LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

Rozměr: px
Začít zobrazení ze stránky:

Download "LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická"

Transkript

1 Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní rok: 2006 / 07 Daum odevzdání 24. LISTOPADU 2006 Tída / Skuina: 4.B / 2 Klasifikace: NÁZEV ÚLOHY MENÍ PECHODOVÉ CHARAKTERISTIKY A JEJÍ MODELOVÁNÍ NA PC Poe sran 7 Poe grafických íloh

2 ZADÁNÍ V rosedí LabView zme echodovou charakerisiku saické sousav. a 3. ádu 2 V rosedí ANALOX namodeluje sousavu. a 2. ádu ÚVOD Pro sudium složiých jev ve vd a echnice vužíváme model cho jev. Model musí vjadova sránk daného jevu, keré jsou z hlediska sudia a zkoumání dležié. Vužívá se iom vzájemné analogie. Vvoíme-li umlý ssém, jehož chováni bude odobné chováni vodního ssému, oom umlý ssém je modelem vodního ssému. Proces vorb modelu se nazývá modelování; i vorb modelu dochází z hlediska esnosi k redukci vzhledem k vodnímu ssému obr... Obr.. Modelování ssému Modelování sousav a regulaních obvod vchází z zv. eorie odobnosi, odle níž dva objek se sejným maemaickým modelem musí vkazova sejné dnamické vlasnosi. Maemaickým modelem se rozumí maemaický výraz, kerým jsou objek osán. Pod ímo ojmem se ed rozumí enos nebo diferenciální rovnice ois enosem a diferenciální rovnicí jsou rovnocenné. Pi sesavování oíaového modelu regulované sousav se z maemaického modelu sesaví zv. analogové schéma. Nejasji se vužívá meoda osuného snižování ádu derivace. Z diferenciální rovnice nebo enosu se vjádí výraz ro nejvšší derivaci regulované veliin. Posunou inegrací se ád derivace snižuje až na nulu. Na výsuu osledního inegráoru ohoo analogového modelu obdržíme simulovanou skuenou regulovanou veliinu. Pednosí modelování regulovaných sousav na oíai je okamžiá možnos osouzení jejich dnamických vlasnosí, aramer, rovení sabili. Tao meoda je úinná edevším i analýze sousav všších ád, kd klasické es sabili edsavují znané racné osu se zvýšeným nebezeím vzniku chb i výoech.

3 SCHÉMA #!$% EV!" Obr. 2. Schéma zaojení POPIS MENÍ Podle výše uvedeného schémau bla mená sousava zaojena do obvodu. Po senuí laíka, keré zajišuje realizaci jednokového skoku na vsuu sousav, bla sousava iojena ke zdroji naí a na PC bl v rosedí LabView sušn rogram ro mení echodové charakerisik dané sousav. NAMENÉ A VYPOTENÉ HODNOTY Modelování sousav v rosedí ANALOX Obecná diferenciální rovnice. ádu a a0 b0 x Schéma obecného modelu sousav. ádu Graf echodové charakerisik obecné sousav. ádu x b 0 a 0 a h 6 a

4 2 Obecná diferenciální rovnice 2. ádu x b a a a 3 Zadaná diferenciální rovnice 2.ádu x x Y Y X Y X Y F a a 0 a 2 a 0 b 0 a 0 x x - 6 -

5 4 Idenifikace mené sousav. ádu Z namené echodové charakerisik sousav. ádu bla regresí sanovena asová konsana T 22,794 s. Sanovená echodová charakerisika má ed v asové oblasi následující rovnici: h 0 e 22,794 Provedeme-li Lalaceovu ransformaci, získáme vzah H 0 22,794 Z nhož odle vzahu F Y X 22,794 H F uríme enos F: 0 22,794 22,794 2,2794 Y 0, Y X Po rovedení zné Lalaceov ransformace již získáme lineární diferenciální rovnici sousav: 2,2794 0, x a a b a ,749 22,749 0, , 0,4387 Model sousav Analox x 0,4387 0,04387

6 EŠENÍ NAMODELOVANÉ ROVNICE V PROSTEDÍ ANALOX Analox Jan Hladna, 4.B

7 MODEL MENÉ SOUSTAVY. ÁDU Analox Jan Hladna, 4.B

8 STATICKÁ SOUSTAVA. ÁDU LabView Jan Hladna, 4.B

9 IDENTIFIKACE SOUSTAVY. ÁDU Sousava.. Model sousav U 0 e 22,794 8 U [V] [s] Jan Hladna, 4.B

10 STATICKÁ SOUSTAVA 3. ÁDU LabView Jan Hladna, 4.B

11 ZÁVR Tímo mením bl v raxi oven eoreické oznak o dnamických vlasnosech ssém a aké o, že rzné ois cho ssém jsou skuen rovnocenné. Bhem mení a zracovávání namených da nevznikal žádné vší roblém vjma oho, že rogram Analox není k disozici ro oeraní ssém Mac OS X, od kerým bla mnou veškerá daa zracovávána. Tao mení jsou jasným dkazem, že je možné v odsa libovolný roblém evés do objekového modelu, v nmž je hledání ešení mnohem snazší než i ímém ešení.

12 POUŽITÉ PÍSTROJE A POM CKY Oznaení ve schémau Písroj Pomcka Výrobce T ísroje Ssém Druh Invenární íslo Výrobní íslo Poznámka Rozsah Z Zdroj Zlanik DUV-OV SS A-MK V RS íravek SPŠE íravek Sousava ádu, Sousava 3. ádu - V HPIB Volmer Mera Blansko SS C/389 MK-89 - EV Volmer Meex SS A-MK V

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Stední prmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Píjmení: Hladna íslo úlohy: 9 Jméno: Jan Datum mení: 23.

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Stední prmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Píjmení: Hladna íslo úlohy: 3 Jméno: Jan Datum mení: 10.

Více

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů. Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Stední prmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ VIENÍ Stední prmyslová škola elektrotechnická Píjmení: Hladna íslo úlohy: 14 Jméno: Jan Datum mení: 14.

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají

Více

1 - Úvod. Michael Šebek Automatické řízení

1 - Úvod. Michael Šebek Automatické řízení 1 - Úvod Michael Šebek Auomaické řízení 2018 9-6-18 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka,

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

Analogový komparátor

Analogový komparátor Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Křua Jiří, Víe Miloš (edioři). Sysémové onfliy. Vydání rvní, nálad, Vydavaelsví Univerziy Pardubice: Pardubice,, 56 s. ISBN 97887395443. SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Miroslav Barvíř Konec. a

Více

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi 23-2-16 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo)

Více

Matematické modely v ekologii a na co jsou dobré

Matematické modely v ekologii a na co jsou dobré Maemaické modely v ekologii a na co jsou dobré Indukivní a dedukivní uvažování o Indukce - mám spousu pozorování, a v nich se snažím naléz zákoniosi, zobecnní ad. o Dedukce - mám adu pravd, a hledám jejich

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

Prostedky automatického ízení

Prostedky automatického ízení VŠB-TU Ostrava / Prostedky automatického ízení Úloha. Dvoupolohová regulace teploty Meno dne:.. Vypracoval: Petr Osadník Spolupracoval: Petr Ševík Zadání. Zapojte laboratorní úlohu dle schématu.. Zjistte

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

1 1 3 ; = [ 1;2]

1 1 3 ; = [ 1;2] Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v

Více

PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO02-M05

PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO02-M05 VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ PROF. ING. JINDICH MELCHER,DR.SC. ING. MARCELA KARMAZÍNOVÁ, CSC. ING. MIROSLAV BAJER,CSC. ING. KAREL SÝKORA PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO0-M05 PRUTY NAMÁHANÉ

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Otázky ke Státním závěrečným zkouškám

Otázky ke Státním závěrečným zkouškám Oázky ke Sáním závěrečným zkouškám jsou rozděleny do ří oblasí a sudenům bude oložena z každé oblasi vždy jedna oázka. Oblasi jsou rozděleny následovně :.Teorie řízení a umělá ineligence Sem aří okruhy

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

Volba vhodného modelu trendu

Volba vhodného modelu trendu 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku

Více

Fyzikální praktikum II - úloha č. 4

Fyzikální praktikum II - úloha č. 4 Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Reologické modely měkkých tkání

Reologické modely měkkých tkání Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

METRA BLANSKO a.s. 03/2005. PDF byl vytvořen zkušební verzí FinePrint pdffactory

METRA BLANSKO a.s.  03/2005. PDF byl vytvořen zkušební verzí FinePrint pdffactory METRA BLANSKO a.s. KLEŠ!OVÉ P"ÍSTROJE www.metra.cz KLEŠ!OVÉ AMPÉRVOLTMETRY S ANALOGOVÝM ZOBRAZENÍM Proud AC Nap!tí AC 1,5 A, 3 A, 6 A, 15 A, 30 A, 60 A 150 A, 300 A 150 V, 300 V, 600 V T"ída p"esnosti

Více

2. M ení t ecích ztrát na vodní trati

2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2.1. Úvod P i proud ní skute ných tekutin vznikají následkem viskozity t ecí odpory, tj. síly, které p sobí proti pohybu ástic

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

PLATEBNÍ MECHANISMUS Část A

PLATEBNÍ MECHANISMUS Část A Příloha č. 5 PLATEBNÍ MECHANISMUS Čás A 1. POVAHA A ÚČEL PŘÍLOHY Č. 5 1.1 Tao Příloha č. 5 k éo Smlouvě obsahuje závazná pravidla Plaebního Mechanismu (dále jen Pravidla ). Po formální sránce voří Přílohu

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického

Více

PRAKTIKA z FOTOVOLTAIKY

PRAKTIKA z FOTOVOLTAIKY Vyšší odborná škola a Sřední průmyslová škola Varnsdorf PRAKTKA z FOTOVOTAKY ng. Per BANNERT Tao publikace vznikla v rámci projeku: Solární foovolaický sysém a Zelená energie v Českém Švýcarsku a jeho

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

2. ZÁKLADY TEORIE SPOLEHLIVOSTI

2. ZÁKLADY TEORIE SPOLEHLIVOSTI 2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt

OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt OBEKTOVÁ ALGEBRA Zdeěk Pezlar Úsav Iformaiky, Provozě-ekoomická fakula MZLU, Bro, ČR Absrak V objekovém modelu da defiujeme objekové schéma (řídu) jako čveřici skládající se ze jméa řídy, aribuů, domé

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha UNIVERZITA PARDUBICE Fakula elekroechniky a informaiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR Bc. David Mucha Diplomová práce 2017 Prohlášení Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Stední prmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Píjmení: Hladna íslo úlohy: 3 Jméno: Jan Datum mení: 10.

Více

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů Proceedings of Inernaional Scienific Conference of FME Session 4: Auomaion Conrol and Applied Informaics Paper 26 Klasifikace, idenifikace a saisická analýza nesacionárních náhodných procesů MORÁVKA, Jan

Více

Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková. Výukový materiál

Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková. Výukový materiál 1 Výukový materiál Identifikační údaje škol Všší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 07 7 Varnsdorf, IČO: 1838387 www.vosassvdf.cz, tel. +2012372632 Číslo

Více

Přednáška č. 11 Analýza rozptylu při dvojném třídění

Přednáška č. 11 Analýza rozptylu při dvojném třídění Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni

Více

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY Jana Soukopová Anoace Příspěvek obsahuje dílčí výsledky provedené analýzy výdajů na ochranu živoního prosředí z

Více

Směrová kalibrace pětiotvorové kuželové sondy

Směrová kalibrace pětiotvorové kuželové sondy Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The

Více

KEV/RT 2. přednáška. EK

KEV/RT 2. přednáška. EK KEV/T. řednáša Marin Janda maa@ev.zcu.cz EK 05 377 63 4435 Oaování - lineární regulace P roorciální reguláor onsana malá odchyla malý výsu velé vhodné malé Záladní myšlena návrhu reguláoru chceme co nerychleší

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,

Více

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)

Více

6.22 Vytápěcí zařízení a ohřev teplé vody Novelizováno: 2015-03-25

6.22 Vytápěcí zařízení a ohřev teplé vody Novelizováno: 2015-03-25 6.22 Vyáěcí zařízení a ohřev elé vody Vyracoval Gesor Schválil Lisů Příloh Jaček, VS/1 VS/1 VS 21 Ing. Neděle, ŠE-ES Plaí ro dodávku, monáž a uvádění do rovozu vyáěcích zařízení, oných sysémů a sysémů

Více

7. CVIČENÍ - 1 - Témata:

7. CVIČENÍ - 1 - Témata: České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor

Více

ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 ZAJIŠTĚNOST ÚDRŽBY MATERIÁLY ZE XIII. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST

ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 ZAJIŠTĚNOST ÚDRŽBY MATERIÁLY ZE XIII. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 ZAJIŠTĚNOST ÚDRŽBY MATERIÁLY ZE XIII. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST Praha, lisoad 2003 1 OBSAH OPTIMALIZACE PREVENTIVNÍ ÚDRŽBY Prof.

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ 5. MĚŘEÍ FÁZOVÉHO ROZDÍLU, MĚŘEÍ PROUDU A APĚÍ měření fázového rozdílu osciloskopem a číačem, další možnosi měření ϕ (přehled) měření proudu a napěí: ealony, referenční a kalibrační zdroje (včeně principu

Více

Věstník ČNB částka 16/2004 ze dne 25. srpna 2004

Věstník ČNB částka 16/2004 ze dne 25. srpna 2004 Třídící znak 1 0 6 0 4 6 1 0 ŘEDITEL SEKCE BANKOVNÍCH OBCHODŮ VYHLAŠUJE Ú P L N É Z N Ě N Í OPATŘENÍ ČESKÉ NÁRODNÍ BANKY Č. 2/2003 VĚST. ČNB, KTERÝM SE STANOVÍ MINIMÁLNÍ VÝŠE LIKVIDNÍCH PROSTŘEDKŮ A PODMÍNKY

Více

1. Pomocí modulového systému Dominoputer sestavte základní obvod PID regulátoru a seznamte se s funkcí jednotlivých jeho částí.

1. Pomocí modulového systému Dominoputer sestavte základní obvod PID regulátoru a seznamte se s funkcí jednotlivých jeho částí. MĚŘENÍ NA PID EGULÁTOU 101-4 1. Pomocí modulového systému Dominoputer sestavte základní obvod PID regulátoru a seznamte se s funkcí jednotlivých jeho částí.. Určete přenosovou funkci a přechodovou charakteristiku:

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu)

Úloha 12.1.1 Zadání Vypočtěte spotřebu energie pro větrání zadané budovy (tedy energii pro zvlhčování, odvlhčování a dopravu vzduchu) 100+1 příklad z echniky osředí 12.1 Energeická náročnos věracích sysémů. Klasifikace ENB Úloha 12.1.1 Vypočěe spořebu energie o věrání zadané budovy (edy energii o zvlhčování, odvlhčování a doavu vzduchu

Více

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs. MTF, rozlišovací schopnos Zrnios Graininess vs. granulariy Zrnios Zrnios foografických maeriálů je definována jako prosorová změna opické husoy rovnoměrně exponované a zpracované plošky filmu měřená denziomerem

Více

1. Exponenciální rst. 1.1. Spojitý pípad. Rstový zákon je vyjáden diferenciální rovnicí

1. Exponenciální rst. 1.1. Spojitý pípad. Rstový zákon je vyjáden diferenciální rovnicí V tomto lánku na dvou modelech rstu - exponenciálním a logistickém - ukážeme nkteré rozdíly mezi chováním spojitých a diskrétních systém. Exponenciální model lze považovat za základní rstový model v neomezeném

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Maxwellovy a vlnová rovnice v obecném prostředí

Maxwellovy a vlnová rovnice v obecném prostředí Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Tlumené a vynucené kmity

Tlumené a vynucené kmity Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Píloha 1. Oduhliená zóna 10 mení v oduhliené zón

Píloha 1. Oduhliená zóna 10 mení v oduhliené zón Píloha 1 Oduhliená zóna 10 mení v oduhliené zón Obsah: 1.1. Tab. 1.1 namená velikost oduhliené zóny u vzorku A13/H3 v deseti místech. 1.2. Tab. 1.2 namená velikost oduhliené zóny u vzorku A12/H3 v deseti

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Časová analýza (Transient Analysis) = analýza časových průběhů obvodových veličin

Časová analýza (Transient Analysis) = analýza časových průběhů obvodových veličin Časová analýza (Transien Analysis) = analýza časových průběhů obvodových veličin - napodobování činnosi ineligenního osciloskopu, - různé způsoby dalšího zpracování analyzovaných signálů (zejména FFT).

Více

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná

Více

Simulační schemata, stavový popis. Petr Hušek

Simulační schemata, stavový popis. Petr Hušek Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,

Více

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV

ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV VŠB TU Osrava, Fakula elekroechniky a informaiky, Kaedra měřící a řídící echniky ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV Pavel Nevřiva 007 PŘEDMLUVA Too skripum je věnováno základním meodám, používaným při analýze

Více