Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský

Rozměr: px
Začít zobrazení ze stránky:

Download "Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský"

Transkript

1 Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového signálu dle obr.. Operaci násobení odpovídá ve frevenční oblasi onvoluce mezi spery obdélníového a harmonicého signálu. o V Sperum násobení * onvoluce Sperum Výsledné Sperum Obr. Konvoluce e definována maemaicy dle předpisu: X ( X ( X( i X ( i X( i X i i ( ( i de X ( a X ( sou spera obou signálů.

2 Jan Malinsý Sperum obdélníového periodicého signálu Sperum obdélníového periodicého signálu dle obr. lze vyádři rozvoem ve Fourierovu řadu. Následue výpoče oeficienů řady. d d f d d f b d d f a... ( ] ( cos[... sin( sin( ( ] ( sin[... cos( cos( ( ( Fázory harmonicých pro goniomericý var Fourierovy řady lze vyádři následovně: b a arcg b a e a b ( dosazením z ( dosaneme: arcg cos sin ] ( sin[ ( Pro pořeby onvoluce e řeba použí obousranné sperum. omplexní var Fourierovy řady, ehož fázory lze zísa z fázorů goniomericého varu následovně: arcg cos sin ] ( sin[ (5

3 Jan Malinsý e e obousranné sperum. mpliuda e poloviční a sperum symericé dle svislé osy. Fázové sperum e symericé dle počáu souřadného sysému. Sperum harmonicého signálu Sperum harmonicého signálu e edna sperální čára o veliosi a v našem případě s nulovým fázovým posunem. Pro pořeby onvoluce e řeba opě přeí na obousranné sperum. obě sperální čáry budou mí poloviční velios oproi původní edné a čára v ladných frevencích bude mí fázový posun pi/ a čára v záporných frevencích +pi/. Konvoluce mezi spery Frevence obou signálů sou shodné,. harmonicá sinového signálu leží ve speru na seném mísě ao první harmonicá obdélníu e o éž frevenční ro se erým budou mezi sebou spera posouva. Přilad provedeme pro / = ¼,. ze sinového signálu bude vysenuo ¾ periody (ve cvičeních PI o odpovídá signálu sinus5.wfm. mpliudu sinusovy zvolme mv. Dosazením do vzahů (5 dosáváme pro prvních pár harmonicých obdélníu následuící hodnoy: Obdélní Sinus -5.5e e e e /.5e e e e e e Dle definice onvoluce ( e řeba před onvolucí edno ze speer převrái. Může a učini řeba pro sinový signál.

4 Jan Malinsý Výpoče nulé sperální čáry = (senosměrná složa vysenué sinusovy: Obdélní Sinus (převrácen -5.5e e e e /.5e e e e e e,785,785, e,5e, e,5e,8 mv na mulimeru naměřeno: o = -,8 mv

5 Jan Malinsý Výpoče první harmonicé = ve speru vysenué sinusovy: Obdélní Sinus (převrácen posunu o ednu pozici do ladných frevencí -5.5e e e e. 785 /..5e e e e. 785 e e Fázor. harmonicé, obousranné sperum:,57, e, e,59e,59,5 V ampliuda a fáze, obousranné sperum:,59,5 9,6mV arg arg(,59,5. rad efeivní hodnoa a fáze, ednosranné sperum: 9,6 mv,86 mv na sperálním analyzáoru naměřeno ef =,7 mv arg rad 5

6 Jan Malinsý Výpoče druhé harmonicé = ve speru vysenué sinusovy: Obdélní Sinus (převrácen posunu o dvě pozice do ladných frevencí -5.5e e e e. 785 /.5e e e e. 785 e e Fázor. harmonicé, obousranné sperum:,785,785, e,5e, e,75e,,6 V ampliuda a fáze, obousranné sperum:,,6,7 mv arg arg(,,6,66 rad efeivní hodnoa a fáze, ednosranné sperum:,7 mv,5 mv na sperálním analyzáoru naměřeno ef =, mv arg,66.7 rad 6

7 Jan Malinsý Výpoče řeí harmonicé = ve speru vysenué sinusovy: Obdélní Sinus (převrácen posunu o ři pozice do ladných frevencí -5.5e e e e. 785 /.5e e e e e e Fázor. harmonicé, obousranné sperum:,57, e,59e, e -.59 V ampliuda a fáze, obousranné sperum: ,9 mv arg arg(-.59 rad efeivní hodnoa a fáze, ednosranné sperum: 5,9 mv,5 mv na sperálním analyzáoru naměřeno ef =, mv arg rad 7

8 Jan Malinsý Výpoče čvré harmonicé = ve speru vysenué sinusovy: Obdélní Sinus (převrácen posunu o čyři pozice do ladných frevencí -5.5e e e e. 785 /.5e e e e e e Fázor. harmonicé, obousranné sperum:,785,785, e,75e, e,5e V ampliuda a fáze, obousranné sperum: ,7 mv arg arg( rad efeivní hodnoa a fáze, ednosranné sperum: 8,7 mv, mv na sperálním analyzáoru naměřeno ef =, mv arg, rad.. ad. 8

e) U ( ) ( ) r 1.1. Ř EŠENÉPŘ ÍKLADY PDF byl vytvořen zkušebníverzífineprint pdffactory

e) U ( ) ( ) r 1.1. Ř EŠENÉPŘ ÍKLADY PDF byl vytvořen zkušebníverzífineprint pdffactory . Signá ly se souvislým časem Ř EŠENÉPŘ ÍKLADY r.. a) Urč ee sřednía eeivníhodnou signálů na obr.., jejich výon a energii za č as =. d) = b) e), 5ms c) ),5V -,5V Obr... Analyzované signály. Sředníhodnoa:

Více

4. LOCK-IN ZESILOVAČE

4. LOCK-IN ZESILOVAČE 4. LOCK-IN ZESILOVAČE Záladní princip Fázově cilivý deeor (PSD) s řízeným směrňovačem - vlasnosi Fázově cilivý deeor (PSD) s číslicovým zpracováním signál - vlasnosi Vysoofrevenční Loc-in zesilovač X38SMP

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

Systé my, procesy a signály I - sbírka příkladů

Systé my, procesy a signály I - sbírka příkladů Systé my, procesy a signály I - sbíra příladů Ř EŠEÉPŘ ÍKLADY r 6 Urč ete amplitudu, opaovací periodu, opaovací mitoč et a počáteč ní fázi disrétních harmonicých signálů a) s( ) = cos π, b) s ( ) 6 = π

Více

r Co se stane se spektrem signá lu z obr.1.12, dojde-li k zvětšení jeho opakovací frekvence na 500Hz? Ř ešení: Viz obr.1.15

r Co se stane se spektrem signá lu z obr.1.12, dojde-li k zvětšení jeho opakovací frekvence na 500Hz? Ř ešení: Viz obr.1.15 r.5. Co se sane se spere signá lu z obr.., dojde-li zvěšení jeho opaovací frevence na 5Hz? Viz obr..5 u( )[ V] u( )[ V] 3 5 6 [ s] 3 5 6 [ s] s s U i, U [ V] U i,5 U [ V],,5,,,5,5 ϕ [ rad] π ϕ [ rad] π

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

I. Soustavy s jedním stupněm volnosti

I. Soustavy s jedním stupněm volnosti Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

a excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3.

a excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3. Řešené úlohy na ohnisové vlasnosi uželoseče Řešené úlohy onsruce uželosečy z daných podmíne řílad: Sesroje uželoseču, je-li dáno její ohniso F 1, ečna = T s bodem T doyu a excenricia e; F 1 [0; 0], T [5;

Více

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT Návrh číslicově řízeného reguláoru osvělení s ranzisorem IGB Michal Brejcha ČESKÉ VYSOKÉ ČENÍ ECHNICKÉ V PRAZE Faula eleroechnicá Kaedra eleroechnologie OBSAH: 0. Úvod... 3. Analýza... 4.. Rozbor sávajícího

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1] [1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do

Více

Ortogonalita ORTOGONALITA, KOEFICIENTY FOURIEROVY ŘADY, GIBBSŮV JEV X31EO2

Ortogonalita ORTOGONALITA, KOEFICIENTY FOURIEROVY ŘADY, GIBBSŮV JEV X31EO2 OROGONALIA, KOEFICIENY FOURIEROVY ŘADY, GIBBSŮV JEV Orogoni X3EO Orogonání znmená omý. Orogoni e široý poem, používá se v různých oorech, nás ude zím memi. V memice zřemě nesnáze předsviený příd e omos

Více

Č ř ř Ž Í š ř ř Ž ř š ř ž ů ř š ř Ž Í ř ř š Ž ř š ř ř š Č ž ř ř ú Ž Ž ů ř ž Č ř ž ř š ř ž ř ř Ú ř ř Ž ů ž ř ž Á Ž Ž Í ú Ž š Č Ž š Ž Ž ř š š ř š ř Ž ř ř Á Ž ú ů ú Ž Ú Ž ú š ř Í Ž ř Ž ř Ž š š ů Č Ž ř ř Ž

Více

POUŽITÍ CEPSTER V DIAGNOSTICE STROJŮ

POUŽITÍ CEPSTER V DIAGNOSTICE STROJŮ POUŽITÍ CEPSTER V DIAGNOSTICE STROJŮ Jiří TŮMA, VŠB Technicá univerzita Ostrava 1 Anotace: Referát se zabývá použitím cepster analýze signálů jao alternativy frevenční analýze. Jao je frevenční analýza

Více

1. Signá ly se souvislým časem

1. Signá ly se souvislým časem . igná ly se souvislým časem ELEKTRICKÉ IGNÁ LY Komuniace mezi lidmi - ať už přímá nebo zprostředovaná stroji - je založena na přenosu informace. Informace je produována zdrojem obvyle v neeletricé podobě,

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

Ý Ě Ú Ý Ů Ý Ů ě ě ú É Ř É Ý ú š ě Ú ť Ó Ó ó ď ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ě ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ů ž ěž ěž ú ů Ú ů ú Ř ů ď Ť Ó Ř ů ů ů ů ů ů ů ť ů Ú ú ú ě ů ů ů ó ů ó ď ó ó ů ů ú ó ó ů ů ú Ř

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

KEV/RT 2. přednáška. EK

KEV/RT 2. přednáška. EK KEV/T. řednáša Marin Janda maa@ev.zcu.cz EK 05 377 63 4435 Oaování - lineární regulace P roorciální reguláor onsana malá odchyla malý výsu velé vhodné malé Záladní myšlena návrhu reguláoru chceme co nerychleší

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

ř ř ď ř ř ř ř é é ř ř é ř ř ř ú ů ů Ý ř ř ň é é ř ť ř ř ř ř ř é ř ř Í Ú é é ř ř ř ř ř ř ú ů ů ů Č é Ž ř ř ň Ž é ú ř ů ř ř é ú ů ř ř é ů ř ú ř é ř ú ř ů ú é ú é ř Ť ř ů ř ů ů ú ů ř ů ř ř ř ť ž Í é ž ú ř

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají

Více

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná

Více

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro

Více

Systé my, procesy a signály I. Vypoč těte normovanou energii signálů na obr.1.26 v č asovém intervalu T = 1ms: -1V. f) 1V

Systé my, procesy a signály I. Vypoč těte normovanou energii signálů na obr.1.26 v č asovém intervalu T = 1ms: -1V. f) 1V NEŘ EŠENÉPŘ ÍKLADY r 1.7. Vypoč ěe normovanou energii signálů na obr.1.6 v č asovém inervalu T = : a) g) b) ) c) - + i) - d) T - j) T - sin( Ω ) T 4 T T e) k) sin ( Ω ) T 4 T T f) l) cos( Ω ) 4 T T Obr.1.6.

Více

ÚVOD (2) kde M je vstupní číslo, f h je frekvence hodinového signálu a N je počet bitů akumulátoru.

ÚVOD (2) kde M je vstupní číslo, f h je frekvence hodinového signálu a N je počet bitů akumulátoru. Kmitočtový syntezátor s novým typem směšovače M. Štor Katedra apliované eletroniy a teleomuniací, Faulta eletrotechnicá, ZČU v Plzni, Univerzitní 6, 30614 Plzeň E-mail: stor@ae.zcu.cz Anotace: V článu

Více

Ě Ý Í Č ě ř ŠÍ Á Ú Ř Ž ú Ž Ž Ú ž ě ů ž ý ř ď ř ů ů ž ý ě ř ř ě ě ý ú ď ž ý ě ě ř Í ž ý ý ě ý ú ď ž ý ý ů ě ý ž Ž Í ř ž ě ž ě ý ú ď ž é ř ý ž ď ž ř ů ý ř ý é ú ž ř é ž ů ř é é ů é ř ě é ž ě ý ř é é ř Ž

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

Ě É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř

Více

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence : Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU

ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU ANALÝZA PNUS, EFEKIVNÍ HODNOA, ČINIEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU EO Přednáška 4 Pavel Máša X3EO - Pavel Máša X3EO - Pavel Máša - PNUS ÚVODEM Při analýze stejnosměrných obvodů jsme vystačili

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

é é Č Č č Č Č ý šš š ů š ě ž ž č č č č č č ý Ž š ý ě é ů ě ě é é é ý ě ý ů č ě č ě ý ě č é ě ě é ý ů ě č ů ů č č č č č ě ě č ý č ě č č č ě ě ě ě ě ž Ů ň ž é č č ě ě š ů é é Č ě ě š ů ě ů ýš é ž é é Ž é

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

PÁSMOVÉ SIGNÁLY (Bandpass signals) SaSM5

PÁSMOVÉ SIGNÁLY (Bandpass signals) SaSM5 PÁSMOVÉ SIGNÁLY (Bandpa ignal) SaSM5 Deinie: Pámovými ignály nazýváme reálné ignály, keré maí pekrum omezeno do určiého kmiočového páma, neobahuíího nulový kmioče: S() 0, pro S() = 0, pro S() - Kmiočy,

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek Spš lko PŘÍKOPY El. viční z základů lkochniky. očník Podl knihy Blahovc Základy lkochniky v příkladch a úlohách zpacoval ing. Eduad ladislav Kulhánk yšší odboná a sřdní půmyslová škola lkochnická Faniška

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů. Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Grafy funkcí odvozených z funkcí sinus a cosinus II

Grafy funkcí odvozených z funkcí sinus a cosinus II .. Grafy funkcí odvozených z funkcí sinus a cosinus II Předpoklady: 0 Pedagogická poznámka: Pokud máte málo času můžete z této hodiny vyřešit pouze první tři příklady a ve zbývajících 5 minutách projít

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = = Diferenciální poče funkcí více reálných proměnných -- SLOŽENÉ FUNKCE PŘÍKLAD Určee derivaci funkce h ( = f( g( g( kde g ( = + g ( = f ( / = e Podle pravidla o derivování složených funkcí více proměnných

Více

2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina?

2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina? 1. Do anečního kroužku chodí 15 chlapů a 20 dívek. Kolik různých párů z nich můžeme vyvoři? 2. Ze sady 28 kosek domina vyáhnu dvě. Kolika způdoby o mohu provés ak, aby ony dvě kosičky šly k sobě přiloži

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

2. Přídavky na obrábění

2. Přídavky na obrábění 2. Přídavy na obrábění Abyco oli z oloovaru vyrobi součás ředesanýc geoericýc varů a rozěrů, v ředesané výrobní oleranci a jaosi obrobené locy, usíe zvoli oloovar s dosaečnýi řídavy na obrábění. U oloovarů

Více

6. Optika. Konstrukce vlnoploch pro světlo:

6. Optika. Konstrukce vlnoploch pro světlo: 6. Opi 6. Záldní pojmy Těles, erá vysíljí svělo, jsou svěelné zdroje. Zářivá energie v nich vzniá přeměnou z energie elericé, chemicé, jderné. Zdrojem svěl mohou bý i osvělená ěles (vidíme je díy odrzu

Více

NCCI: Určení bezrozměrné štíhlosti I a H průřezů

NCCI: Určení bezrozměrné štíhlosti I a H průřezů Teno N předládá meodu pro určení beroměrné šíhlosi při ohbu be určení riicého momenu M cr. Záladní onervaivní meodu le přesni a, že se uváží eomerie průřeu a var momenového obrace. Obsah. Zjednodušená

Více

RLC obvody sériový a paralelní rezonanční obvod

RLC obvody sériový a paralelní rezonanční obvod Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZE aboratorní úloha č. 2 R obvody sériový a paralelní rezonanční obvod Datum měření: 24. 9. 2011

Více

4 Napětí a proudy na vedení

4 Napětí a proudy na vedení 4 Napětí a proudy na vedení předchozí kapitole jsme se seznámili s šířením napěťové a proudové vlny podél přenosového vedení. Diskutovali jsme podobnost šíření vlny podél vedení s šířením vlny volným prostorem.

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Í š Ť š ň ň Í Ř Ť Ť ň Ť Ť š Ť š Ď š š š ň š š š š š Í Ť Ť š ň š Ť š š É š ť Í Ť š Ž Š Ť Ť Ť Ť š š š š š Ť š Ť Í š Ť š Ť š Í š Ě Í š ň Ť š Ť Ť Ó š š š š š Ť Ž Ť Í Ř Ř Ť š š ť Ť š Ť š Ó š Ť Ť ň Ť š š š Ť

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY 3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného

Více

ú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť

Více