícePráce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
VíceČ Ý Ě Č Ú Á Ý Ů Ý Ů ě ě Í ž ď ď ě ň ů ň ě ň Ý ů ň ň ň Íž ů ň ě Í š Í ú ó
ú Í ě ě ó ú ó ě ó ó ě ů ů ů š Č Ý Ě Č Ú Á Ý Ů Ý Ů ě ě Í ž ď ď ě ň ů ň ě ň Ý ů ň ň ň Íž ů ň ě Í š Í ú ó ž Ó ú ů ž ů Ý Í Ú ž ů ěž š ě ú ú Ú ž ů š Í ž ů ě ě ě ó šó Ú ó ž ě ů ó ó ě Ý Ú ó Í ó ň ů ž ů š ú ě
Víceí í á í ě ě ší ě í ě š á á š í á í í á ě á í Ž í ší á í á í ď ň á á Ó í í Ť á ě š ž í Ť ě í á í Ť Ž ě š š Ž š ě í á ě í á š ě Ú ě Ť ší í á á á á ďí ě
Ě Ě í á Ť í ě ň ž í á í ž á í ě ě ší ž á Í í í Ť í á í Ťí á ší í Í í í á í ž í ě á ě í í ě Ť á á á í á Ť ší á í ě ž ě Ťá áť í Í á í Ť á í á ěž ž á á í á í ě í Ť Ž á Ó á í ě í í í ě á í ě ší í í í ě í í
Víceú ž ž ě š ú ú Í ž ř ž ě ř ž ř Ě Ý ž ž ř ě ž ě š ě ň ů ú ž ř ř ě ř Ž ě ř ž š š š ř ě ů š ř ě ř ě ů ří Í ě ě š š ř ž ě Í ř ě ě ž ř ě ě ž ě ú Í ř Í ř ř ž
ě ž ž ě š ú š ě ú ž ň Ž ě ů š Č ř ř š ě ř ř ú ž ž ě š ú ú Í ž ř ž ě ř ž ř Ě Ý ž ž ř ě ž ě š ě ň ů ú ž ř ř ě ř Ž ě ř ž š š š ř ě ů š ř ě ř ě ů ří Í ě ě š š ř ž ě Í ř ě ě ž ř ě ě ž ě ú Í ř Í ř ř ž ž Ž ž
VíceDynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
Víceě ě ě ě š Ť ě š Ť š ň ě ě ž ě ě Ť ě ě ě ě ě Ť š ž ě ě ě Ť Ť š Í ěž ž ě ěž Á Ě Ě Á Ě É ě ě ě š Ž Ú ž ě ě š ě Ť š Ť ě Š Ť š Š Í ě š Ť ž ě š ě Ť
Á Á ŘÍ ě ě Í Ž š Ť Ť Ý ě ě š Ť ž ě ž ě ě ž ě Ť š ě ž Ó Ť š Ť ě ž ě Š ě ď Ť š Š ě Ť ě š ž ě š ě ě ě š ě ě ě ě š ě Ž Ť š ň Ž Ť ě ž ě šť ě ě ě ě ě ě ě ě š Ť ě š Ť š ň ě ě ž ě ě Ť ě ě ě ě ě Ť š ž ě ě ě Ť Ť
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
Více7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ
7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů
VíceČ Ý Í Ě Í Ú Í Á Ů Ý Ů Í Í ř ž ň ř ň ř ň ř ď ř ň ř ř ř ř Í ř Ž ř ť ř ž ď ř ř ř
ú ú úř ř ř Č Ý Í Ě Í Ú Í Á Ů Ý Ů Í Í ř ž ň ř ň ř ň ř ď ř ň ř ř ř ř Í ř Ž ř ť ř ž ď ř ř ř ř ž Í ř ž ř ř ř ř ž ú ú ř ó ť ř ř ú ř ž š ú ř ř ď š š Í ú š ř ž ž ú ž ř úď ž ř ř šť ó ú ú ž ó ž ž ř š ř š ťť ž ž
Víceí í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě
ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č
VíceČ Úř ě ý Ú š ě ř š ě é ú Ž úř ě ý Úř ž ó Č é ě ě š ř ů ř š ř ž ý ó š ř Ž ě ě š ř Ů ě Š ý š ř ý ě é ř éž Ř ý ý ě Č é é é ě ý ěř ě ř ž ý ů é ý ěř ě ě ý
úř Á Á Ě Ý š Á Ř ž ú š Ě É š Ě É š Ě Á Á É š Ě š ÚŘ ž ž ů ě ž ž Áš Ř š Č Ř Ú ě ř š ý ě é ř š ě ú ž ž ř ě úř ž ý ž Úř ě ý ú š ě š ý ě é ř Š ě ů ě ř ž ě ý ů ě ě ě ý Ů ú ž ž ú š š ž ý Ů é ž ř ě ř ž é ý ě
VíceĚ Í Č ŘÍ Ů Ý Ů Ú ů ů ú ů ů Ň É ŘÍ ŘÍ Ř É ÝĎ Í Á Ú Ě Ů Ž Á Í ú ů ú ů ú ž ú ú ú Č Č ž ú ú ž
Á Ě ÝÚ Ě ú ů ú ň ů Ú Č Č Ě Í Č ŘÍ Ů Ý Ů Ú ů ů ú ů ů Ň É ŘÍ ŘÍ Ř É ÝĎ Í Á Ú Ě Ů Ž Á Í ú ů ú ů ú ž ú ú ú Č Č ž ú ú ž ů ů ů ú ů Ž Ť ú ů ů ú Ž ú ú ů ď ů ň ň ň ů ň Ť ň ň Ž ů ú ů ž ů ů Ú ů ň ž ů Ž ů ň ž ů ů
VíceÁ Á Á č Ý ú ó é ň ó ď é š ž é é š é ň č š žň éž é č Á É ž é ň ň é é ú ó ž ž ó é Ž ó ž ů é š ú é š
Ř ĚŽ Ý Á Ú Ž Ě Ý Ř č Á Á Á č Ý ú ó é ň ó ď é š ž é é š é ň č š žň éž é č Á É ž é ň ň é é ú ó ž ž ó é Ž ó ž ů é š ú é š š ů é š č Ý ň é ú ů ť š š ů č ú é ď š é ď š ó š Ý É ž Ú ů ž š é č é š é ť éž ú č š
Víceří ř Á Ř í í í ž ÍÍ ř ř Č Č í ů í í í ž ž Ž ý říž ý éž í Ž í ří Á Í é é ý ň í í š Á Í Č ů í ů í ůří í í š Š éž éí Š Š ř í Á ŘÍ É Č Č Á é é í é í í í ý
Ř Í Á Í Č Ú íš ř ú é ý ů ž ší é í é š í ú íč ř ř ší é é é ý é é ý Í é é é í é ý ý ů í í í í é í í í ž ž ří š ý ý ú ú é ž Ž í í í ší ř í í éú ů é Ž Í ř í é ýú í ů ý í ý ú ů Ú ý ů ž ž ř í í ý í š í í ý ž
Víceů ů ď
ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Víceš ů ů ů ů Ýó ů ů ů ť ů š ú ů š ů
š ů ů ů ů Ýó ů ů ů ť ů š ú ů š ů š š š ů ů ú ů š ů ň š ů š š ú ů ď Č Á Á Á ĚŘ É Č ť ů š ů ů ů ůů ď š š ů ů ď ů ů ů ň š ň š š š š ů š ů ú ň ň š É š ů ů š š ů Ú ď ů š š ů ů ů ň ů š ů ů ů ů ů ů Ž š ů š ů
Víceé řě ú čí í řě ú ž ě á á í š ýž ž ž á ě č ž ří é ž í á ý ď á číš š í á ě ě řě í ó í ž é ž í ó ř í ě ší ž é ž é é é řě á ý á ě č ž á á řěč í á á Ž ě ž
ž í í á ý š á ž ž ý ř ě ů ž Ží ř ě Ž ří í í ž Í ž é ž Řá á č Ú é úř ší úř í ů ý ž ó á ě í é é š ří Ž í ů ě č Ž ří ří í í é á ě á í í ú ú žď č ž Řá á č ŘÁ Á É ý č ý ž íú ě á úř í á ď í ř ř ří č ž ě ž á
VíceŘ Ý ú Č ó ě ě š Ť ě ě Ť ď š ě ó Ú ú ď ě ě ú š Ó ě Ý Ý š ě ě ě Ú Á Ž Č š ú š ě ď Ýú ť ě Ž š ě ť ěť ě ě š ú š Č Ž ť ť ě Ó ť Ú Č š ú šť š ě Ž šť ě ď š ěž
ž Á Á Á š š ž ě ú š ě ž ě ě ž ď š ě Ž ěš š š ú ě šť ž ď ě ť Ř Ý ú Č ó ě ě š Ť ě ě Ť ď š ě ó Ú ú ď ě ě ú š Ó ě Ý Ý š ě ě ě Ú Á Ž Č š ú š ě ď Ýú ť ě Ž š ě ť ěť ě ě š ú š Č Ž ť ť ě Ó ť Ú Č š ú šť š ě Ž šť
Víceř ř ř ř ř ú é é ř ď ů ř ř ř ú ů ř ů ú ř é ř ř ř ř é ř é š ú š š ř ř ů ů é ř Ž ř š ř ř ř ť ř é ď š ř ř ř ř ů ř ž ů é
Č Ó ř ř ř ř ď ú ů ů ř ř ř ř ř ř š ř ř ď ř ď é ř é úř é ř ř ř úř é Č ř ř ř ř ř ú é é ř ď ů ř ř ř ú ů ř ů ú ř é ř ř ř ř é ř é š ú š š ř ř ů ů é ř Ž ř š ř ř ř ť ř é ď š ř ř ř ř ů ř ž ů é ů ů ř Š Š é ř ř ř
Víceň í í ů ž ý á é á ě í ě é ř š ě í ě é á í í ž í ž á ě é í í ě ý ří ě ř ž é ě ř á í í é á í í č í í á ě é č í ů ů á š ě í í é š ří í í ý ž č é ě é ří í
í á š ě ířá ř á í é á ě ý í ě á í á š ě ířá ě áš á ě é ě č é ěž á ě ý í é ě á í čí ř ží á í á í í ě š á ě č á í á á á í š á š ě í ů ě é í á ě ý í í á ží í í ří Úč á š ě í řá é š ě í č í ěž č í ž á í í
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)
Více6 Algebra blokových schémat
6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,
Vícež š ř ř ě ů ž š ř ě ů ř ě ž š ž ě ýš ý ř ě ů ř ě ě ž ř ě ě ě ě ř š ř ý ž ř ú ř ž ý ř ě š ž ů ý ů ž ř ě š ž ě ě ě šú š ř ž š ž ž ý ě ř ř š ř ý ě ě ý ě
ú ě š Ú ě ě ě š ř ů ó ř ě ě š ř ů ě š š Á ú Ú š ů ž ř ý ý ř ř ř ž ě ř ř ě ž ň ů Ř úř É Ů ř ě ů ž ž ý ú Ú ů ů š ě ů ž š ř ř ě ů ž š ř ě ů ř ě ž š ž ě ýš ý ř ě ů ř ě ě ž ř ě ě ě ě ř š ř ý ž ř ú ř ž ý ř ě
Víceť
ů ů Ž ů ů ě š ě ě ů Ú Č Č Á ť ůž ě š ě š š ě Ó ů š Ó Č š Č š É Č ů š ě ě š ť Ž Ž Ž Č ů Č Ž Ž ů Č ů ě ě š š Č š Ž Č Ž Ž Č Č š Ž Ř Č Ž Ž ž Ř Ť ě Č Ž Ž Ž š ě š ě š ě š ě ě š ě ů ě š ů ů ě ě ě š ě Ó Č ě š
Víceř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š
Ú ú Č ř ě ě Č ř ěž ú Í ř ě ě ž ň řž ú Ú ě ř Í ř ěž Ú Í ř Í Í Ž ř Ž Í Ž Ú ž ň ú ř Í Ú ž š ě ň ú Í Í Ó Č š ř Í ěž ú ř Š Š Í ř ř š ě Í Ž ň ř ě ň Í ř ě ř ř ě ě Í Í Í ě Í ř ě Í ř ěž Ú š Í ř ň ř ú ř Ž ú ř Ú
VíceŘÁ ÁŘ Ý ř ú š ř ů ú š ě žď ž ř ě ú ě š ů ž ů ě ř Č ř š ě š ř š ě ž š ě ž ž ž ě ř Č Č š ě ž Č ř ň ů ř š ě Č ě š ě ž ě š šš ř š ě ů š ě Ů ěř ž ů ěř ž ž
Č ÍŘÁ ě Č ÁŘ Ý ů úř ž ř ů ř ř ž ěú ř Ž ř ě ŘÁ ÁŘ Ý ř ú š ř ů ú š ě žď ž ř ě ú ě š ů ž ů ě ř Č ř š ě š ř š ě ž š ě ž ž ž ě ř Č Č š ě ž Č ř ň ů ř š ě Č ě š ě ž ě š šš ř š ě ů š ě Ů ěř ž ů ěř ž ž ů ů ž ř
VíceČ ř ě ř ě š ě š ž ř é ě ě Š ř ě ř é ě ř Ť ž ř ř é ř ě ě š ř š ě ě é ř ě é Š ě š ů ů ř é Ž ě ě š é ř š ě Ž ř Š ěú š ě Š Š ř ě ě é ě ř ů ř ě ř š ě ě ž é
Ž é é Č Č ř ě Ž ď Č Č ú ř é ě ž ě š é ě ě ě Š ě é ř ě ř ě ž ř ř é ž ř ě ř ě ě ž ž ě ř ě é ě Ž é ě ě ř ě ě Ž é ě ř ě ř ě ř é ř ž ř é Č ř ě ř ě š ě š ž ř é ě ě Š ř ě ř é ě ř Ť ž ř ř é ř ě ě š ř š ě ě é ř
Vícež ě ú ň ň ě Ý ě ů ů ž ě ě ěš Ú
ě ú ě ž ú ě Í Í Ý ť Í ěš ú ž ě ú ň ň ě Ý ě ů ů ž ě ě ěš Ú ň ž ň ů Ý ň ů ě ě ě ě ě ň ů ň ň ě Í ů ž ě ů Í ě ú ě ž ň ž ě ě ě ů ě ú ů úó ě ě Ú š ú ě ě ů Ú ž ě ů ě ů ú ě ů ě ů Í ě ú ě ž Ú ě Ú ě ě Í ů ů Ú Í
Víceá é ěř é á Úř ř é ě ý ř á úř é é á ěř é é ř Ž Žá ář é Š šč ř á ě Ž ř ý á ý ř é á ě ě š ř ů ř á á Š ř á ě Ž é Ž ů é áš ě ě š ř ů á á ů á ě ý á á ř ě Š
ý á Í é Íť ťňýí ě Ýúř úř Ž ř ř Žá á Č ř Ž ě ý áá ě ýúř Úř Ž ř á úř ě ě ř š ý á á ě ě ě ý á Ů ě ě š ř ů á á á úř á ú á á řá ě ě š ř ů á á ě ě Š ř ů ě ř š ý á á á Ó á řá ě ě š ř ů ú ř á řá ý ě á é ň Č ěř
VíceČ Č É Č Č ů ť ú šť Ž š ů Č Č Š š ž Š ň š ž š ů Č ů š ó ž ó ň ó ó ó É š ů Ž ú š ů ú š ž Ž š ú ů ů š š š ů ů ů Č ú ů ů šť ž ů š ů ž ž ú š Ž š ž ú ů š ů ň ů ů š ů š ž ů ů ů ů š š ď ó ď š ů ú ú ú ů ů ž ů ů
Vícež ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř
ř ů ú ř ž é é é é ř č ú ř č é ž ň ň ž é ř é ř é ř č ř é č é é ř É Á Á Í Á É Ý Í Ů Š Á Ž Ě Ý É Á Ř Ý ž ř ž é ň ž šš ř ň ř ř č é é ř é ž é ř šř š š ř ř č é š é é ř é č č é ř é č é ř č ř ž é č ř ř ř é č é
VíceUniverzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
VícePARAMETRICKÁ METODA VÝPOČTU FREKVENČNÍCH SPEKTER SIGNÁLŮ
7 h Inernaional Scienific - echnical Conference - POCESS CONOL 006 June 3 6, 006, Kouy nad Desnou, Czech eublic PAAEICKÁ EODA VÝPOČU FEKVENČNÍCH SPEKE SIGNÁLŮ ŮA JIŘÍ Fakula srojní, VŠB echnická univerzia
Víceš š ň š Š š š ň ú ť ň š š
Ť š š ň š Š š š ň ú ť ň š š š Ú š š ň Š Š ú š š ď š ň ť ň š Č š š Í Á š š š š š Ř š š š ť š š š š ň š ň Č ó š Č š š ť š š Ž Š ť Ř š š š š ú š Ř Č šť Í ó Ě Š š š š ň š šš š Š š ú ň š š š š š Č š š ť š š
Víceý ýš ý ýš ř š ž ď ýš ý ó ř ř ř ř ů ýš ř ť ň ý š ř š Ň ž š ř ř ó ý ř ň Á Ň Ň Ž Ř ň ú ž ř ů ž Ť ř ý ý Ě ó ř ř ň ý ň ú ř ň ý ž ň ů ó ú ó š ú ú ý ý ň ý ň
Č ř ú ů ů ř ý Ž ů ů Č Č ý ú Č ý ú ý ý ř ř ř ř ž ř ý š ř ů ř ř ů ó ý ř ř ž ů ý ý ř ř ťů ř š ř ř Í ýš ý ý ýš ý ýš ř š ž ď ýš ý ó ř ř ř ř ů ýš ř ť ň ý š ř š Ň ž š ř ř ó ý ř ň Á Ň Ň Ž Ř ň ú ž ř ů ž Ť ř ý ý
Více5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
Víceé Ž ř Ž ú š é é ř úř ě Ž ě Ž ď é ř ě Úř ě ě Ž Ž é é Ž ř ě é ě Ž Ž ě ř š ě ř š ť ř ť ř é ř ř š Ž ě Ž Ž ř ž é ě é Ž ě ě ř š Ž ě Ž ě ř ě ě š ě ř ř ě š é
é Ž Ú é ř ě é é ž ěř Ž ř ě é ěř Ř ř ř Č ě Ů ž ě Ž é ř é ě Ž ř ě ě Ž ř ě é Ž é Ž é ě ř ď ě é ř Ř ř é Ž ř Ž ú š é é ř úř ě Ž ě Ž ď é ř ě Úř ě ě Ž Ž é é Ž ř ě é ě Ž Ž ě ř š ě ř š ť ř ť ř é ř ř š Ž ě Ž Ž ř
Víceě é ř š á á á á ě š á ž ř š é řž á ý á á ď ú š ú á á ěž ě š é Šř ž ú ě é á ú š š á ů á ú á ů á ů á ů á ů á ů ů á ů á ů á á ý ě ď ý ž ž ě ě ř á é ěř ž
Ř Ě Š úř š á Ř Á ÁŠ š ý á á ěá ř ě š úř š ý á ě ú á řá ď ě ě š ř ů á á ú ž á Ž á ď ě á ě ě ď ď ú ž é á á úáš ě ě š ú ě ď á ú ř řá ě ď á ú š áů ú á ů á ů á ů á ů ů ů ů á ů ú ť é š ú ě ě á ú š á ů á ú á
VíceČ -á á----ě --á--- č Á š -ě-é -----ě é ří í ří á-
Č -á-- ----- -- -á----ě --á--- č ------- -Á------ - --š -ě-é -----ě ----- - -------é ----- - ří --- ----- ---- -----------í ----- -ří ---- ------ --á-ý--- --- --á--á ------- ---------í -- -- -----ě -----
VíceFrekvenční charakteristiky
Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci
VíceOsnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
Víceě ž ě š ě ě š ů ě ě é ě é ě ě ě ě š Ť ůú ď ě éú é ě ě ě š Ť ů ě Ť ů ý ů ě ěž ý ý ů ť ý Ž ěž ů ý é ú ěž ý ž ý ů ý ě ě ú é é ý ý ý Í ý ů ů ú ď ý š ý ě ť
Č ý Č ď Í é Í ď é é é éé ě ď ú ý ů ý ů ě ě š ů é ě ě ý é ž ž ž úě ě ž ě š ě ě š ů ě ě é ě é ě ě ě ě š Ť ůú ď ě éú é ě ě ě š Ť ů ě Ť ů ý ů ě ěž ý ý ů ť ý Ž ěž ů ý é ú ěž ý ž ý ů ý ě ě ú é é ý ý ý Í ý ů
VíceÁ Ž č Ž ó ě č ý ž Ž ó ě Č Í ý Á Ž Ž č Ž ó é č ý Ž Ž Ó ě č ý Ž ř ě é š ě é ý č Ž Í ř Í č é ó é é Č é Ž č ž š č č ř ě ě ý ř ž ž é š ě ž ÍŽ é Ž Ž ý Ž ř Ž
ř ě ý ř é č ň ř ú ě é Š ý ž č Í Ž ř Ž Ž ý ě ě ě ě ř ň ř ř ú ě é š Í ř Í Í ů Í č Í Ž ř ř ý ř ě ř ó ř é ň ř ú ě é š č ý ý ř é ř ě é ý ň ý ř Ú ě é ř š ě é é č é ř č Ž é Í ó č ř ů č é é Á Ž č Ž ó ě č ý ž Ž
Víceř ř ř ě é Í é ř š ě ř éž é é š ř Č Č š ě ů ý š ě ř ě ě é ú é é š ž ů ý ý ř ě š ý ě ř ě ý ř ě ž é é ý ž ý ý ř š š ý ž ý ý ě ý š é ů é ř é ě ý ů ů ř Ž ý
ď ř ř ř é ě ě š ř ů ř ě ý ň š ě ě ě ř ř Č ú Ž é ř ě ý ě Č Č ú Č ě ý ě ě ý ů é ř é ě ř ř ř ě é Í é ř š ě ř éž é é š ř Č Č š ě ů ý š ě ř ě ě é ú é é š ž ů ý ý ř ě š ý ě ř ě ý ř ě ž é é ý ž ý ý ř š š ý ž
VíceŽú é ú é é ů é Ž Ž ř Č é Ž ř é Ž ž ř é ú é é é Ž é ú ř ó é Č ú ú ř ú úř ř Ž ú ř ř ř Ú é é ú ú ů é ú Č ř ř ř ů
ř é é ů ú Ú Č ů ú Í ř Č ů ú Í Ž ž ž ž ř é ž Žú é ú é é ů é Ž Ž ř Č é Ž ř é Ž ž ř é ú é é é Ž é ú ř ó é Č ú ú ř ú úř ř Ž ú ř ř ř Ú é é ú ú ů é ú Č ř ř ř ů é ů Ě Í ř ů ú ř é Ž ž ř é ř ř úř ř é é é ž ř ž
VíceĚ Í Č ŘÍ Ů ň ž óý ó ó ó ú ž ú ú ó ř ů ř É ř ň ř ř ň ř ň ú ň ó ř ř ř ř ó ú ú ř ó ř ř ř ň Á
Ú š ú ň ú ó ú ř ů Ů ú ů ž ú ú ů ů ů ú Ů ž ů ř ř ř ň óý ó Ó Ě Í Č ŘÍ Ů ň ž óý ó ó ó ú ž ú ú ó ř ů ř É ř ň ř ř ň ř ň ú ň ó ř ř ř ř ó ú ú ř ó ř ř ř ň Á ó ň Ů Ť Ý ú š ó ů Ú Ú ž É ž ž ú ó ž ž š ž ž É ž ž Ď
Víceý č ý č ě č ěř ř ý ř č ý ě č ěř ř ý ř č ý ě č ý Ž č ř Ý Ž č ě ý ě é ý ě ě ř ý ý ě é ř úč č ž č é ž č č ě č žš é ž ě ý ý ě é ř é žš ě é ž ěř ě ý č ěř ě
ů č é ř š ř č ů é č š é č ěř č ž ý č ý č č ý č ř ý ě é ř č é ř č é ř ě ú ž ě ň ě ú ž ž č ů ř ě ý ě ě ě ů č š ě ž é ě ž ý č é Ý Ž č ř ý ě ú ů ž ý ř ů úř č ř š ě ž é ř ě č ý ř č ř č ř š ě ž é ý č ý č ě č
Více