CVIČENÍ Z ELEKTRONIKY
|
|
- Václav Horák
- před 8 lety
- Počet zobrazení:
Transkript
1 Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : řída/skuina : 3.B/A Klasifikace : Počet stran : 6
2 Počet grafických říloh : 3 OBSAH: Zadání... strana č. 1 Úvod... strana č. 1,,3 eoretický rozbor... strana č. 3,4 Vlastní výočet... strana č. 4,5 Literatura... strana č. 5 Závěr... strana č. 6 ZADÁNÍ: Proveďte harmonickou analýzu odle obr. matematickou a grafickou metodou. Zobrazte frekvenční a n, b n, An, ϕ n. Složením jednotlivých časových růběhů harmonických zkontrolujte srávnost řešení. Výočet roveďte matematickou a grafickou metodou; ři výočtu oužijte rogramu HA. Koeficienty ro jednu harmonickou složku vyočítejte sami. ÚVOD: U(t) 1,5 1 0,5 0-0,5-1 -1,5 obr. t Harmonická analýza se zabývá rozkladem signálu na harmonické složky. Matematický ois harmonických růběhů vyjadřuje Fourierův rozvoj. Definice Fourierova rozvoje: Každou jednoznačně určenou eriodickou funkci f(t) s eriodou a s frekvencí f=1/, mající v uzavřeném intervalu eriodicky délky jen konečný očet extrému nesojitostí rvního druhu, lze vyjádřit součtem nekonečné řady, sinusových růběhů s amlitudami A n, fázovými osuvy ϕ n a úhlovou frekvencí ω n (kde n je říslušná harmonická), které jsou celistvými násobky úhlové frekvence ω ůvodní eriodické funkce. f(t) =! A n sin (nωt + ϕ n ) n=0 Každou sinusovou křivku lze rozdělit na sinové a kosinivé složky. a 0 f(t) = +! A n (a n cos nωt + b n sin nωt) 1
3 oříadě n=1 f(t) = a 0 + a 1 cos 1ωt + a cos ωt + a n cos nωt + b 1 sin 1ωt + b sin ωt + b n sin nωt oto je Fourierův rozvoj (řada). Koeficienty Fourierova rozvoje: a 0 - stejnosměrná složka a n - amlituda kosinové složky n-té harmonické b n - amlituda sinové složky n-té harmonické Vložením koeficientů a n a b n do Pythagorovy věty vyočítáme frekvenční sektrum výsledné amlitudy A n. Jestliže oba koeficienty odělíme a následně vynásobíme arctg sočítáme fázové osuvy. Pět základních ravidel harmonické analýzy: 11544
4 1) Funkce, jejíž locha v intervalu <0, ) je časovou osou rozdělena na dvě stejné části, nemají stejnosměrnou složku. Platí zde: a 0 =0 ) Funkce středově souměrná odle očátku mají ouze sinové složky Fourierovy řady. Pro tyto funkce latí: - f(t 1 ) = f(-t 1 ) 3) Funkce osově souměrná odle osy f(t) mají ouze kosinové složky Fourierova rozvoje. Pro tyto funkce latí: f(-t 1 ) = f(t 1 ) 4) Funkce, jejichž růběh z rvní olovin eriody se oakuje v druhé olovině s oačným znaménkem, mají fe Fourierově rozvoji ouze liché harmonické složky. Pro tyto funkce latí : f(t + /) = -f(t) 5) Funkce, jejichž růběh z rvní oloviny eriody se oakuje v druhé olovině s týmž znaménkem, mají ve Fourierově rozvoji ouze sudé harmonické. Pro tyto funkce latí f(t + /) = f (t). EOREICKÝ ROZBOR: K výsledkům harmonické analýzy můžeme dojít omocí několika metod : A) Numerická metoda B) Matematická metoda C) Grafická metoda A) Numerická metoda je založena na integrování základních rovnic. akto získáme a 0, a n, b n. Pro stejnosměrnou složku latí: a 0 " f(t) t = + " t +! " (a n cos nωt + b n sin nωt) t 0 0 n=1 0 a 0 = " f (t) t 0 Pro kosinovou složku latí: a n = " f(t) cos ωt t 0 Pro sinovou složku latí: b n = " f(t) sin ωt t 0 B) Matematická metoda harmonické analýzy sočívá v rozdělení jedné eriody na určitý očet dílků a uvažujeme, že hodnota v každém intervalu, který dílek vymezí, je konstantní. Průběh lze rozdělit buď na obdélníky a uvažovat hledanou hodnotu jako 3
5 výšku urostřed dílku (obdélníková metoda), nebo na lichoběžníky. Výsledkem je směrnice, která rotíná krajní body, vymezené intervalem (lichoběžníková metoda). Pro dobrou řesnost n-té harmonické je nutné rozdělit eriodu na nejméně = n + stejných dílků. 1 P Pro stejnosměrnou složku otom latí: a 0 =! u u=1 P Pro kosinovou složku latí: a n =! u cos (d α n) u=1 P Pro sinovou složku latí: b n =! u sin (d. α. n) u=1 Výsledná amlituda je: A n = a n + b n Fázový osuv je ϕ n = arctg b n C) Grafická metoda sočívá na rozdělení eriody na stejný očet dílků, stejně jako u metody numerické. Příslušné okamžité hodnoty se vynesou ve formě fázorů říslušné délky od atřičným úhlem. Sojením koncového bodu vzniklého obrazcea očátku souřadnic vznikne výsledný vektor A n. Jeho sklon je fázový osun n. Promítneme-li vektor A n do X-ové souřadnice vznikne délka a n, do Y-ové souřadnice b n. Pro určení n-té harmonické musíme fázory vynášet od n-násobným úhlem. a n VLASNÍ VÝPOČE: Nejdříve se okusíme zjednodušit řešení omocí ěti ravidel HA. 1) A 0 <>0 rotože obsah fce v horní olovině není stejný s obsahem fce v druhé olovině ) Fce má sinové složky, rotože není středově souměrná odle očátku 3) Fce má cosinové složky, rotože není osově souměrná odle osy Y 4) Fce má liché složky, rotože se její růběh z rvní oloviny eriody neoakuje s oačným znaménkem v druhé olovině eriody 5) Fce má sudé složky, rotože se její růběh z rvní oloviny eriody neoakuje se stejným znaménkem v druhé olovině eriody Určíme si očet harmonických: n=7 Sočítáme (odle vzorce =n+) = ! α= = =, α, , , ,5 180 Y 0,15 0,375 0,65 0,
6 α 0,5 5 47,5 70 9, ,5 360 Y Příklad výočtu třetí harmonické: a 3 = y K K = 1 cos3α = (0,15 cos3,5 + 0,375 cos ,65 cos3 67, K 0,975 cos cos3 11,5 + 1 cos cos3 157,5 + 1 cos cos3 0,5 + 1 cos3 5-1 cos3 47,5-1 cos cos3 9,5-1 cos cos3 337,5-1 cos3 360) = -0, b 3 = sin 3α = (0,15 sin3,5 + 0,375 sin ,65 sin3 67, A 3 = y K K = 1 K 0,975 sin sin3 11,5 + 1 sin sin3 157,5 + 1 sin sin3 0,5 + 1 sin3 5-1 sin3 47,5-1 sin sin3 9,5-1 sin sin3 337,5-1 sin3 360) = -0, a = 0, b3 = ( 0,110059) + ( 0, ) a3 0, ϕ 3 = arctg = arctg = -144, b 0, akto očítáme dále ro 0 7-ou harmonickou získáme následující tabulku n a n b n A a ϕ n 0 0, , , , , , , ,1496 0, , , , ,1101-0, , , , , , , , , , , , , , , ,1306 0, , ,57304 Výsledná funkce: a0 F(t) = + ( a cosnωt + b sin nωt) n= 1 n n = a 0 + a1 cos1ωt + b 1 sin1ωt + a cosωt + b sinωt + a 3 cos3ωt + b 3 sin3ωt + a 4 cos4ωt + b 4 sin4ωt + a 5 cos5ωt + b 5 sin5ωt + a 6 cos6ωt + b 6 sin6ωt + a 7 cos7ωt + b 7 sin7ωt LIERAURA: J.Maťátko: Harmonická analýza 5
7 ZÁVĚR: Přesvědčili jsme se, že lze omocí Fourierova rozvoje oměrně dobře nahradit libovolný časový růběh. V našem říadě jsme si zvolili sedm harmonických. Výsledný signál byl již odobný skutečnému (viz graf). Kdybychom si zvolili větší očet harmonických, byl by výsledný časový růběh téměř shodný. V dnešní době je možné omocí očítače nahradit složité očítání a tak se vyhnout roblémům (nař.: chybám ři výočtu), které ři očítání nastávají. Počítače dokáží velice rychle sočítat jakýkoliv časový růběh ro velký očet harmonických. Přitom výsledky jsou řesné (dokonce i na několik desítek desetinných míst), ale hlavně také bezchybné. K výočtu jsme oužili rogram HA. Výsledný časový růběh 1,5 1 0,5 u(t) 0-0,5-1 -1,5 t 6
8 7
9 8
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
9. cvičení z Matematické analýzy 2
9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
D(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická
Vyšetříme funkci f(x): f(x) = 2x3.. Stanovme definiční obor funkce D(f) a zjistíme,ve kterých bodech je funkce sojitá D(f) =(, ) [ (, ) [ (, ). 2. Počítáme f( x) = 2( x)3 ( x) 2 = 2(x) 3 (x) 2 = f(x) Funkce
Laplaceova transformace.
Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci
zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.
Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
12.1 Úvod. Poznámka : Příklad 12.1: Funkce f(t) = e t2 nemá Laplaceův obraz. Příklad 12.2: a) L{1} = 1 p, p > 0 ; b) L{ eat } = 1, [ZMA15-P73]
KAPITOLA 2: Lalaceova transformace [ZMA5-P73] 2. Úvod Lalaceovým obrazem funkce f(t) definované na, ) nazýváme funkci F () definovanou ředisem Definičním oborem funkce F F () = f(t) e t dt. je množina
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23
Cyklické kódy 5. řednáška z algebraického kódování Alena Gollová, TIK Cyklické kódy 1/23 Obsah 1 Cyklické kódy Generující olynom - kódování Kontrolní olynom - objevování chyb Alena Gollová, TIK Cyklické
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Exponenciální funkce, rovnice a nerovnice
Eonenciální unkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální unkce) a) AN; b) NE; c) NE; d) AN; e) NE; ) NE; g) AN; h) NE a),; b),; c) ; d) ; e) ; ) e + b) - - - D()= R; H ()=( ; ) ; P neeistuje
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
GONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
Přenos pasivního dvojbranu RC
Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání
Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné
Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ
Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.
Model tenisového utkání
Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE
4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této
Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Technická mechanika - Statika
Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...
1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
3. Silové působení na hmotné objekty
SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní
Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
3.2 Metody s latentními proměnnými a klasifikační metody
3. Metody s latentními roměnnými a klasifikační metody Otázka č. Vyočtěte algoritmem IPALS. latentní roměnnou z matice A[řádek,slouec]: A[,]=, A[,]=, A[3,]=3, A[,]=, A[,]=, A[3,]=0, A[,3]=6, A[,3]=4, A[3,3]=.
Nauka o Kmitání Přednáška č. 4
Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Diferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :
Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
Obvodové rovnice v časové oblasti a v operátorovém (i frekvenčním) tvaru
Obvodové rovnice v časové oblasti a v oerátorovém (i frekvenčním) tvaru EO Přednáška 5 Pavel Máša - 5. řednáška ÚVODEM V ředchozím semestru jsme se seznámili s obvodovými rovnicemi v SUS a HUS Jak se liší,
7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné
Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b +
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Hledání úhlů se známou hodnotou goniometrické funkce
4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
Laplaceova transformace
Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015
CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
Funkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ..07/..00/6.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Mocninné funkce Autor: Pomykalová Eva
b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
Základy elektrotechniky
Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta
1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Směrová kalibrace pětiotvorové kuželové sondy
Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The
Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto
Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat
Výkon střídavého proudu, účiník
ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
Reproduktor elektroakustický měnič převádějící elektrický signál na akustický signál, převážně zvukový
Měření reroduktorů Reroduktor elektroakustický měnič řevádějící elektrický signál na akustický signál, řevážně zvukový i w u Reroduktor reroduktor jako dvoubran y( t) h( t)* x( t) Y ( ω ) H ( ω ). X X
Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.
5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?
Hluk Nepříjemný nebo nežádoucí zvuk, nebo jiné rušení (ČSN ).
14SF3 00 Úvod do akustiky Zvuk Zvuk je mechanické vlnění ružného rostředí (lynného nebo kaalného), které je vnímatelné lidským sluchem. Jedná se o odélné vlnění, kdy částice rostředí kmitají v ásmu slyšitelných
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.
/ 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,
18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu