IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
|
|
- Libuše Havlíčková
- před 8 lety
- Počet zobrazení:
Transkript
1 IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie disribucí) δ pro pro Jednokový impuls musí splňova inegrál δ d Mohunos jednokového impulsu je edy rovna. Maemaická definice jednokového impulsu (spojié funkce) () δ ( ) f d f Pro účely analýzy elekrických obvodů (v maemaice exisují další definice) bude jednokový impuls definován: V praxi nelze samozřejmě akový impuls vyvoři, pro konkréní obvod ale sačí, pokud τ (nejkraší časová konsana obvodu) Velký význam má u diskréních obvodů, kde přechází na prosé číslo (a např. u obvodů ypu FIR je impulsová odezva rovna přímo koeficienům filru). S Grafické znázornění: Laplaceův obraz: L { w ()} Pavel Máša, X3EO, přednáška č. 9 srana
2 Jednokový skok, < (), > Časé je značení u( ), v elekrických obvodech by se ale plelo s napěím. Velikos skoku v bodě budeme v elekrických obvodech předpokláda ( ), ( ), maemaicky se jednokový skok časo zobecňuje, < ().5, > Graficky jednokový skok znázorníme:.5 Mezi jednokovým impulsem a jednokovým skokem se někdy uvádí vzah d δ (), () δ ( τ) d Ačkoli rigorózní maemaika by mohla mí k uvedeným rovnicím oprávněné výhrady (eorie disribucí), rovnice poskyují dobrou předsavu o relaci mezi ěmio funkcemi viz minulý semesr, měření napěí a proudu na L, C; pokud yo prvky jednu obvodovou veličinu derivovaly, a ao obvodová veličina měla obdélníkový průběh, objevil se jako druhá veličina (přibližně) diracův impuls. Prakická realizace připojení zdroje napěí o velikosi V. { } Laplaceův obraz: L () p dτ Pavel Máša, X3EO, přednáška č. 9 srana
3 Impulsní a přechodová charakerisika Uvažujme lineární obvod, kerý byl v čase bez energie. u () LO u () Vzah mezi vsupním a výsupním napěím můžeme popsa v oboru (Laplaceových) obrazů přenosem U ( p) P( p) U p. Obdobně bychom mohli přenos vyjádři pro fázory (HUS), nebo jω (Fourierova ransformace), ale nikdy ne v časové oblasi. Např. u ( ) je sejnosměrné napěí, na výsupu se může objevi kupř. exponencielní impuls podíl funkcí bude obecně v každém časovém okamžiku různý, zaímco přenos je sále sejná racionálně lomená funkce. V HUS vede přenos na komplexní číslo, keré se mění s frekvencí (ampliuda a fáze, v časové oblasi ampliuda a časové zpoždění). Impulsní charakerisika u δ, w u Přechodová charakerisika u, a u V případě obrazů je přímo daný vzah mezi přenosem obvodu a obrazem impulsní / přechodové charakerisiky: U p W p P p P p W( p) P( p) P p U ( p) A( p) P( p) p p P p A( p) P p pa p p Pavel Máša, X3EO, přednáška č. 9 srana 3
4 Změřením časového průběho výsupního napěí u a jeho ransformací ak nalezneme přenos neznámého obvodu. Odud můžeme naléz m.j. kmiočovou charakerisiku obvodu. Pro impulsní charakerisiku plaí obdobně pro Fourierův obraz () P( jω ) w F, { } ale ekvivalenní vzah neexisuje pro přechodovou charakerisiku (neexisuje Fourierův obraz jednokového skoku). Vzah mezi impulsní a přechodovou charakerisikou v časové oblasi můžeme naléz z vlasnosí obrazů derivace a inegrálu: d u pu p u d L () ( ), u( ) limu da P( p) W( p) p A( p) L a d () da w () a d ( ) δ ( ) () ( ) a wτ dτ a Pavel Máša, X3EO, přednáška č. 9 srana 4
5 Konvoluce Jak vyjádři vzah mezi vsupním napěím u ( ) a u () v časové oblasi? přímo Takový vzah již vyjádři umíme bohužel pouze pro dva signály jednokový impuls δ () a jednokový skok ( ). Výsupním napěím je impulsní, resp. přechodová charakerisika. Různé časové průběhy je možné aproximova (nekonečně mnoha) jednokovými impulsy, resp. jednokovými skoky, násobené funkční hodnoou pro daný časový okamžik. souče impulsních (přechodových) charakerisik. Vzdálenos mezi impulsy x Mohunos impulsu ( k ) Odpovídající výsupní napěí x ( ) w( ) k k Celkové výsupní napěí bude součem reakcí na jednolivé impulsy (impulsních charakerisik), n () ( ) x x w k k keré pro přejde v inegraci konvoluorní inegrál k () ( ) x x τ w τ dτ Pavel Máša, X3EO, přednáška č. 9 srana 5
6 Symbolem konvoluce je hvězdička (*) a plaí: () ()* () () ( ) ( ) () x x w x w τ dτ x τ w dτ Geomerický význam: u( τ ) u ( τ ) w(.75 τ ), S u (.75 ) w( τ ) u ( τ ) w( τ ), S u ( ).5.5 w ( τ ) u ( τ ) w( τ ), S u (.5 ).5 ( τ ) w( τ ), S u (.5 ) u ( τ ) w( τ ), S u (.5 ) u.5.5 ( τ ) w( τ ), S u (.5 ) u ( τ ) w( τ ), S u (.75 ) u.5.75 Pavel Máša, X3EO, přednáška č. 9 srana 6
7 Příklad: Mějme inegrační článek, buzený ze zdroje u U e a e a Úkol: nají časový průběh výsupního napěí u ( ). a) Laplaceova ransformace přenos P( p) p p, U p U p a U U U ( p) p a p a p a p U a u () e e a b) Impulsní charakerisika konvoluce () e, w u Ue a ( τ aτ ) u () u () * w() U e e dτ U e d e e τ a a τ U a c) Přechodová charakerisika Duhamelův vzorec, viz dále Pavel Máša, X3EO, přednáška č. 9 srana 7
8 Duhamelův vzorec Namíso obdélníkových impulsů jako v případě konvoluce je možné vsupní veličinu aproximova pomocí skokových funkcí: Vzdálenos mezi skoky Výška skoku x k x ( k) Odpovídající výsupní napěí xk( k) a( k) Časový průběh výsupního napěí u na jednolivé skoky () ( ) () x x a x a k n k bude součem všech odezev obvodu Pokud, pak souče přechází v inegraci a dosaneme Duhamelův vzorec k () ( ) () ( ) x x a x τ a τ dτ Z operáorového poču: X p X p P p X p p A p dx () L, pa( p) px p x d () da L a d ( ) Pavel Máša, X3EO, přednáška č. 9 srana 8
9 () dx X( p) L x( ) A( p) d da() L a( ) X ( p) d Zpěnou ransformací další vary Duhamelova vzorce: Nebo () ( ) () ()* () ( ) () ( ) u x a x a x a x τ a τ dτ () ( ) () ()* () ( ) () u a x x a a x x τ a τ dτ Sabilia ( ) a x x τ a τ dτ Obvod nazveme sabilním, pokud se po odeznění budících veličin posupně navráí do sabilního savu, edy lim u u lim w u () () p jinými slovy, odezní přechodná složka Takový obvod je sabilní. Obvody rozdělujeme na sabilní na mezi sabiliy nesabilní p Pavel Máša, X3EO, přednáška č. 9 srana 9
10 u [V] Sabilní obvody [s].5 u [V] [s].5 Obvod na mezi sabiliy u [V] u [V] [s] Nesabilní obvod [s] Pavel Máša, X3EO, přednáška č. 9 srana
11 Při sudiu přechodných dějů jsme poznali, že obecné řešení, keré popisuje vlasní přechodnou složku nezávisí na charakeru buzení impulsní charakerisika je obecným řešením přechodného děje Polynom v čiaeli přenosu musí bý nižšího supně, nežli supeň polynomu ve jmenovaeli: M ( p) Q( p) W( p) P( p) D N p N p Pak - Q p w () Dδ () L N p Zpěná ransformace rozklad na parciální zlomky, je určena polynomem N( p ); kořeny póly mohou bý p n reálné w Ke n vícenásobné ( n n ) komplexně sdružené sin( ω ψ ) p n w K K e n w K e α n n n Ve všech případech obsahuje řešení exponenciální funkci, akže pokud je pól (jeho reálná čás) záporný, je obvod sabilní, pro kladný pól nesabilní p - rovina Sabilní oblas Im Nesabilní oblas Mez sabiliy Re Pavel Máša, X3EO, přednáška č. 9 srana
Laplaceova transformace Modelování systémů a procesů (11MSP)
aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála
VíceMatematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
VícePasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
VíceSTATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
VíceBiologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8
Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická
VíceREGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ
REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém
Více9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
VíceAnalogový komparátor
Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací
Vícetransformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.
finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární
VíceUniverzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
VícePLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N
PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni
VíceBipolární tranzistor jako
Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.
VíceTeorie obnovy. Obnova
Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi
VíceDerivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
VíceNumerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
Více5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceParciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
Více10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
Více2. MĚŘICÍ ZESILOVAČE A PŘEVODNÍKY
. MĚŘCÍ ZESLOVAČE A PŘEVODNÍKY Senzor předsavuje vsupní blok měřicího řeězce. Snímá sledovanou veličinu a převádí ji na veličinu měronosnou, nejčasěji analogový elekrický signál. Výsupem akivního senzoru
VíceDiferenciální rovnice 1. řádu
Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou
VíceKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 4. přednáška: Vekorové prosory Dalibor Lukáš Kaedra aplikované maemaiky FEI VŠB Technická univerzia Osrava email: dalibor.lukas@vsb.cz hp://www.am.vsb.cz/lukas/la Tex byl vyvořen v rámci
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
Více3B Přechodné děje v obvodech RC a RLC
3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího
VíceSIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07
Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení
VíceInverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
VíceVzorce na integrování. 1. x s dx = xs+1. dx = ln x +C 3. e x dx = e x +C. 4. a x dx = ax. 14. sinhxdx = coshx+c. 15. coshxdx = sinhx+c.
Vzorce na inegrování. s d s+ s+. d ln. e d e. a d a lna, s 5. sind cos 6. cosd sin 7. cos d g 8. d cog sin 9. d arcsin arccos+k 0. + d arcg arccog+k. a + d a arcg a. + d ln(+ +. d ln +. sinhd cosh 5. coshd
Více1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
VíceEKONOMETRIE 6. přednáška Modely národního důchodu
EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,
VíceZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV
VŠB TU Osrava, Fakula elekroechniky a informaiky, Kaedra měřící a řídící echniky ZÁKLADY TEORIE SIGNÁLŮ A SOUSTAV Pavel Nevřiva 007 PŘEDMLUVA Too skripum je věnováno základním meodám, používaným při analýze
VíceSimulační schemata, stavový popis. Petr Hušek
Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
VíceJAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2
STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:
VíceLaplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
VíceXI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...
XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová
Více10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY
- 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby
VíceKomplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou
VíceMěřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení
Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí
VíceFrekvenční charakteristiky
Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci
VíceX31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
VíceFINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
VíceÚvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
VíceTeorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VíceNUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.
Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS
VíceKapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
Víceteorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
VíceLS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle
Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,
VíceUNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha
UNIVERZITA PARDUBICE Fakula elekroechniky a informaiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR Bc. David Mucha Diplomová práce 2017 Prohlášení Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré
VíceModely veličin spojitých v čase funkce spojité v čase
Modely veličin spojiých v čase funkce spojié v čase Základní pojmy Základní informace Tao kapiola, je první, kerá se zabývá konkréními poznaky, ýkajícími se popisem a rozborem vlasnosí spojiých funkcí,
VíceUniverzita Tomáše Bati ve Zlíně
Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,
VíceSpektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský
Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
VíceTlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
VíceT t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka
Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické
Více1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
Vícelistopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.
6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U
VíceI> / t AT31 DX. = 50 Hz READY L1 L2 L3 K K K 0,05 0,05 0,05 0,1 0,1 0,1 0,2 0,2 0,2 0,4 0,4 0,4 0,8 0,8 0,8 1,6 1,6 1,6 3,2 3,2 3,2 6,4 6,4 6,4
> / AT31 DX n = 1 A E = 18-60 VDC/AC n = 5 A E = 40-265VDC/AC fn = 50 Hz READY L1 L2 L3 K K K 0,05 0,05 0,05 0,1 0,1 0,1 0,2 0,2 0,2 0,4 0,4 0,4 0,8 0,8 0,8 1,6 1,6 1,6 3,2 3,2 3,2 6,4 6,4 6,4 el.: +420
VíceFyzikální praktikum II - úloha č. 4
Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných
VíceHlavní body. Úvod do nauky o kmitech Harmonické kmity
Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice
VíceInterpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
VícePřechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
VíceVybrané metody statistické regulace procesu pro autokorelovaná data
XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
VíceAutomatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
VíceRadek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010
Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále
VícePráce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
VíceNA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
VíceReologické modely měkkých tkání
Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.
VíceSLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VíceZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
VíceV EKONOMETRICKÉM MODELU
J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům
VíceOBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI
OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka
VíceVyužijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.
Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Více10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci
VíceElektromagnetické stínění. Jiří Dřínovský UREL, FEKT, VUT v Brně
Jiří Dřínovský UREL, FEKT, VUT v Brně Teoreické řešení neomezeně rozlehlá sínicí přepážka z dobře vodivého kovu kolmý dopad rovinné elekromagneické vlny (nejhorší případ) Koeficien sínění K S E E i nebo
VíceHODNOCENÍ EXPOZICE V OKOLÍ PŘÍSTROJŮ IPL. Pavel Buchar
HODNOCENÍ EXPOZICE V OKOLÍ PŘÍSTROJŮ IPL Pavel Buchar elmag@szu szu.cz OSNOVA Veličiny a limiy Výpočy Závěr ZÁŘ VELIČINY HUSTOTA ZÁŘIVÉHO TOKU EXPOZICE ZÁŘENÍ ( dávka, fluence fluence ) L [W/m 2 sr] E
VíceFyzikální korespondenční seminář MFF UK
Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace
VíceLineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
VíceČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří
VíceFourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
VíceFAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Signály a soustavy
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Signály a sousavy Garan předměu: Prof. Ing. Vladimír Šebesa, CSc. Auoři exu: Prof. Ing. Vladimír Šebesa, CSc. Prof. Ing.
Více1. Vzorkování, A/D převodníky, číslicový osciloskop.
. Vzorkování, A/D převodníky, číslicový osciloskop. přednášky A3B38SME Senzory a měření zdroje převzaých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elekrická měření a skripa
Více4. MĚŘENÍ PROUDU, MĚŘENÍ KMITOČTU A FÁZE
4. MĚŘENÍ PROUDU, MĚŘENÍ KMIOČU A FÁZE Základní jednokou SI elekrický proud realizace: proudové váhy (primární ealonáž), dnes pomocí Josephsonova konaku (kvanový ealon napěí) a kvanového Hallova jevu (kvanový
VíceDynamické systémy. y(t) = g( x(t), t ) kde : g(t) je výstupní fce. x(t) je hodnota vnitřních stavů
Dynamcké sysémy spojé-dskréní, lneární-nelneární a jejch modely df. rovnce, přenos, savový pops. Tvorba a převody modelů. Lnearzace a dskrezace. Smulace. Analoge mez sysémy různé fyzkální podsay. Idenfkace
VíceStatika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
VíceLABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická
Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní
Vícex udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
Více( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1
Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely
VícePOPIS OBVODŮ U2402B, U2405B
Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody
VíceÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
VíceMatematické modely v ekologii a na co jsou dobré
Maemaické modely v ekologii a na co jsou dobré Indukivní a dedukivní uvažování o Indukce - mám spousu pozorování, a v nich se snažím naléz zákoniosi, zobecnní ad. o Dedukce - mám adu pravd, a hledám jejich
Více22 Základní vlastnosti distribucí
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající
Více