ABSTRAKT ABSTRACT KLÍČOVÁ SLOVA KEYWORDS

Rozměr: px
Začít zobrazení ze stránky:

Download "ABSTRAKT ABSTRACT KLÍČOVÁ SLOVA KEYWORDS"

Transkript

1

2

3

4 ABSTRAKT, KLÍČOVÁ SLOVA ABSTRAKT Práce se zabývá kinematickými vlastnostmi zavěšení vozidla a jeho podstatnými parametry, jeho analýzou a optimalizací pro využití na jízdu po nezpevněném povrchu. Následný rozbor změny kinematiky na jízdních simulacích ověří provedené úpravy z hlediska jízdních vlastností závodního vozu. KLÍČOVÁ SLOVA Kinematika, nezpevněný povrch, simulace, jízdní manévry ABSTRACT The thesis deals with the kinematic characteristics of vehicle suspension and its essential parameters, analysis and optimization for use on ride on unpaved surface. Subsequent analysis of change of kinematics on driving simulations shall verify the modifications made in terms of driving characteristics of the race car KEYWORDS Kinematics, unpaved surface, simulation, riding maneuvers BRNO 2018

5 BIBLIOGRAFICKÁ CITACE BIBLIOGRAFICKÁ CITACE GAŠPAR, D. Optimalizace zavěšení závodního vozidla. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, s. Vedoucí diplomové práce Ing. Ondřej Blaťák, Ph.D.. BRNO 2018

6 ČESTNÉ PROHLÁŠENÍ ČESTNÉ PROHLÁŠENÍ Prohlašuji, že tato práce je mým původním dílem, zpracoval jsem ji samostatně pod vedením Ing. Ondřeje Blaťáka, Ph.D., a s použitím literatury uvedené v seznamu. V Brně dne 22. května Dominik Gašpar BRNO 2018

7 PODĚKOVÁNÍ PODĚKOVÁNÍ Mé poděkování patří vedoucímu diplomové práce Ing. Ondřeji Blaťákovi, Ph.D., za cenné rady při vyhotovení této práce. Na závěr bych chtěl poděkovat své rodině a přítelkyni za veškerou podporu. BRNO 2018

8 OBSAH OBSAH Úvod Pneumatiky Plášť pneumatiky Konstrukce dezénu pneumatik Opotřebení pneumatik Chování pneumatik Prokluz Koeficienty tření a jeho faktory Silniční faktory Sníh a led Boční síly a úhel skluzu Vratný moment pneumatiky Závlek rejdové osy Zavěšení kol Druhy zavěšení kol Tuhá náprava Nezávislé zavěšení kol Požadavky Lichoběžníková náprava Náprava McPherson Kyvadlová úhlová náprava Kliková náprava Geometrie kol Úhel odklonu kola Příklon rejdové osy Poloměr rejdu Záklon rejdové osy, závlek Sbíhavost Tvorba modelů zavěšení v programu Adams Car MSC Adams Car Přední a zadní model zavěšení Kinematická analýza a optimalizace předního a zadního zavěšení Optimalizace průběhu odklonu kol předního závěsu Optimalizace sbíhavosti předního zavěšení Další průběhy získané po optimalizaci sbíhavosti a odklonu na přední nápravě43 BRNO

9 OBSAH Zadní model zavěšení Optimalizace průběhu odklonu zadního závěsu Optimalizace sbíhavosti zadního zavěšení Další průběhy získané po optimalizaci sbíhavosti a odklonu na zadní nápravě Tvorba sestavy vozidla Definice vlastností sestavy Hmotnostní charakteristiky karoserie Výkonová charakteristika motoru Vlastnosti celé sestavy Hmotnostní parametry pneumatik Ověření optimalizace v klíčových jízdních režimech Tvorba 3D vozovky s šotolinovými parametry Akcelerace Vstupní parametry pro akceleraci Vyhodnocení analýzy Brždění Vyhodnocení simulace Průjezd okruhem Simulace pomocí inteligentního řidiče Vyhodnocení výsledků Závěr Použité informační zdroje Seznam použitých zkratek a symbolů BRNO

10 ÚVOD ÚVOD Tato diplomová práce seznamuje čtenáře s kinematikou zavěšení, systémem odpružení a tlumením, jako nedílnou vlastností mající zásadní vliv na jízdní vlastnosti závodního vozidla a tím i na dosažený čas v průběhu závodu. V první kapitole se práce zaměřuje na pneumatiky. Na počátku první části informuje o obecné stavbě pneumatiky, jejich dezénu a zásadních podmětech majících vliv na jejich samotné opotřebení. Následující podkapitola pojednává o podstatných faktorech ovlivňujících chování pneumatik při jízdě. V druhé části je hlavním cílem seznámit čtenáře s problematikou zavěšení kol; jejich rozdělením, výhodami i nevýhodami daných druhů a vhodností použití pro konkrétní účely. V kapitole zaměřené na geometrii kol, která je velmi podstatnou součástí pro následnou praktickou část, popisujeme veškeré hlavní parametry související s faktory ovlivňujíc í charakter řízení. Na počátku praktické části probíhá vyhodnocování kinematických vlastností zadaného zavěšení. Tyto parametry mají zásadní vliv na chování automobilu během průjezdu tratí. Současně je zde vysvětlena problematika daného zavěšení a důvod použití pro námi optimalizované vozidlo. V části věnované tvorbě sestavy se zabýváme hmotnostními charakteristikami celého vozu, z důvodu jeho správného chování. Závěrečná část této diplomové práce se soustředí na klíčové jízdní manévry, které jsou důležité pro porovnání požadovaných výstupů zadaného i optimalizovaného modelu automobilu. Závěr práce se věnuje detailnímu zhodnocení výsledků provedených simulací. BRNO

11 PNEUMATIKY 1 PNEUMATIKY Pneumatiky jako takové patří k nejvýznamnějším částem současných automobilů. Právě ony nejzásadněji ovlivňují bezpečnost a komfort při jízdě. Společně s brzdným systémem tvoří nejdůležitější soustavu s ohledem na bezpečnost, z důvodu vzájemné závislosti na brzdný účinek. Současná pneumatika je vyztužený kompozit vyrobený z: polymerů (39%) černých sazí (27%) olejů (11%) různých chemikálií (11%) patkového lana (3%) textilií [1] Obr. 1.1 Hlavní části pneumatiky [1] BRNO

12 PNEUMATIKY 1.1 PLÁŠŤ PNEUMATIKY Mezi nejpodstatnější části pláště určující zásadní vlastnosti pneumatiky, jako jsou nosnost, tvar atd., patří kostra pneumatiky. Podle konstrukce ocelového pásu a kostry rozlišujeme dva druhy plášťů; diagonální (obr. 1.2a) a radiální (obr. 1.2b). Při hodnocení kvality diagonálních pneumatik jsou zásadní tyto vlastnosti: pevnost použitých kordů hustota kordové tkaniny počet kordových vložek hodnota úhlu, který spolu svírají kordové nitě ve dvou sousedních vložkách [1] Obr. 1.2 Rozdělení plášťů podle struktury: a) diagonální, b) radiální [1] Obr. 1.3 Uspořádání kordových nití: a) diagonální, b) radiální [1] Zakotvení kordové vložky je provedeno přehnutím kolem lana pláště. Z důvodu působení dynamických sil na pneumatiku má úhel nití v kostře výrazný vliv. Dynamické síly působící na pneumatiku při jízdě: svislé (hmotnost vozu a nákladu) podélné (zrychlení a decelerace) příčné (průjezd zatáčkou a boční vítr) Od počátku vývoje se vyráběly pneumatiky s úhlem 40. To vedlo k eliminaci dynamických sil působících na pneumatiku. S přibývajícím časem se kladly větší nároky na povolenou rychlost jízdy až 210 km/h. Tato hodnota směřovala k zmenšení úhlu na 30, které způsobilo určité ztráty jízdní bezpečnosti. Tyto znepokojivé ztráty vedly k vývoji radiálních pneumatik. Hlavní výhodou této konstrukce bylo zvýšení bezpečnosti jízdy dané kvalitnějším kontaktem s vozovkou, zvláště při průjezdu zatáčkou. Kordová vlákna radiálních pneumatik jsou vedena BRNO

13 PNEUMATIKY ve směru kolmém na obvodovou kružnici, což vede ke zkrácení vzdálenosti od jedné patky k druhé. Z tohoto důvodu se používá název radiální. K velkému pokroku ve vlastnostech radiálních pneumatik přispěla i změna materiálů užívaných pro výrobu obvodových vláken z textilních na ocelové. [1] 1.2 KONSTRUKCE DEZÉNU PNEUMATIK Plochy pneumatik jsou opatřeny různými vzorky. Tyto vzorky vytváří tzv. figury, což jsou geometrické obrazce, které tvoří nahodile uspořádané drážky. Pro dobré jízdní vlastnosti na mokré vozovce musí pneumatika dostatečně narušit nosný vodní film a dostat se do přímého kontaktu s vozovkou. Ve velmi deštivých podmínkách se proto často přistupuje ke konstrukci dezénu s menší plností. Takové drážky odvádí velké množství vody v krátkém časovém intervalu. Vzhledem k tomu, že šířka dotykové plochy je menší než její délka, je vhodné uspořádat drážky s ohledem na jejich délku tak, aby plocha pro odvedení vody byla co nejmenší. Vzhledem k podélné rovině pneumatiky se proto nejčastěji volí příčné uspořádání. Nevýhodou takto konstrukčně řešených dezénů je větší opotřebení a hlučnost. [1] BRNO

14 PNEUMATIKY Figury dezénů u osobních automobilů bývají vybaveny jemnými zářezy tzv. lamelami (obr. 1.6). Hlavní význam těchto zářezů spočívá v absorpci určitého objemu vody, což zmenšuje tloušťku vodního filmu mezi dezénem a povrchem vozovky. Lamely také zlepšují poddajnost vzhledem k nerovnoměrnému povrchu vozovky. Negativně se projevují na opotřebení pneumatiky. [1] Obr. 1.5 Pásový dezén pneumatiky pro osobní automobily [1] Obr. 1.6 Blokový dezén pneumatiky pro osobní automobily [1] Dezény pneumatik pro letní podmínky jsou vybaveny jemným žlábkováním nebo lamelováním. Dělí se na pásové nebo blokové (obr. 1.5; obr. 1.6). Pásový dezén se z důvodu dobrého bočního vedení vozidla hodí především na suchý typ vozovky. Blokový dezén je vhodnější pro mokré podmínky. Tento typ dezénu lépe odvádí vodu ze stykové plochy. Moderní pneumatik y kombinují obě uvedená provedení (obr. 1.7). Obr. 1.7 Kombinovaný letní dezén pneumatiky pro osobní automobily [1] Obr. 1.8 Zimní dezén pneumatiky pro osobní automobily [1] U zimního provedení dezénu pneumatik jsou figury v podélném i příčném směru poměrně rozměrné (obr. 1.8). Tento typ pneumatik je vhodný do měkkého, popř. tajícího sněhu, při kterém není příliš obvyklý přímý kontakt s vozovkou, zejména při vysoké sněhové vrstvě. BRNO

15 PNEUMATIKY Silový styk pneumatika zabezpečuje svými čelními a bočními plochami, které při pohybu boří do měkkého podkladu. Pomocí těchto ploch přenáší potřebné síly. 1.3 OPOTŘEBENÍ PNEUMATIK Opotřebení, popř. životnost pneumatiky jsou značně ovlivňovány provozními podmínkami. Mezi tyto podmínky patří: rychlost jízdy teplota kvalita povrchu vozovky síly působící ve stopě pneumatiky [1] K extrémnímu opotřebení dochází zejména při průjezdu zatáčkou, kde opotřebení kol narůstá se čtvrtou mocninou rychlosti. K podobnému efektu dochází také při prudké akceleraci a deceleraci. Další příčinou nerovnoměrného opotřebení pneumatiky může být nesprávně nastavená geometrie pneumatiky. Jedná se zejména o nesprávnou sbíhavost kol nebo velký úhel odklonu kola. [1] Obr. 1.9 Nejčastější průběhy opotřebení pneumatik: a) vysoký tlak vzduchu; b) nízký tlak vzduchu; c) vysoká sbíhavost; d) vysoká rozbíhavost; e) záporný úhel odklonu kola [1] Životností pneumatiky rozumíme počet najetých kilometrů, který urazíme za určitých podmínek při provozu, než dojde k opotřebení dezénových drážek dle stanovených zákonných podmínek. [1] V praxi se životnost pneumatiky určuje jako dráha v kilometrech, kterou urazíme od montáže nové pneumatiky až do: opotřebení dezénové drážky na zákonem stanovenou minimální hloubku defektu pneumatiky, který znamená vyřazení z provozu poruchy funkčních vlastností související s hloubkou drážky dezénu [1] BRNO

16 PNEUMATIKY Pneumatiky v současné době ovlivňují více než z poloviny jízdní vlastnosti podvozku. Můžeme říci, že tyto vlastnosti jsou závislé na hloubce dezénových drážek. Z těchto důvodů je více než důležité věnovat pneumatikám náležitou péči. [1] Během snižování hloubky drážky dezénu, tedy při jejím opotřebení, dochází k následujícím jevů: Dochází k poklesu adhezních vlastností pneumatiky. Dochází k aquaplaningu už v nižších rychlostech. Mění se boční tuhost pneumatiky, což vede k neřiditelnosti vozidla. [1] Jak už bylo zmíněno výše, opotřebení pneumatik může ovlivňovat řada faktorů. Tyto faktory můžeme rozlišit podle předvídatelnosti vlivu jejich opotřebení na jízdní vlastnosti. Faktory, jejichž vliv lze předem odhadnout, nazýváme definovatelné. Jejich opakem jsou faktory nedefinovatelné. Jejich nedefinovatelnost umocňuje jejich závislost na parametrech, které nejsme schopni příliš ovlivnit (např. typ povrchu konkrétní vozovky, intenzita provozu, způsob jízdy řidiče), i na nahodilých chemických vlivech. [1] Spolu se způsobem jízdy řidiče je jednou z nejzásadnějších vlastností ovlivňujících životnost pneumatiky její nahuštění. Životnost pneumatiky je silně závislá na ideální hodnotě nahuštění pneumatiky. Při přehuštění dochází k vyboulení běžné plochy pneumatiky a poté k opotřebení pouze její prostřední části běžné plochy. V silničním provozu bývá tento stav spíše ojedinělý oproti stavu zvanému podhuštění. Podhuštěné pneumatiky se objevují takřka u poloviny účastníků silničního provozu. Při tomto stavu dochází k dosednutí vnějších stran běžné plochy pneumatiky, a tudíž k jejich většímu opotřebení. V těchto místech roste tlak ve styku s vozovkou. Tento jev může mít za následek separaci, která vznikne na krajích běhounového pásu. Takový plášť je nadále nepoužitelný. [1] Obr Schéma podhuštěné a přehuštěné pneumatiky [1] Na závěr této podkapitoly bych chtěl uvést závislost životnosti pneumatik na zásadně ovlivňujících činitelích, jako jsou: hustota zatížení vnější teplota rychlost jízdy BRNO

17 PNEUMATIKY Obr Vliv huštění na životnost [1] Obr Vliv zatížení na životnost [1] Obr Vliv vnější teploty na životnost [1] Obr Vliv rychlosti jízdy na životnost [1] 1.4 CHOVÁNÍ PNEUMATIK PROKLUZ Jestliže pneumatika přenáší pohon nebo brzdné síly, dojde k relativnímu pohybu mezi pneumatikou a silnicí, to znamená, že rychlost odvalování kola je větší nebo menší než rychlost vozidla. Poměr dvou rychlostí se blíží nekonečnu, když se kolo otáčí, a je nulový, když se kolo zablokuje. Prokluz je obvykle daný procentuálně. Následující výraz udává hodnotu po dobu brždění. [2] BRNO

18 PNEUMATIKY S X,W,b = rychlost vozidla obvodová rychlost kola rychlost vozidla S X,W,b = v v w v 100 (%) (1) Prokluz je řízen: S X,W,b = v w v v w 100 (%) (2) Rozdílné výrazy mají tu výhodu, že jak při otáčení, tak při zablokování kol, se hodnota rovná 100 % a je pozitivní. [2] KOEFICIENTY TŘENÍ A JEHO FAKTORY Čím větší je přenášená síla nebo trakce tím větší je hodnota skluzu. V závislosti na stavu vozovky dosáhne přenesená podélná síla své nejvyšší hodnoty mezi 10 % a 30 % skluzu a poté se snižuje až do zablokování kol (100 % skluz). Kvocient z podélné síly F x a svislé síly F z,w je součinitel tření, také známý jako, koeficient obvodové síly. μ X,W = F X,W F Z,W (3) Na vykreslení závislosti mezi součinitelem tření a skluzem, která byla měřena na letních pneumatikách při rychlosti okolo 60 km/h je vidět, že nejvyšší hodnoty tření bylo dosaženo pro 10 % skluz. Tyto hodnoty jsou důležité pro funkci ABS. [2] BRNO

19 Součinitel tření PNEUMATIKY Obr Závislost skluzu na součiniteli tření [2] SILNIČNÍ FAKTORY SUCHÉ A MOKRÉ SILNICE Na suché vozovce je koeficient tření relativně nezávislý na rychlosti, mírný nárůst však můžeme pozorovat u rychlosti nižší než 20 km/h. Důvod tkví v přechodu z dynamického poloměru valení na statický, který je spojen s rostoucí plochou pneumatiky. V okamžiku kdy rychlost překročí hodnotu 0, může na drsném povrchu dojít k zubovému efektu, což ovlivňuje další zvyšování koeficientu tření: [2] μ X,W 1,3 Se zvlhčující se vozovkou se koeficient tření snižuje, stále však není závislý na rychlosti. Tato situace se mění s přibývajícím množstvím vody a se zmenšováním hloubky drážek v dezénu pneumatiky. Voda nemůže nadále odtékat z profilu drážek a hodnota součinitele tření se snižuje s rostoucí rychlostí. [2] AQUAPLANING Se zvyšující se hladinou vody na vozovce narůstá riziko aquaplaningu. Mezi základní faktory ovlivňující aquaplaning patří: [2] typ vozovky dezén pneumatiky rychlost BRNO

20 Součinitel kluzného tření PNEUMATIKY Obr.1.16 Závislost součinitele kluzného tření na rychlosti [2] S ohledem na vozovku je hladina vody kritickým faktorem (obr. 1.17). Se zvyšující se hladinou je tendence růstu rizika aquaplaningu nerovnoměrná. Pokud je vodní sloupec nízký, zásadní roli v absorpci hraje hrubost povrchu, který odvádí část vody ke kraji silnice. Při dlouhodobém dešti činí stav vody na silnici obecně max. 2 mm. Zvýšené hodnoty můžeme najít na místech s dlouhodobou vyšší intenzitou deště, popř. v oblasti bouřky. Největší vliv má v takových podmínkách hloubka vzorku pneumatiky. Nicméně největší vliv na aquaplaning má rychlost jízdy, obzvláště když dochází ke zvyšování hladiny vody a opotřebení pneumatiky. Rozdíl mezi hloubkou nového vzorku a minimální hloubkou stanovenou zákonem, která činí 1,4 mm, může způsobit rozdíl v rychlostech až 25 km/h. To je důvod, proč je snížení rychlosti nejlepší cestou, jak zůstat při jízdě na výrazně mokrém povrchu v bezpečí. [2] BRNO

21 Součinitel tření PNEUMATIKY Obr.1.17 Závislost součinitele tření na rychlosti [2] SNÍH A LED Podobně jako při aquaplaningu jsou i na zmrzlých cestách nízké koeficienty tření, které jsou vysoce závislé na teplotě ledu. Při teplotě pohybující se okolo 0 C nastávají zvláštní podmínky. Stlačení povrchu může vést k tvorbě vody, která má zvlhčující efekt a redukuje koeficient tření na μ X,W 0,08. (obr. 1.18). Při teplotě -25 C, která je však vzácná i pro severské země se hodnoty pohybují okolo μ X,W = 0,6. Při nízkých teplotách dosahují koeficienty tření a kluzného tření následujících hodnot: [2] μ X,W ~ 2 μ X,W,lo (4) BRNO

22 PNEUMATIKY Koeficient tření μ X,W Obr.1.18 Závislost koeficientu tření na teplotě ledu [2] BOČNÍ SÍLY A ÚHEL SKLUZU Boční síly působící na rotující pneumatiku mohou být vyvolány jejím diagonálním pohybem vzhledem k směru jízdy (tzv. skluzu), tendencí pneumatiky přejít z její polohy vertikálně k vozovce, odklonem kola nebo kónickými účinky. Následně se budeme věnovat vytvářením bočních sil v důsledku skluzu. Pokud rušivá síla F c,v působící v těžišti kola (např. vítr nebo síla způsobená bočním náklonem), boční síly kol F Y,W,f,o, F Y,W,f,i, F Y,W,r,o a F Y,W,r,i jsou potřebné k vyrovnání sil (obr.1.19). K vytvoření těchto sil musí vozidlo měnit směr jízdy kolem úhlu α (úhel skluzu). Velikost úhlu skluzu závisí na vlastnostech přenášení síly pneumatiky a rušivé síle. Při zatáčení by se rušivá síla měla rovnat odstředivé síle F c,v, která je odvozená z rychlosti v [m. s 1 ] a poloměru ohybu R [m], na kterém se pohybuje těžiště vozidla V. S celkovou hmotností vozidla m v,t má rovnice tvar [2]: F c,v = m V,t v 2 R = m V,t a y = F Y,V [N] (5) Odstředivá nebo rušivá síla je stejně velká jako boční síly na kola (obr.1.19): Dále: F Y,V = F Y,W,f,o + F Y,W,f,i + F Y,W,r,o + F Y,W.r,i = F Y,W (6) BRNO

23 PNEUMATIKY Výsledný tvar obou rovnic je: F Z,W = μ Y,W F Z,W = μ Y,W F Z,V,t (7) μ Y,W F Z,V,t = μ Y,W m V,t g = m V,t a y (8) Obr.1.19 Tvorba bočních sil v důsledku skluzu [2] Koeficient tření μ Y,W není závislý na poloměru křivky a rychlosti jízdy, a proto je vhodnější pro výpočet chování při zatáčení. Čím rychleji vozidlo projíždí zatáčkou, tím vyšší je koeficient tření a tím větší je i úhel sklouznutí. Zvýšení bočních sil F Y,W v průběhu zatáčení vyvolané odstředivou silou F c,v vede ke zvětšení úhlu skluzu α (obr.1.20). [2] μ Y,W = g a y (9) BRNO

24 PNEUMATIKY Obr.1.20 Boční síly při zatáčení [2] VRATNÝ MOMENT PNEUMATIKY Za středem kola se nachází ohniskový bod síly, která leží v místě kontaktu pneumatiky s vozovkou, protože jeho deformace souvisí se zatížením a bočně působící silou. Výsledkem je, že působení boční síly se mění o hodnotu r τ,t, známou jako závlek rejdové osy. Na předních kolech působí společně boční síla při zatáčení F Y,W,f se závlekem rejdové osy a vytváří vratný moment M Z,T,Y, který překrývá kinematické uspořádání vratného momentu a snaží se vrátit kola zpět do rovnoběžné polohy. Vratný moment, boční síla a úhel skluzu jsou měřitelné v jednom procesu pomocí testovacího zařízení na pneumatiky. Tyto hodnoty jsou následně vykresleny v závislosti na úhlu skluzu. Na obr.1.21 můžeme vidět měnící se závislost vratného momentu, který je do značné míry dán velikostí vertikální přítlačné síly. Test byl proveden na suchém bubnu s pneumatikou o rozměrech 175/70 R S nahuštěných na hodnotu tlaku 2 barů. [2] BRNO

25 Vratný moment PNEUMATIKY Obr.1.21 Závislost vratného momentu na úhlu skluzu [2] ZÁVLEK REJDOVÉ OSY Závlek rejdové osy r τ,t je zahrnut prakticky ve všech výpočtech vratného momentu během zatáčení. Hodnotu závleku můžeme snadno určit pomocí boční síly a vratného momentu: r τ,t = M Z,T,Y F Y,W [m] (10) Obr ukazuje závlek vypočtený pomocí rovnice (10). Vyšší boční síly vyžadují větší úhel skluzu a výsledkem je menší vratný moment spolu se zmenšeným závlekem rejdové osy. Vysvětlení, proč to nastává, je, že při nízkých hodnotách úhlu skluzu dochází pouze k deformaci pneumatiky v místě styku s vozovkou. Oblast působení boční síly se pak může dále posouvat směrem dozadu, ve srovnání s velkými úhly, kdy dochází k deformaci kostry. Vysoké vertikální síly působící na kolo zapříčiní, že pneumatika bude silně stlačena jak v oblasti kontaktu pneumatiky, tak v místě závleku. Zatížení je prováděno na stejných pneumatikách a při stejném tlaku jako na obr [2] BRNO

26 Závlek rejdové osy ZAVĚŠENÍ KOL Obr.1.22 Závislost závleku rejdové osy na úhlu skluzu [2] 2 ZAVĚŠENÍ KOL Zavěšení kol jako takové zajišťuje propojení kol s rámem nebo karoserií vozidla. Zavěšení kol zabezpečuje svislý relativní posun kola vzhledem ke karoserii nebo k rámu. Tento posun je žádoucí zejména kvůli propružení, kdy dochází k eliminaci nežádoucích pohybů kola na přijatelnou hodnotu. Zavěšení kol přenáší tyto síly a momenty: [1] svislé síly (zatížení vozidla) podélné síly (akcelerace a decelerace) příčné síly (odstředivé síly) momenty podélných sil (hnací a brzdný moment) 2.1 DRUHY ZAVĚŠENÍ KOL Rozlišujeme dva druhy zavěšení kol: závislé zavěšení nezávislé zavěšení U závislého zatížení je propojení provedeno příčným mostem nápravy. Při propružení jednoho kola dochází u závislého zavěšení i k pohybu druhého kola. Obě kola jsou tedy navzájem ovlivňována svým pohybem. Opak tohoto vlivu tvoří nezávislé zavěšení. Při pohybu jednoho kola nedochází k ovlivňování posuvu kola druhého. Každé kolo je tedy upevněno ke karoserii samostatně (obr.2.1 b). [1] BRNO

27 ZAVĚŠENÍ KOL Obr.2.1 Srovnání tuhé nápravy (a) a nezávislého zavěšení (b) [1] TUHÁ NÁPRAVA V současné době se jedná o nejstarší používaný typ nápravy. Uplatňuje se především u zadních, vysoce zatížených náprav osobních nebo užitkových automobilů. Na obr. 2.2 můžeme vidět porovnání možností propružení tuhé nápravy. [1] Obr. 2.2 Propružení tuhé nápravy: a) jednostranné; b) protiběžné při zatáčení; c) protiběžné; d) stejnosměrné [1] BRNO

28 ZAVĚŠENÍ KOL Jednou z hlavních nevýhod tuhých náprav je velká hmotnost neodpružených hmot poháněných náprav. Tuto nevýhodu eliminuje náprava typu De-Dion (obr. 2.3), která má pohon (tj. rozvodovku a diferenciál) zvlášť připevněný ke karoserii. I přes značné snížení hmotnosti nápravy zde ovšem zůstává jedna z nejpodstatnějších nevýhod těchto náprav: příčné kmitání, které nazýváme také třepetání. [1] Obr.2.3 Schéma tuhé nápravy De-Dion [1] 2.2 NEZÁVISLÉ ZAVĚŠENÍ KOL U tohoto typu zavěšení jsou pohyby vyvolané na pravých a levých kolech provázány pouze nepřímo přes karoserii. Oproti tuhým nápravám zde nedochází k žádnému třepetání. Jelikož je zde pohon umístěn přímo na karoserii je hmotnost neodpružených částí menší. V dnešní době rozlišujeme tyto druhy nezávislého zavěšení: [1] Přední nápravy: lichoběžníková náprava náprava McPherson Zadní nápravy: kyvadlová úhlová náprava kliková náprava torzní kliková náprava POŽADAVKY Zavěšení kol moderních automobilů musí být v současné době schopno přenést výkon stále se vyvíjejících motorů. Vyšší požadavky na bezpečnost podvozků jsou dány neustálým vývojem v oblasti zrychlení, maximální rychlosti, vyšší rychlosti průjezdu zatáček a v neposlední řadě také decelerace. Nezávislé zavěšení se tímto trendem řídí. Mezi hlavní výhody tohoto zavěšení patří: [2] BRNO

29 ZAVĚŠENÍ KOL malé požadavky na prostor možnosti kinematické nebo elastokinematické změny sbíhavosti, která vede k nedotáčivosti snadnější ovladatelnost současných pohonů nízká hmotnost absence vzájemného ovlivňování kol Poslední dvě charakteristiky jsou důležité zejména při průjezdu zatáčkou na nerovné vozovce. Zajišťují při těchto jízdních manévrech dobrý grip. Příčná a vlečná ramena zabezpečují požadované kinematické vlastnosti během propružení kol a přenášejí zatížení z pneumatik na karoserii. Působící boční síly generují moment, který společně s nepříznivým uspořádáním ramen může způsobit, že posun karoserie během zatáčení bude vyšší, tudíž nežádoucí. Jedním z dalších prvků ovlivňujících pružnost jsou pouzdra, která jsou pod zatížením a nacházejí se na řídících ramenech. Tento efekt je posílen pohybem pryžových elementů v ložiskových součástech nebo zvýšením tření v důsledku vzájemného kontaktu těchto dílů a vede ke snížení jízdního komfortu. Na přední nápravě nezávislého zavěšení zapříčiňuje boční síla F Y,W,f vznikající během průjezdu zatáčkou vznik reakčních sil F Y,E a F Y,G v místech spojujících zavěšení s karoserií. Tyto síly vytvářejí momenty na vnější i vnitřní straně během zatáčení a nepříznivě ovlivňují pohyb kolem svislé a vodorovné osy vozidla. Ideální vzdálenost C mezi body E a G na příkladu lichoběžníkového závěsu (obr. 2.4) by měla být co možná největší. Tím dosáhneme malé velikosti sil působících na karoserii a ložiskové součásti, čímž zamezíme deformaci pryžových elementů. [2] Obr.2.4 Působení reakčních sil na lichoběžníkové zavěšení [2] U nezávislého zavěšení se kola naklápějí společně s karoserií. Pneumatiky, které se nacházejí na vnější straně při průjezdu zatáčkou absorbují většinu z boční síly na ně působící. Vnější kolo se při průjezdu zatáčkou dostává do pozitivního odklonu a vnitřní kolo do negativního odklonu. Tento jev zapříčiňuje pokles bočního gripu pneumatiky. K potlačení tohoto jevu je zapotřebí takové kinematické změny odklonu, aby pohyb karoserie při zatáčení byl co nejmenší (obr. 2.5). [2] BRNO

30 ZAVĚŠENÍ KOL Obr.2.5 Odklon kol v důsledku klopení karoserie [2] LICHOBĚŽNÍKOVÁ NÁPRAVA Posledních dvou charakteristik z předpokladů uvedených v předchozí kapitole nejsnadněji dosáhneme pomocí lichoběžníkového dvojitého závěsu (obr. 2.6). Ten se skládá ze dvou příčných spojů (ovládacích ramen) na obou stranách vozidla, které jsou připojeny k rámu pomocí rotačních spojů. V případě přední nápravy jsou zavěšení, pomocný rám a karoserie propojeny s řídícím hřídelem. Tento spoj je proveden pomocí kulového uložení. Čím větší je efektivní vzdálenost C (obr.2.4), tím menší jsou síly působící v ramenech zavěšení, tudíž zde vzniká menší deformace součástí a ovladatelnost vozidla je tak přesnější. Hlavní výhody tohoto zavěšení jsou v kinematických možnostech. Pozice ovládacích ramen závěsů vůči sobě lze určit pomocí výšky středu klonění. Díky různým délkám ramen tohoto zavěšení se mění odklon a rozchod kol při propružení. S kratšími horními rameny dojde při stlačení k negativnímu odklonu a při odpružení k pozitivnímu odklonu. Tím se zabrání změně odklonu vzniklého při klonění karoserie. [2] BRNO

31 ZAVĚŠENÍ KOL Obr.2.6 Lichoběžníková náprava vozu VW-LT [2] NÁPRAVA MCPHERSON Náprava McPherson představuje další stupeň lichoběžníkové nápravy. Horní rameno je nahrazeno posuvným vedením, díky němuž můžeme docílit většího prostoru pro zavazadla nebo motorovou jednotku. Při použití této nápravy jako přední řízené nápravy dochází k otáčení kola kolem obou ložisek teleskopické vzpěry. Rejdovou osu poté tvoří úsečka A B (obr. 2.7). Silové dvojice vycházející z karoserie se starají o zachycování podélných a příčných sil, popř. momentu z nich vzniklého. Z těchto podmínek vyplývá pro nápravu McPherson zatěžování momentem a příčnou silou (obr.2.7). Vzhledem k tomu, že ložisko B se nachází blíže stopy, je zatíženo více než ložisko A. Zachycování podélné síly probíhá obdobně jako u lichoběžníkové nápravy, prostřednictvím trojúhelníkového ramena sestaveného ze dvou částí. Rameno příčného stabilizátoru se může shodovat s tažnou vzpěrou. [1] a) BRNO

32 ZAVĚŠENÍ KOL b) Obr.2.7 Přední náprava McPherson: a) zachycení boční síly a poloha středu klopení S; b) zachycení podélné síly [1] Vedení ve vzpěře je v podstatě navrhováno jako hydraulický tlumič. Kvůli velkému příčnému zatížení je pístnice o poznání silnější než u běžných tlumičů. Pružina vozidla je nejčastěji navinuta na vodící trubku tlumiče. Svislé zatížení kola může být přenášeno přes kolo, rejdový čep, vodící trubku a pružinu do karoserie, čímž se zamezí namáhání ložiska. V kluzných místech, jako je píst válec a píst vedení vzniká vyšší tření způsobené příčnými silami při akceleraci, deceleraci a zatáčení. Při tomto jevu může dojít při průjezdu malými nerovnostmi k nežádoucímu zablokování teleskopické vzpěry, což způsobí kmitaní vozidla pouze na pneumatikách. Pro odstranění tohoto nežádoucího jevu se používá: [1] uložení šroubové pružiny šikmo (působí proti bočním silám) uložení horního kloubu do měkké pryže Na obr.2.7 můžeme vidět, že póly klopení kola P a karoserie S leží nad úrovní vozovky. Vzhledem k proměnnému úhlu odklonu kola, který se mění během propružení, tak při naklápění, dochází ke kmitání volantu (neklid při řízení). Tento jev je zapříčiněn gyroskopickým momentem vznikajícím vlivem změn odklonu kolem svislé osy kola. Neklid při řízení vzniká především při špatném frekvenčním naladění řídícího ústrojí. Může se jednat o nevyváženost kola, nerovnoměrnost pneumatiky nebo nerovnost vozovky. Podélná osa kývání spodního ramene McPherson se z důvodu dosažení vhodné polohy středu klonění nápravy ukládá šikmo (obr. 2.8). [1] BRNO

33 ZAVĚŠENÍ KOL Obr.2.8 Střed klonění nápravy McPherson [1] KYVADLOVÁ ÚHLOVÁ NÁPRAVA Kyvadlová úhlová náprava se používá jako náprava zadní. Vzhledem k její šikmé ose kývání mezi rameny se tato náprava označuje také jako šikmý závěs. Samořízení, které vzniká při propružení a má za následek nedotáčivost je zapříčiněno šikmou osou kývání, jež je vidět v nárysu (obr. 2.9). Průsečík osy otáčení kola a osy kývání ramene nazýváme okamžitý pól klopení kola. Vzdálenost mezi pólem P a kolem (obr. 2.9) je označována jako délka kývání. Tato vzdálenost je u současných úhlových náprav identická s rozchodem (mnohdy i větší). Minimalizuje změnu rozchodu a odklonu během relativního pohybu oproti nápravám kyvadlovým. [1] BRNO

34 ZAVĚŠENÍ KOL Obr.2.9 Schéma kyvadlové úhlové nápravy [1] KLIKOVÁ NÁPRAVA Kliková náprava je konstruována pomocí podélných ramen s osou kývání, která je uložena kolmo na podélnou rovinu vozidla. Tato náprava je vhodná zejména pro vozidla typu kombi nebo osobní automobily s rozměrnými zadními dveřmi. Její konstrukce zabírá málo místa a umožňuje velmi nízkou polohu podlahy vozidla. Na obr můžeme vidět síly působící na kolo a jejich následné zachycování uložením. Kvůli dobré izolaci hluku a konstrukci uložení, které je tvořeno pryžovými ložisky, by měly být síly působící na uložení co nejmenší. Při dodržení těchto podmínek následně nevznikají velké relativní pohyby vzhledem ke karoserii. Při konstrukci klikové nápravy dodržujeme tato konstrukční opatření: [1] Pružiny by měly být umístěny co nejblíže k dotykovému bodu kola s vozovkou (ideálně a=b). Čím větší je vzdálenost ložisek c, tím menší je vodorovné zatížení ložisek. Ve srovnání s kyvadlovou nápravou má kliková náprava nevýhodu ve zvětšeném naklápění při průjezdu zatáčkou. Tento jev je zapříčiněn polohou středu klopení kola P, který leží v nekonečnu (obr.2.11). Z tohoto důvodu leží střed klopení karoserie v rovině vozovky. U klikových náprav se změna odklonu kola projevuje pouze při průjezdu zatáčkou, nikoliv při propružení kol nápravy. [1] BRNO

35 ZAVĚŠENÍ KOL Obr.2.10 Schéma sil působících na klikovou nápravu [1] Obr.2.11 Geometrie klikové nápravy [1] BRNO

36 GEOMETRIE KOL 3 GEOMETRIE KOL Důležitým faktorem pro přesné a stabilní řízení je geometrie zavěšení kol. Z tohoto důvodu mají kola a rejdové osy nastavitelné geometrické odchylky od svislé roviny. To má vliv na řadu jevů, jako jsou jízdní vlastnosti nebo opotřebení pneumatik. [1,3] 3.1 ÚHEL ODKLONU KOLA Úhel odklonu kola γ je geometrický úhel svíraný střední rovinou kola a svislou rovinou vozidla. Dříve se za účelem odstranění vůlí v ložiskách čepu volil spíše kladný odklon kol. Vlivem tohoto nastavení docházelo k vytváření kuželové plochy v místě styku s vozovkou. Kola se odvalovala směrem od sebe, což snižovalo náchylnost ke kmitání kol. S postupem času došlo k výraznému posunu v přesnosti výroby. Vzhledem k tomu, že kladný odklon kola odstraňoval především vůle spojené s nepřesností, které byly odstraněny zkvalitněním výroby bylo od tohoto nastavení upuštěno. V současných automobilech se volí odklon často nulový v zatíženém stavu i záporný (-1 až -2 ). Tyto hodnoty podporují především dobré vedení pneumatik v zatáčkách. [1] Obr.3.1 Úhel odklonu kola [1] Při propružení kola dochází u nezávislého zavěšení ke změnám hodnot úhlu odklonu kola. Tento efekt má za následek vznik boční síly ve stopě pneumatiky. Při propružení vzniká vlivem setrvačnosti moment, který přes zavěšení zapříčiňuje naklápění karoserie. Gyroskopický účinek, který působí na rejdovou osu a vytváří kroutící moment, je zachycován v řízení. Z těchto důvodů by vzhledem k namáhání kol a rámu k neklidu při řízení měl být průběh úhlu odklonu při propružení co nejmenší. Během průjezdu zatáčkou dochází působením odstředivé síly k naklápění karoserie směrem k vnější straně zatáčky. Vzhledem ke stabilitě při průjezdu zatáčkou vyrovnává naklopení karoserie odklon vnějšího kola, který způsobuje, že se kolo nachází v přibližně kolmé poloze vůči vozovce a může tak zachycovat maximálně boční síly na ně působící. Z toho plyne, že během propružení je výhodnější záporný úhel odklonu. U vozidel pro sportovní účely (kde se nedbá na opotřebení pneumatik) je nastavení odklonu pneumatik často záporné už v nezatíženém stavu. [1] BRNO

37 GEOMETRIE KOL 3.2 PŘÍKLON REJDOVÉ OSY Příklon rejdové osy σ je úhel, který svírají průměty rejdové osy a svislé roviny rovnoběžné s příčnou rovinou vozu (obr. 3.2). Příklon slouží k samočinnému vrácení řízených kol do přímého směru. Při natáčení kol dochází vlivem příklonu k zvedání kol. Tato síla musí být vynaložena při natáčení volantu. Působením vratného momentu jsou přední kola po uvolnění volantu za zatáčkou vracena do přímého směru. U osobních automobilů se můžeme setkat buď s velkým poloměrem rejdu a malým úhlem příklonu rejdové osy, nebo naopak se (záporným poloměrem rejdu a velkým úhlem příklonu rejdové osy). [1] Obr.3.2 Příklon rejdové osy [1] 3.3 POLOMĚR REJDU Poloměr rejdu r 0 je vzdálenost promítnutá do příčné roviny vozovky mezi průsečíkem rejdové osy a středem dotyku pneumatiky s vozovkou. Hodnoty poloměru rejdu mohou být kladné, záporné i nulové (obr. 3.3). Poloměr má vliv zejména na podélné síly ve stopě a na citlivost vozu. Čím větší je poloměr, tím větší je citlivost vozu. S ohledem na různou velikost podélných sil na předních kolech není vhodnou volbou nulový poloměr rejdu. Ve většině případů se volí záporný poloměr rejdu. V případě, že vysadí brzda na jednom kole, vyvolá brzdná síla kola druhého brzdný moment M T působící proti těžišti vozidla. Pokud volíme kladný poloměr rejdu r 0, vzniká moment od brzdné síly M R, který působí vůči rejdové ose a natáčí kola nepříznivě ve stejném směru, v jakém působí moment M T. Pokud bychom naopak volili záporný poloměr rejdu, působil by moment M R v opačném směru a natáčel by kola proti pohybu vznikajícím u od momentu M T. [1,3] BRNO

38 GEOMETRIE KOL Obr.3.3 Poloměr rejdu: a) kladný; b) záporný; c) nulový [1] Obr.3.4 Účinky kladného poloměru rejdu [3] 3.4 ZÁKLON REJDOVÉ OSY, ZÁVLEK Záklon rejdové osy τ je úhel, který spolu svírají rejdová osa a svislice kola, promítnutý do roviny rovnoběžné s podélnou rovinou vozidla. Tato hodnota nabývá buď kladné hodnoty (jeli rejdová osa skloněná vzad) nebo hodnoty záporné (jedná-li se o předklon). Hodnota vzdálenosti mezi průsečíkem rejdové osy s vozovkou a průmětu středu kola se nazývá závlek n k. Pokud se průsečík nachází před středem styku pneumatiky s vozovkou jedná se o kladnou hodnotu závleku. V opačném případě se jedná o hodnotu zápornou. Účinek závleku můžeme demonstrovat na funkci nákupních vozíků, jejíž kola se vracejí do přímého směru (obr.3.4). Tento účinek se projevuje pouze při hodnotách kladného záklonu, kde síla O f působí prosti směru jízdy. U vozidel s předním pohonem působí hnací síla ve směru jízdy, což způsobuje natáčení kol při akceleraci. Tuto negativní vlastnost jsme schopni potlačit vhodným nastavením poloměru rejdu. [1,3] Obr.3.4 Kladný záklon a závlek rejdové osy [3] BRNO

39 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ 3.5 SBÍHAVOST Úhel sbíhavosti δ o je úhel, který spolu svírají podélná osa vozidla a střední rovina kola, promítnutý do vozovky. Sbíhavost nastává, pokud jsou kola na přední straně více u sebe. Jestliže jsou kola více u sebe na zadní straně jedná se o rozbíhavost (obr.3.5). Hlavním úkolem sbíhavosti je dosáhnout paralelního odvalování obou kol při přímé jízdě. Vlivem tohoto úhlu vznikají na předních kolech malé boční síly, které způsobují natáčení kol do přímého směru a vyvolávájí tak v řízení předpětí. Při změně odklonu při propružení se sbíhavost stará o vyrovnávání boční síly, která zde vzniká. Sbíhavost bývá nastavena u osobních vozidel na 0 až 3 mm (0 až 30 ). Vysoké hodnoty sbíhavosti zapříčiňují opotřebení pneumatik na vnější straně. [1] Obr.3.5 Sbíhavost (a) a rozbíhavost (b) kol [1] 4 TVORBA MODELŮ ZAVĚŠENÍ V PROGRAMU ADAMS CAR 4.1 MSC ADAMS CAR Model zavěšení byl dle zadání vytvářen a analyzován v programu Adams Car. Tento software je specializován na modelování vozidel. Umožňuje vytvářet virtuální prototypy podsystémů, sestav vozidel a následně analyzovat jejich vlastnosti pro následné vyhodnocování. Vytváření sestav v Adams Car se provádí pomocí předdefinovaných podsystémů, jako jsou přední a zadní zavěšení, pneumatiky, řídící mechanismus a karoserie. Pro náš případ dvojitého lichoběžníkového závěsu, který se vyskytuje v databázi systému bylo zapotřebí upravit zavěšení na hodnoty dle zadání. Adams Car umožňuje řadu typů analýz od analýz podsystémů až po analýzy sestavy celého vozidla. Na základě těchto výsledků můžeme podle potřeby upravit geometrii zavěšení na ideální hodnoty pro náš případ. Z těchto analýz získáváme výstupy ve formě námi určených grafů. 4.2 PŘEDNÍ A ZADNÍ MODEL ZAVĚŠENÍ Jedná se o typ dvojitého lichoběžníkového závěsu. Ze zadaného souboru byly použity hodnoty hlavních bodů z reálného vozidla, které byly následně aplikovány do předdefinovaného podsystému double wishbone a upraveny do výsledného stavu našeho předního zavěšení. BRNO

40 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ Obr.4.1 Model předního zavěšení 4.3 KINEMATICKÁ ANALÝZA A OPTIMALIZACE PŘEDNÍHO A ZADNÍHO ZAVĚŠENÍ Pro následnou optimalizaci zavěšení je nejprve nutné znát kinematické charakteristiky našeho modelu. Pro získání těchto charakteristik bylo zapotřebí vytvořit sestavu předního zavěšení, která obsahuje pneumatiky dle zadání z property file pac2002_235_60r16 a ovládací systém řízení nápravy. Pro analýzu byla použita simulace Parallel Travel; vzhledem k tomu, že podle zadání byly body na zavěšení naměřeny při dosti vyvěšeném stavu, byl zvolen pracovní zdvih při analýze -20 mm a mm. Těmito hodnotami dosáhneme požadovaného rozpětí ±150 mm. Obr.4.2 Vstupní parametry pro přední zavěšení BRNO

41 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ OPTIMALIZACE PRŮBĚHU ODKLONU KOL PŘEDNÍHO ZÁVĚSU Po získání závislosti odklonu pneumatiky na zdvihu byla provedena optimalizace za pomoci úpravy pozic uchycujících ramen předního zavěšení. U závodních automobilů, kde se neklade důraz na výdrž pneumatiky, se nastavují větší hodnoty negativního odklonu (příklonu) než u vozidel na klasické účely. K nastavení příklonu nás vede především snaha o eliminování příčných přetížení při průjezdech zatáčkou, které způsobují naklonění celého šasi. O stejný úhel, který se naklopí karoserie, se naklopí také pneumatiky. Tento jev by bez nastavení příklonu znamenal značnou ztrátu přilnavosti v průjezdu zatáčkou. Z tohoto důvodu byl příklon nastaven v rozpětí +1,8 až -3,7. BRNO

42 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ OPTIMALIZACE SBÍHAVOSTI PŘEDNÍHO ZAVĚŠENÍ Po pohledu na výchozí nastavení sbíhavosti, orientované spíše na kladné hodnoty, byla provedena úprava pomocí změny polohy řídící tyče. Nastavení pro sportovní automobily si vyžaduje posun do negativních hodnot odklonu. To sice vede k jisté ztrátě stability ve vysoké rychlosti, ovšem při jízdě na nezpevněném povrchu hraje nejvýznamnější roli chování automobilu v zatáčkách. Tato rozbíhavost zajistí, že úhel zatočení vnitřního kola bude větší (úhel rozbíhavosti). Při průjezdu zatáčkou vnitřní kolo vykružuje menší poloměr než kolo vnější, a proto je zapotřebí, aby zatáčelo více. Dosáhneme tak lepší přilnavosti při průjezdu zatáčkou. BRNO

43 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ DALŠÍ PRŮBĚHY ZÍSKANÉ PO OPTIMALIZACI SBÍHAVOSTI A ODKLONU NA PŘEDNÍ NÁPRAVĚ BRNO

44 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ ZADNÍ MODEL ZAVĚŠENÍ Stejně jako u přední nápravy se jedná o dvojitý lichoběžníkový závěs. Tvorba modelu a analýza byla provedena totožně jako u předního zavěšení našeho modelu. Obr.4.3 Model zadního zavěšení BRNO

45 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ Obr.4.2 Vstupní parametry pro zadní zavěšení OPTIMALIZACE PRŮBĚHU ODKLONU ZADNÍHO ZÁVĚSU BRNO

46 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ Optimalizace odklonu na zadním zavěšení se řešila identicky jako na přední nápravě. S přihlédnutím k tomu, že na přední nápravu při brždění působí větší síly a celé šasi se naklání dopředu směrem k vnějšímu přednímu kolu, se volí na zadním zavěšení menší hodnoty odklonu než na kole předním OPTIMALIZACE SBÍHAVOSTI ZADNÍHO ZAVĚŠENÍ BRNO

47 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ Úprava průběhu sbíhavosti na zadní nápravě byla provedena obdobným způsobem jako na nápravě přední. U závodních vozidel s pohonem na přední nápravě dochází při průjezdu zatáčkou k nadlehčování zadního vnitřního kola. Z tohoto důvodu je vhodné volit nastavení zadní sbíhavosti do záporných hodnot (až -0,5 ). V zatáčkách dochází k zatáčení jak přední, tak i zadní nápravy DALŠÍ PRŮBĚHY ZÍSKANÉ PO OPTIMALIZACI SBÍHAVOSTI A ODKLONU NA ZADNÍ NÁPRAVĚ BRNO

48 OPTIMALIZACE KINEMATIKY ZAVĚŠENÍ BRNO

49 TVORBA SESTAVY VOZIDLA 5 TVORBA SESTAVY VOZIDLA Po provedení optimalizace kinematiky předního a zadního zavěšení je zapotřebí vytvořit kompletní sestavu vozidla pro následné ověřování jízdních vlastností na klíčových manévrech. V našem případě se jedná o vozidlo s motorem umístěným v předu a poháněnou přední nápravou. Následující sestava se skládá z těchto podsystémů: přední zavěšení řízení přední nápravy pohonná jednotka přední a zadní kola přední a zadní brzdy zadní zavěšení karoserie Obr. 5.1 Model sestavy vozidla 5.1 DEFINICE VLASTNOSTÍ SESTAVY Pro správné chování automobilu je při tvorbě analýz zapotřebí definovat okrajové podmínky. Okrajové podmínky jsou definovány v zadání a byly naměřeny přímo na tomto konkrétním vozidle HMOTNOSTNÍ CHARAKTERISTIKY KAROSERIE Do hmotnostních charakteristik karoserie bylo zapotřebí zahrnout celkovou hmotnost a momenty setrvačnosti (tab. 5.2) ve všech osách, které byly orientovány k počátku souřadnicového systému softwaru Adams Car. BRNO

50 TVORBA SESTAVY VOZIDLA Hmotnost 2600 kg I xx 2,20E+08 kg.mm 2 I yy 1,07E+09 kg.mm 3 I zz 1,18E+09 kg.mm 4 Tab. 5.2 Hmotnostní Parametry karoserie Obr. 5.3 Zadání hodnot do programu Adams Car VÝKONOVÁ CHARAKTERISTIKA MOTORU Výkon motoru byl definován pomocí maximálního výkonu a točivého momentu. Pro naše vozidlo byly zvoleny hodnoty P MAX = 240 kw a M MAX = 280 N.m. Obr. 5.4 Výkonnostní charakteristiky motoru v programu Adams Car BRNO

51 TVORBA SESTAVY VOZIDLA VLASTNOSTI CELÉ SESTAVY Z hlediska důležitosti pro řízení jsou při tvorbě analýz klíčové parametry, jako je např. poměr řízení (steering ratio), který vyjadřuje závislost mezi natočením volantu a pneumatik. Dalším takovým parametrem je poměr řídící tyče (rack ratio). Tento parametr určuje poměr mezi posunem tyče řízení a úhlem natočení kol. V neposlední řadě je třeba zvolit hodnotu maximálních brzdných momentů na předních i zadních brzdách (viz. obr. 5.5). Obr. 5.5 Parametry celé sestavy HMOTNOSTNÍ PARAMETRY PNEUMATIK Hmotnostní charakteristiky pneumatiky, které vyplývají ze zadání, jsou velmi důležité pro jízdní simulace a jejich co největší věrohodnost. Bylo zapotřebí definovat hmotnost kola, momenty setrvačnosti ke všem osám, posunutí kol a v neposlední řade také model pneumatiky. Vycházíme z modelu předdefinovaného programem Adams Car. Jedná se o model Pacejka2002 s rozměry 236/60 R16 (tab. 5.6). Parametry 1 Posunutí těžiště 0 mm 2 Hmotnost 20 kg 3 I xx I yy 5,0E+04 kg.mm 2 4 I zz 1,0E+04 kg.mm 2 5 Posunutí středu kola 29 mm 6 Model penumatik pac2002_235_60r16 BRNO

52 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ Obr. 5.7 Zadání hodnot do programu Adams Car 6 OVĚŘENÍ OPTIMALIZACE V KLÍČOVÝCH JÍZDNÍCH REŽIMECH Z hlediska vyhodnocení výsledků mnou navržené optimalizace zavěšení se jedná o nejdůležitější část celé práce. Co se týče postupu, klíčové bylo z počátku vytvořit model 3D vozovky s parametry co nejvíce podobnými šotolině. Tato část byla vyřešena v programu Adams Car v módu tvorby silnice. V dostupných internetových zdrojích byly nalezeny vlastnosti půdy pro šotolinu a zahrnuty do příslušných vlastností při tvorbě vozovky. Po tomto kroku následoval průjezd klíčovými jízdními manévry, nejdříve s neoptimalizovaným zavěšením a poté se zavěšením optimalizovaným. Následné porovnání bylo klíčové pro konfrontaci obou nastavení a ověření nastudované teorie v simulacích. 6.1 TVORBA 3D VOZOVKY S ŠOTOLINOVÝMI PARAMETRY. V softwaru Adams Car v módu tvorby vozovky jsem si vytvořil nový typ vozovky a aplikoval na něj vlastnosti šotolinové silnice. Jednalo se zejména o následující vlastnosti půdy (obr. 6.1). Úhel skluzu 35 Koheze Youngův modul 20 kpa 130 Mpa Součinitel tření vozovky 0,7 Obr. 6.1 Vlastnosti šotolinové půdy [7] BRNO

53 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ Při následných analýzách bylo vycházeno z předvolené testovací tratě, která se nachází v programu Adams Car. Tato trať byla ideální pro provedení tří typů manévrů, jako jsou: akcelerace brždění akcelerace a brždění při průjezdu zatáčkou Této trati byly přiděleny výše zmíněné vlastnosti půdy blížící se co nejvíce šotolinovému podkladu. Vygenerovanou testovací trať můžete vidět na obr AKCELERACE Obr. 6.2 Testovací trať Důležitou součástí každého závodního auta je schopnost akcelerovat co nejrychleji na nejkratší možně dráze. V následující analýze rozjezdu na nezpevněném povrchu jsem se zabýval porovnáním důležitých ukazatelů našich dvou modelů VSTUPNÍ PARAMETRY PRO AKCELERACI V programu Adams Car byla vybrána simulace zvaná Straight-Line Events typu Akcelerace (Acceleration). V příslušné kartě jsme navolili potřebné parametry pro akcelerační zkoušku. V prvním případě jsme prováděli zkoušku s optimalizovaným modelem a v druhém případě s neoptimalizovaným modelem. Při tomto manévru jsme volili následující parametry: konečný čas zkoušky (End Time) počet kroků (Number of Steps) soubor s údaji o trati (Road Data File) počáteční rychlost (Initial Velocity) začátek sešlápnutí plynu (Start Time) úroveň sešlápnutí plynu (Final Trottle) prodleva reakce na plynu (Duration of Step) BRNO

54 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ Akcelerační zkouška byla prováděna pro oba vyhodnocované modely. Před jejím zahájením jsme celkový čas zkoušky stanovilo na 12 s. Pro tuto analýzu byl zvolen rovný úsek testovací tratě upravený pro naše potřeby. Simulace byla zahájena s počáteční rychlostí 15 km/h v čase 0,5 s od začátku zkoušky. Vzhledem k tomu, že předpokládáme závodního jezdce, byla prodleva sešlápnutí plného plynového pedálu nastavena na 0,2 s (obr. 6.3). Obr. 6.3 Parametry akcelerace BRNO

55 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ VYHODNOCENÍ ANALÝZY BRNO

56 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ Po provedení simulace můžeme vidět, že finální model vozidla prokazuje mírně zhoršené hodnoty při akceleraci oproti modelu výchozímu (tab. 6.4). Je to způsobeno především nastavením rozbíhavosti (záporné sbíhavosti) na přední nápravě, které zapříčiňuje nepatrné zhoršení stability řízení při vyšších rychlostech a na rovných úsecích trati. Tuto nevýhodu jsme ovšem schopni akceptovat z důvodů její nepatrné velikosti a zejména kvůli zlepšení stability a dosažené maximální rychlosti při průjezdu zatáčkami. Navíc se předpokládá, že závodní vozy řídí profesionální jezdci, kteří jsou schopni tyto projevy na rovných úsecích eliminovat svými řidičskými schopnostmi. Zmíněný projev můžeme vidět na grafu průběhu podélného skluzu, který dosahuje nižších hodnot a dřívějšího ustálení u modelu výchozího. Co se týče odklonu kola, ten se během akcelerace zmenšuje, a dochází tak ke snižování adheze pneumatiky. Tato skutečnost může také ovlivnit výsledky naší simulace. Akcelerace Rychlost [m.s -1 ] Vzdálenost [m] Výchozí model 27,31 170,5 Finální model 26,41 163,7 Tab. 6.4 Hodnoty akcelerace BRNO

57 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ 6.3 BRŽDĚNÍ Obdobně jako u akcelerace se jedná o klíčovou vlastnost každého závodního auta, kterou je nutné se zabývat. Při optimalizaci jsme se snažili dosáhnout co nejmenší brzdné dráhy a také co nejvyššího vzniklého zpomalení. Brzdný manévr byl proveden z rychlosti 100 km/h při maximálním sešlápnutí brzdového pedálu. Obdobně jako u akcelerace byla zvolena simulace Straight-Line Events, tentokráte typu Brždění (Braking). Při brždění jsme volili stejný typ vstupních parametrů jako u akcelerace (viz. kapitola 6.2.1). Tato analýza byla prováděna obdobně jako v případě akcelerace; jedná se o pouhý opak předchozí simulace. Doba zkoušky byla stanovena opět na 12 sekund a bylo využito stejné části trati jako u předchozí analýzy. Počáteční rychlost před sešlápnutím brzdového pedálu byla nastavena na 100 km/h se stejnou reakční dobou jezdce (obr. 6.5). Obr. 6.5 Parametry brždění BRNO

58 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ VYHODNOCENÍ SIMULACE BRNO

59 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ Po provedení brzdného manévru nejprve s výchozím a poté s finálním modelem je patrné, že rozdíly v dosaženém zpomalení, délce brzdné dráhy a kontaktní podélné síle na pneumatikách takřka nepatrné. Vzhledem k tomu, že brzdná dráha je závislá především na typu vozovky a adhezi pneumatik, nemůžeme v našich výsledcích očekávat příliš velké rozdíly (viz. tab. 6.5). Adhezi pneumatiky ovlivňuje i odklon kola, který se při brždění zvětšuje. Tím dochází ke zmenšování styčné plochy pneumatiky a k poklesu adheze. Sbíhavost, v našem případě rozbíhavost, působí obdobně na jízdní vlastnosti jako u akcelerace. Decelerace Zrychlení [m.s -2 ] Brzdná dráha [m] Výchozí model -6,57 145,39 Finální model -6,45 145,82 Tab. 6.5 Hodnoty decelerace BRNO

60 SIMULACE KLÍČOVÝCH JÍZDNÍCH REŽIMŮ 6.4 PRŮJEZD OKRUHEM Ve snaze zkombinovat všechny tři klíčové prvky byla provedena závěrečná simulace na okruhu. Do této zkoušky bylo zakomponováno zrychlení, brždění a průjezd zatáčkou. Hlavním cílem bylo porovnání maximálních rychlostí při průjezdu zatáčkou, projížděnou na hranici limitních možností vozidla. Dalším důležitým faktorem byla vzdálenost ujetá během stejné doby trvání zkoušky SIMULACE POMOCÍ INTELIGENTNÍHO ŘIDIČE Pro dosažení co nejvěrohodnějších výsledků bylo použito simulace typu SmartDriver. Tato analýza se používá pro průjezdy tratěmi z toho důvodu, že se při ní o ovládání vozu stará inteligentní řidič programu Adams Car. Pro simulaci byla použita testovací trať s vlastnostmi upravenými na nezpevněný povrch (viz. kap. 6.1). Při zadávání okrajových podmínek jsme nastavili tyto parametry: konečný čas zkoušky (End Time) počet kroků (Number of Steps) typ okruhu (Course Type) počáteční rychlost (Initial Velocity) úloha inteligentního řidiče (Smart Driver Task) Po spuštění simulace byla provedena zkouška trvající 30 s. Úloha řidiče byla nastavena na limitní jízdu nejdříve s výchozím modelem automobilu a poté s optimalizovaným modelem. Počáteční rychlost zkoušky byla stanovena na 15 km/h (obr. 6.6). Obr. 6.6 SmartDriver průjezd okruhem BRNO

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy.

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. 1 ŘÍZENÍ AUTOMOBILŮ Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. ÚČEL ŘÍZENÍ natočením kol do rejdu udržovat nebo měnit směr jízdy, umožnit rozdílný úhel rejdu rejdových kol při

Více

Zavěšení kol. Téma 9. Teorie vozidel 1

Zavěšení kol. Téma 9. Teorie vozidel 1 Zavěšení kol Téma 9 Teorie vozidel 1 Zavěšení kol Podvozek = spodní část motorového vozidla, která má následující části: 1. Kolo s pneumatikou (spojuje vozidlo s vozovkou, přenáší síly a momenty, pruží)

Více

Název zpracovaného celku: Nápravy automobilů

Název zpracovaného celku: Nápravy automobilů Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 25.9.2012 Název zpracovaného celku: Nápravy automobilů Náprava vozidla je část automobilu, jehož prostřednictvím jsou dvě protější vozidlová

Více

pneumatiky a kola zavěšení kol odpružení řízení

pneumatiky a kola zavěšení kol odpružení řízení Podvozky motorových vozidel Obsah přednášky : pneumatiky a kola zavěšení kol odpružení řízení Podvozky motorových vozidel Podvozky motorových vozidel - nápravy 1. Pneumatiky a kola. Zavěšení kol 3. Odpružení

Více

Nápravy motorových vozidel

Nápravy motorových vozidel Nápravy motorových vozidel Rozdělení náprav podle funkce : řídící ( rejdové ) -nebo- pevné ( neřízené ) poháněné (hnací i nosné) -nebo- nepoháněné (pouze nosné) Co tvoří pojezdové ústrojí? Kolová vozidla

Více

Nápravy: - nesou tíhu vozidla a přenáší ji na kola - přenáší hnací, brzdné a suvné síly mezi rámem a koly

Nápravy: - nesou tíhu vozidla a přenáší ji na kola - přenáší hnací, brzdné a suvné síly mezi rámem a koly Nápravy: Účel: - nesou tíhu vozidla a přenáší ji na kola - přenáší hnací, brzdné a suvné síly mezi rámem a koly Umístění: - jsou umístěny pod rámem úplně (tuhé nápravy), nebo částečně (ostatní druhy náprav)

Více

Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně

Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 14.9.2012 Název zpracovaného celku: Řízení automobilu Řízení je nedílnou součástí automobilu a musí zajistit: 1.natočení kol do rejdu změna

Více

Geometrie řízení VY_32_INOVACE_AUT2_11

Geometrie řízení VY_32_INOVACE_AUT2_11 Geometrie řízení VY_32_INOVACE_AUT2_11 Geometrická poloha kol má zásadní vliv na bezpečnost provozu vozidel. Za jedoucím vozidlem zanechávají odvalující se kola stopy. Aby se kola vozidla odvalovala při

Více

Název zpracovaného celku: Kola a pneumatiky

Název zpracovaného celku: Kola a pneumatiky Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 25.10.2012 Název zpracovaného celku: Kola a pneumatiky Jsou nedílnou součástí automobilu pro jeho pohyb, přenos sil a momentů. Účel kola

Více

Řízení. Téma 1 VOZ 2 KVM 1

Řízení. Téma 1 VOZ 2 KVM 1 Řízení Téma 1 VOZ 2 KVM 1 Řízení Slouží k udržování nebo změně směru jízdy vozidla Rozdělení podle vztahu k nápravě řízení jednotlivými koly (natáčením kol kolem rejdového čepu) řízení celou nápravou (především

Více

Řízení. Slouží k udržování nebo změně směru jízdy vozidla

Řízení. Slouží k udržování nebo změně směru jízdy vozidla Řízení Slouží k udržování nebo změně směru jízdy vozidla ozdělení podle vztahu k nápravě 1. řízení jednotlivými koly (natáčením kol kolem rejdového čepu). řízení celou nápravou (především přívěsy) ozdělení

Více

Stabilizátory (pérování)

Stabilizátory (pérování) Stabilizátory (pérování) Funkce: Omezují naklánění vozidla při jízdě zatáčkou nebo při najetí na překážku. Princip: Propojují obě kola téže nápravy. Při souměrném propružení obou kol vyřazeny z funkce,

Více

Směrové řízení vozidla. Ing. Pavel Brabec, Ph.D. Ing. Robert Voženílek, Ph.D.

Směrové řízení vozidla. Ing. Pavel Brabec, Ph.D. Ing. Robert Voženílek, Ph.D. Ing. Pavel Brabec, Ph.D. Ing. Robert Voženílek, Ph.D. Možnosti směrového řízení u vozidel - zatáčející kola přední nápravy (klasická koncepce u rychle jedoucích vozidel) Možnosti směrového řízení u vozidel

Více

Hmotnosti (užitečná, pohotovostní) Počet přepravovaných osob, objemu Zatížení náprav, poloha těžiště. Spolehlivost

Hmotnosti (užitečná, pohotovostní) Počet přepravovaných osob, objemu Zatížení náprav, poloha těžiště. Spolehlivost Přepravovaný výkon Hmotnosti (užitečná, pohotovostní) Počet přepravovaných osob, objemu Zatížení náprav, poloha těžiště VLASTNOSTI AUTOMOILU UŽIVATEL ZÁKONODÁRCE Provozní náklady Dynamika Směrová stabilita

Více

Poznámka : U bezdušových pneumatik duše a ochranná vložka odpadají, ventilek je umístěn přímo v ráfku.

Poznámka : U bezdušových pneumatik duše a ochranná vložka odpadají, ventilek je umístěn přímo v ráfku. 1 PNEUMATIKY Pneumatika (běžného provedení) se skládá z : pláště, duše, ochranné vložky. Vzduch je vháněn do pneumatiky ventilkem spojeným s duší. Ventilek může být přímý nebo zahnutý a ústí na vnitřním

Více

Bezpečnostní systémy ABS (Antiblock Braking System), ASR (z německého Antriebsschlupfregelung) protiblokovacího zařízení ABS

Bezpečnostní systémy ABS (Antiblock Braking System), ASR (z německého Antriebsschlupfregelung) protiblokovacího zařízení ABS Bezpečnostní systémy ABS (Antiblock Braking System), ASR (z německého Antriebsschlupfregelung) Styk kola s vozovkou, resp. tření ve stykové ploše mezi pneumatikou a povrchem vozovky, má zásadní vliv nejenom

Více

NÁKLADNÍ A AUTOBUSOVÉ PNEUMATIKY I ÚDRŽBA A PÉČE

NÁKLADNÍ A AUTOBUSOVÉ PNEUMATIKY I ÚDRŽBA A PÉČE NÁKLADNÍ A AUTOBUSOVÉ PNEUMATIKY I ÚDRŽBA A PÉČE Huštění pneumatik Geometrie podvozku vozidla vs. pneu Abnormální opotřebení pneumatik Poškození pneumatik TECHNICKÝ MANUÁL 82 83 Huštění pneumatik JEDNÍM

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Strana: 1 /8 Výtisk č.:.../... ZKV s.r.o. Zkušebna kolejových vozidel a strojů Wolkerova 2766, 272 01 Kladno ZPRÁVA č. : Z11-065-12 Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Vypracoval:

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

Řízení motorového vozidla:

Řízení motorového vozidla: Řízení motorového vozidla: Účel: - natočením kol do rejdu měnit směr jízdy - umožnit rozdílný úhel rejdu rejdových kol při průjezdu zatáčkou - dostatečně zvětšit silový moment pro ovládání rejdových kol

Více

Nastavení geometrie podvozku, sbíhavost, záklon rejdové osy, příklon rejdové osy, odklon kola, anti-squat, anti-dive

Nastavení geometrie podvozku, sbíhavost, záklon rejdové osy, příklon rejdové osy, odklon kola, anti-squat, anti-dive ABSTRAKT, KLÍČOVÁ SLOVA ABSTRAKT Tato bakalářská práce se zabývá zjištěním kinematických bodů přední a zadní nápravy autokrosové bugyny a provedení analýzy kinematických charakteristik zavěšení s popisem

Více

Hnací hřídele. Téma 7. KVM Teorie vozidel 1

Hnací hřídele. Téma 7. KVM Teorie vozidel 1 Hnací hřídele Téma 7 KVM Teorie vozidel 1 Hnací hřídele Kloubový hnací hřídel Transmise Přenáší točivý moment mezi dvěma převodovými ústrojími Převodové ústrojí na výstupu je obvykle pohyblivé po definované

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

Literatura: a ČSN EN s těmito normami související.

Literatura: a ČSN EN s těmito normami související. Literatura: Kovařík, J., Doc. Dr. Ing.: Mechanika motorových vozidel, VUT Brno, 1966 Smejkal, M.: Jezdíme úsporně v silniční nákladní a autobusové dopravě, NADAS, Praha, 1982 Ptáček,P.:, Komenium, Praha,

Více

AUTOKLUB ČESKÉ REPUBLIKY Opletalova 29, 110 00 Praha 1 tel. 602 363 032 e mail: spicka@autoklub.cz, www.autoklub.cz

AUTOKLUB ČESKÉ REPUBLIKY Opletalova 29, 110 00 Praha 1 tel. 602 363 032 e mail: spicka@autoklub.cz, www.autoklub.cz AUTOKLUB ČESKÉ REPUBLIKY Opletalova 29, 110 00 Praha 1 tel. 602 363 032 e mail: spicka@autoklub.cz, www.autoklub.cz AUTOKLUB ČR TESTOVAL ZIMNÍ PNEUMATIKY RŮZNÝCH ROZMĚRŮ 15, 16, 17 VĚTŠÍ NEBO MENŠÍ KOLA?

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

CZ.1.07/1.5.00/34.0581. Opravárenství a diagnostika. Princip a části kapalinových brzd

CZ.1.07/1.5.00/34.0581. Opravárenství a diagnostika. Princip a části kapalinových brzd Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_OAD_2.AE_01_KAPALINOVE BRZDY Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Pavel Štanc Tematická oblast

Více

Kontrola technického ho stavu brzd. stavu brzd

Kontrola technického ho stavu brzd. stavu brzd Kontrola technického ho stavu brzd Kontrola technického ho stavu brzd Dynamická kontrola brzd Základní zákon - Zákon č. 56/001 Sb. o podmínkách provozu vozidel na pozemních komunikacích v platném znění

Více

VÁŠ PRŮVODCE PNEUMATIKY

VÁŠ PRŮVODCE PNEUMATIKY VÁŠ PRŮVODCE PNEUMATIKY PNEUMATIKY: ZÁKLADNÍ PRVEK BEZPEČNOSTI Pneumatiky jsou jediným spojením automobilu s vozovkou. Kontaktní plocha pneumatik odpovídá přibližně velikosti dlaně, proto je nezbytné kontrolovat

Více

SPOLU DOJEDEME DÁL VŠE, CO BYSTE MĚLI ZNÁT... PNEUMATIKY

SPOLU DOJEDEME DÁL VŠE, CO BYSTE MĚLI ZNÁT... PNEUMATIKY SPOLU DOJEDEME DÁL VŠE, CO BYSTE MĚLI ZNÁT... VÝBĚR PNEUMATIK Rozměr pneumatik stejně jako váhový a rychlostní index jsou výrobcem propočítány tak, aby zaručovaly maximální bezpečnost a pohodlí na cestách.

Více

ŠKODA KODIAQ SCOUT Vznětové motory

ŠKODA KODIAQ SCOUT Vznětové motory Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem [cm 3 ] 1968 Vrtání zdvih [mm

Více

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem PŘEVODOVÉ ÚSTROJÍ přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem Uspořádání převodového ústrojí se řídí podle základní konstrukční koncepce automobilu. Ve většině

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4 EZINÁPRAVOVÁ SPOJKA HALDEX 4. GENERACE ezinápravová spojka Haldex 4. generace ezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

ŠKODA KAROQ SCOUT Vznětové motory

ŠKODA KAROQ SCOUT Vznětové motory Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem [cm 3 ] 1968 Vrtání zdvih [mm

Více

ŠKODA KODIAQ RS Vznětové motory

ŠKODA KODIAQ RS Vznětové motory Motor Motor vznětový, přeplňovaný dvěma turbodmychadly, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem [cm 3 ] 1968 Vrtání zdvih [mm mm] 81,0 95,5 Maximální výkon/otáčky

Více

Bravuris 2. Rychlost. podpořená. ekonomičností. Bravuris 2

Bravuris 2. Rychlost. podpořená. ekonomičností. Bravuris 2 Rychlost podpořená ekonomičností Asymetrický dezén Koncept asymetrického dezénu skvěle koresponduje s požadavky kladenými na vysokorychlostní pneumatiky. Rozdílné jízdní požadavky mohou být cíleně směrovány

Více

Vliv přepravovaných nákladů na jízdní vlastnosti vozidel

Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Doc. Ing. Miroslav Tesař, CSc. Havlíčkův Brod 20.5.2010 1. Úvod 2. Definování základních pojmů 3. Stabilita vozidel 4. Stabilita proti překlopení

Více

Cisterny. Obecné informace o cisternách. Cisterny se používají k přepravě kapalin, například nafty, tekutých chemikálií a mléka.

Cisterny. Obecné informace o cisternách. Cisterny se používají k přepravě kapalin, například nafty, tekutých chemikálií a mléka. Obecné informace o cisternách Cisterny se používají k přepravě kapalin, například nafty, tekutých chemikálií a mléka. Obecné informace o cisternách Cisternové nástavby jsou považovány za extra torzně tuhé

Více

ŠKODA KAROQ Zážehové motory

ŠKODA KAROQ Zážehové motory Technické údaje 1,0 TSI/85 kw 1,0 TSI/85 kw 1,5 TSI/110 kw 1,5 TSI/110 kw Motor 1,5 TSI/110 kw 4 4 Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Více

ŠKODA KAROQ SPORTLINE Zážehové motory

ŠKODA KAROQ SPORTLINE Zážehové motory Zážehové motory Technické údaje 1,5 TSI/110 kw 1,5 TSI/110 kw (A) 1,5 TSI/110 kw 4 4 (A) 2,0 TSI/140 kw 4 4 (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NÁVRH ZADNÍ NÁPRAVY FORMULE SAE DESIGN OF FORMULA SAE REAR AXLE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NÁVRH ZADNÍ NÁPRAVY FORMULE SAE DESIGN OF FORMULA SAE REAR AXLE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

ŠKODA KODIAQ SPORTLINE Zážehové motory

ŠKODA KODIAQ SPORTLINE Zážehové motory Zážehové motory Technické údaje 1,5 TSI/110 kw ACT 1,5 TSI/110 kw ACT (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový

Více

Název zpracovaného celku: Rozvodovky

Název zpracovaného celku: Rozvodovky Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Název zpracovaného celku: Rozvodovky Rozvodovka je u koncepce s předním a zadním pohonem součástí převodovky.u klasické koncepce

Více

Bravuris 3HM Product fact book Barum Bravuris 3HM

Bravuris 3HM Product fact book Barum Bravuris 3HM Bravuris 3 HM Product management fact book I Leo Barum Kolodziej Bravuris I 2013 3I HM Continental Obsah Marketing Technologie Uvedení na trh Product management fact book I Leo Barum Kolodziej Bravuris

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)

BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ

Více

TECHNIKA JÍZDY PRŮJEZDY ZATÁČEK část 1. Úvod

TECHNIKA JÍZDY PRŮJEZDY ZATÁČEK část 1. Úvod TECHNIKA JÍZDY PRŮJEZDY ZATÁČEK část 1. Úvod Místem na závodní trati, kde se rozhoduje o vítězích a poražených, jsou zatáčky a jejich projíždění představuje nejchoulostivější, nejnebezpečnější ale také

Více

Návrh zavěšení přední nápravy závodního vozidla. Design of Racing Car Front Axle Suspension

Návrh zavěšení přední nápravy závodního vozidla. Design of Racing Car Front Axle Suspension VŠB - Technická univerzita Ostrava Fakulta strojní Institut dopravy Návrh zavěšení přední nápravy závodního vozidla Design of Racing Car Front Axle Suspension Student: Vedoucí diplomové práce: Tomáš Pasterňák

Více

165/70 R 14 81 T. M + S zimní (bláto a sníh) druhy pneumatik podle uložení vláken kostry a nárazníku :

165/70 R 14 81 T. M + S zimní (bláto a sníh) druhy pneumatik podle uložení vláken kostry a nárazníku : KOLA kolo s nahuštěnou pneumatikou je prvním prvkem odpružení vozidla Dnes jsou nejběžnější kola disková. Existují ještě kola drátová a hvězdicová. Diskové kolo - má dvě části - disk tyto části jsou vylisovány

Více

Rotační pohyb kinematika a dynamika

Rotační pohyb kinematika a dynamika Rotační pohyb kinematika a dynamika Výkon pro rotaci P = M k. ω úhlová rychlost ω = π. n / 30 [ s -1 ] frekvence otáčení n [ min -1 ] výkon P [ W ] pro stanovení krouticího momentu M k = 9550. P / n P

Více

ŠKODA OCTAVIA Zážehové motory

ŠKODA OCTAVIA Zážehové motory Zážehové motory Technické údaje 1,0 TSI/85 kw 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 3

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

ŠKODA KAROQ SPORTLINE Zážehové motory

ŠKODA KAROQ SPORTLINE Zážehové motory Zážehové motory Technické údaje 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem

Více

Výkon pneumatik, který se vyplatí

Výkon pneumatik, který se vyplatí Výkon pneumatik, který se vyplatí Bravuris 3 HM Bravuris 2 Nabídka letních pneumatik 2015 pro osobní, 4x4/SUV a dodávková vozidla. Bravuris 4x4 Brillantis 2 Vanis 2 Letní pneumatiky Barum Bravuris 3 HM

Více

Produktová prezentace

Produktová prezentace Produktová prezentace ContiWinterContact TS 830 P 1 Pozice na trhu Zimní TWI indikátor Nové bezpečnostní hledisko: Pokud se dezén opotřebí na hloubku 4 mm, vystoupí zimní TWI indikátor v dezénu, a tak

Více

ŠKODA KAROQ Zážehové motory

ŠKODA KAROQ Zážehové motory Zážehové motory Technické údaje 1,0 TSI/85 kw 1,0 TSI/85 kw (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

Elektromobil s bateriemi Li-pol

Elektromobil s bateriemi Li-pol Technická fakulta ČZU Praha Autor: Pavel Florián Semestr: letní 2008 Elektromobil s bateriemi Li-pol Popis - a) napájecí část (jednotka) - b) konstrukce elektromobilu - c) pohonná jednotka a) Tento elektromobil

Více

Výkon pneumatik, který se vyplatí

Výkon pneumatik, který se vyplatí Výkon pneumatik, který se vyplatí Nabídka letních pneumatik pro osobní, 4x4/SUV a dodávková vozidla 2014 Bravuris 3 HM NOVINKA! Bravuris 2 Bravuris 4x4 Brillantis 2 Vanis 2 NOVINKA! Pneumatiky Barum NOVINKA!

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Překvapte zimu dříve, než ona překvapí Vás.

Překvapte zimu dříve, než ona překvapí Vás. Překvapte zimu dříve, než ona překvapí Vás. Přezujte na zimní pneumatiky Continental včas. Nabídka zimních pneumatik pro osobní, dodávkové a 4 4 automobily Zima 2012/13 Zimní pneumatiky jsou součástí povinné

Více

PREZENTACE ZNAČKY

PREZENTACE ZNAČKY PREZENTACE ZNAČKY 2018 1 ZNAČKA TOVÁRNA NABÍDKA PRODUKTŮ POKRYTÍ TRHU 2 ZNAČKA A TOVÁRNA 3 PŮVOD ZNAČKY NOVÁ EVROPSKÁ ZNAČKA PNEUMATIK S TRADIČNÍM EVROPSKÝM KONCEPTEM 1935 VZNIK TOVÁRNY Továrna, ve které

Více

KATALOG PNEUMATIK GENERAL TIRE. léto/zima

KATALOG PNEUMATIK GENERAL TIRE. léto/zima KTLO PNUMTIK NRL TIR léto/zima WWW.T-PNU.Z PŘHL PNUMTIK LTNÍ PNUMTIKY 2 ZIMNÍ PNUMTIKY LTNÍ PNUMTIKY ltimax ON NOVINK Poskytuje spolehlivý výkon s vynikající přilnavostí na suché i mokré vozovce a výrazně

Více

SOŠ a SOU dopravní a mechanizační Ivančice PODVOZEK A KAROSÉRIE. Petr Janda a kolektiv 2007

SOŠ a SOU dopravní a mechanizační Ivančice PODVOZEK A KAROSÉRIE. Petr Janda a kolektiv 2007 69 PODVOZEK A KAROSÉRIE 70 Podvozek a karoserie automobilu. Nápravy Náprava spojuje kola s nosnou částí automobilu a slouží k přenosu: vlastní hmotnosti hnací síly na kola brzdných sil při brždění odstředivých

Více

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace

Více

1 NÁPRAVY. UMÍSTNĚNÍ NA VOZIDLE Nápravy jsou umístěny pod rámem, a to podle konstrukce buď úplně (tuhé nápravy), nebo částečně (ostatní druhy).

1 NÁPRAVY. UMÍSTNĚNÍ NA VOZIDLE Nápravy jsou umístěny pod rámem, a to podle konstrukce buď úplně (tuhé nápravy), nebo částečně (ostatní druhy). 1 NÁPRAVY ÚČEL nést tíhu vozidla a přenášet ji na kola, přenášet hnací, brzdné a boční síly mezi kolem a rámem, umožnit odpružení vozidla pomocí pružin, které jsou uloženy mezi nápravami a vozidlem. UMÍSTNĚNÍ

Více

Rozvodovky + Diferenciály

Rozvodovky + Diferenciály Rozvodovky + Diferenciály Téma 8 Teorie vozidel 1 Rozvodovka Konstrukčně nenahraditelná, propojuje převodovku a diferenciál Je konstantním činitelem v celkovém převodovém poměru HÚ Složení : skříň rozvodovky

Více

3. Mechanická převodná ústrojí

3. Mechanická převodná ústrojí 1M6840770002 Str. 1 Vysoká škola báňská Technická univerzita Ostrava 3.3 Výzkum metod pro simulaci zatížení dílů převodů automobilů 3.3.1 Realizace modelu jízdy osobního vozidla a uložení hnacího agregátu

Více

Marketing Klíčové vlastnosti

Marketing Klíčové vlastnosti Marketing Klíčové vlastnosti Nová zimní pneu pro vozy kompakt a střední třídu Širší rozpětí bezpečnosti díky lepší přilnavost na sněhu a ledu Výborný handling na suchu Ekonomická díky snížení valivého

Více

Vaši bezpečnost řídíme my.

Vaši bezpečnost řídíme my. Vaši bezpečnost řídíme my. CONTINENTAL GERMAN ENGINEERING TESTED FOR YOUR SAFETY SINCE 1871 ContiVanContact 100 ContiVanContact 200 Profilové číslo 80 185/80 R14 C 102/100Q www.eu-tyre-label.com 195/80

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

ŠKODA OCTAVIA Zážehové motory

ŠKODA OCTAVIA Zážehové motory Zážehové motory Technické údaje 1,0 TSI/85 kw 1,0 TSI/85 kw (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) 2,0 TSI/140 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC,

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

PRŮVODCE PNEUMATIKAMI DOPORUČENÍ CITROËN CESTA K DOKONALÉ ÚDRŽBĚ VAŠEHO VOZIDLA

PRŮVODCE PNEUMATIKAMI DOPORUČENÍ CITROËN CESTA K DOKONALÉ ÚDRŽBĚ VAŠEHO VOZIDLA PRŮVODCE PNEUMATIKAMI DOPORUČENÍ CITROËN CESTA K DOKONALÉ ÚDRŽBĚ VAŠEHO VOZIDLA Doporučení CITROËN - cesta k dokonalé údržbě vozidla PNEUMATIKY JSOU ZÁKLADNÍMI PRVKY BEZPEČNOSTI A PODMÍNKOU DOBRÝCH JÍZDNÍCH

Více

ŠKODA OCTAVIA COMBI Zážehové motory

ŠKODA OCTAVIA COMBI Zážehové motory Zážehové motory Technické údaje 1,0 TSI/85 kw 1,5 TSI/96 kw G-TEC (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch

ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch ZATÍŽENÍ KŘÍDLA - I Rozdělení zatížení - Letová a pozemní letová = aerodyn.síly, hmotové síly (tíha + setrvačné síly), tah pohon. jednotky + speciální zatížení (střet s ptákem, pozemní = aerodyn. síly,

Více

Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje

Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje C 1 INFORMACE O VÝROBKU Určení velikosti hřídelových kloubů Pro výběr hřídelových kloubů není rozhodující pouze největší přenášený kroutící

Více

Jaroslav Machan. Pavel Nedoma. Jiří Plíhal. Představení projektu E-VECTOORC

Jaroslav Machan. Pavel Nedoma. Jiří Plíhal. Představení projektu E-VECTOORC Představení projektu E-VECTOORC Jaroslav Machan Pavel Nedoma Jiří Plíhal jaroslav.machan@skoda-auto.cz pavel.nedoma@skoda-auto.cz plihal@utia.cas.cz 1 ExFos - Představení projektu E-VECTOORC 25.1.2013/Brno

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - klasifikace, strukturální analýza, vazby Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - úvod Mechanismus je soustava těles, spojených

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

ŠKODA KAMIQ Zážehové motory

ŠKODA KAMIQ Zážehové motory Technické údaje 1,0 TSI/70 kw 1,0 TSI/85 kw 1,0 TSI/85 kw (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Více

Přednáška č.8 Hřídele, osy, pera, klíny

Přednáška č.8 Hřídele, osy, pera, klíny Fakulta strojní VŠB-TUO Přednáška č.8 Hřídele, osy, pera, klíny HŘÍDELE A OSY Hřídele jsou obvykle válcové strojní součásti umožňující a přenášející rotační pohyb. Rozdělujeme je podle: 1) typu namáhání

Více

NÁVRH TRASY POZEMNÍ KOMUNIKACE. Michal RADIMSKÝ

NÁVRH TRASY POZEMNÍ KOMUNIKACE. Michal RADIMSKÝ NÁVRH TRASY POZEMNÍ KOMUNIKACE Michal RADIMSKÝ TRASA PK trasou pozemní komunikace (PK) rozumíme prostorovou čáru, určující směrový i výškový průběh dané komunikace trasa PK je spojnicí středů povrchu silniční

Více

ŠKODA SCALA Zážehové motory

ŠKODA SCALA Zážehové motory Technické údaje 1,0 TSI/85 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 3 4 Zdvihový objem [cm 3 ] 999 1498

Více

Charakteristika produktu Klíčové vlastnosti pneu. Product Fact Book. ContiPremiumContact 5

Charakteristika produktu Klíčové vlastnosti pneu. Product Fact Book. ContiPremiumContact 5 Charakteristika produktu Klíčové vlastnosti pneu Excelentní brzdný výkon na mokré a suché vozovce Velmi ekonomická díky vyšší životnosti a sníženému valivému odporu Tichá, komfortní jízda Precizní handling

Více

Kola a pneumatiky. Druhy kol : - dle konstrukce : a) disková - plná - odlehčená - s otvory ve stěně disku - větraná - s otvory mezi diskem a ráfkem

Kola a pneumatiky. Druhy kol : - dle konstrukce : a) disková - plná - odlehčená - s otvory ve stěně disku - větraná - s otvory mezi diskem a ráfkem Kola a pneumatiky Úkolem kol je přenášet tlak nápravy na vozovku, spolehlivě vést vozidlo po zvolené dráze a přenášet na vozovku brzdné a vodící popř. hnací síly. Zároveň se podílejí na tlumení rázů způsobených

Více

EXKLUZIVNÍ PRVOTŘÍDNÍ LEVNÁ!

EXKLUZIVNÍ PRVOTŘÍDNÍ LEVNÁ! EXKLUZIVNÍ PRVOTŘÍDNÍ LEVNÁ! ZARUČENÁ KVALITA VÝROBKU EVROPSKY Nové pneumatiky Sebring jsou vyráběny v továrně na výrobu pneumatik v Evropě jedním z předních světových výrobců pneumatik. KVALITNĚ Zajištění

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.11 Diagnostika automobilů Kapitola 31 Haldex

Více

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V

Více

ŠKODA SCALA Zážehové motory

ŠKODA SCALA Zážehové motory Zážehové motory Technické údaje 1,0 TSI/70 kw 1,0 TSI/85 kw 1,0 TSI/85 kw (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený

Více

ŠKODA FABIA COMBI Zážehové motory

ŠKODA FABIA COMBI Zážehové motory Motor Motor zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 3 Zdvihový objem [cm 3 ] 999 Vrtání zdvih [mm mm] 74,5 76,4 zážehový, přeplňovaný turbodmychadlem, řadový, chlazený

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

Centrum kompetence automobilového průmyslu Josefa Božka - Kolokvium Božek 2014, 6. 11. 2014 Roztoky -

Centrum kompetence automobilového průmyslu Josefa Božka - Kolokvium Božek 2014, 6. 11. 2014 Roztoky - WP17: Agregáty s dělením toku výkonu pro vysoce účinné mechanismy CVT/IVT, hybridní vozy a vozidlové diferenciály Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické v Praze

Více

Abstrakt. Jan Ševčík. Nápravy osobních a závodních automobilů

Abstrakt. Jan Ševčík. Nápravy osobních a závodních automobilů 1 Abstrakt Jan Ševčík Nápravy osobních a závodních automobilů Bakalářská práce je zaměřena na porovnání různých typů náprav s důrazem na změnu geometrie během propružení.ve studentské verzi Autodesk Inventor

Více

hankooktire.com/cz Emoce a výkony v dokonalé harmonii

hankooktire.com/cz Emoce a výkony v dokonalé harmonii hankooktire.com/cz Obsah Popis a technické informace Klíčové vlastnosti Koncept Marketing Produktová mapa Popis dezénu a použitých technologií Popis a technické informace Rozměry Šířka pneumatiky 205~305

Více