Učení z klasifikovaných dat
|
|
- Ján Pavlík
- před 6 lety
- Počet zobrazení:
Transkript
1 Učení z klasifikovaných dat
2 Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a nepřátelské roboty? Učení s učitelem: u některých objektů už víme, jakou mají povahu (klasifikace) Neparametrická úloha: Nic nevíme o pravděpodobnostní distribuci jednotlivých objektů 2
3 Příklad počítačová hra 1. Můžeme se naučit roboty rozlišit na základě krátké zkušenosti? přátelští nepřátelští 3
4 Reprezentace úlohy pomocí atributů Klasifika ce Usmíva_se kravata tělo hlava v_ruce přítel ano ano kruh 3úhelník nic Můžeme navrhnout odpovídající klasifikační algoritmus? přítel ne ne 3úhelník 3úhelník balon nepřítel ne ano čtverec 3úhelník balón nepřítel ne ano čtverec kruh meč přítel ano ne 3úhelník kruh květ přítel ano ano kruh kruh nic nepřítel ano ne čtverec čtverec nic nepřítel ne ne kruh kruh meč přátelští nepřátelští Možná řešení pro další objekt: 1. Vyhledání objektu v tabulce předchozích zkušeností, 2. Hledání co nejpodobnějšího mezi všemi známými, 3.??? 4
5 Metoda n nejbližších sousedů Pro nový objekt je vypočtena vzdálenost od všech objektu v trén. příkl. Výběr všech n trén. příkladů (= množina T(x,n) ), které jsou k novému objektu x nejblíž. Objekt x získá klasifikaci, která je v T(x,n) ) nejčastější. Možné zobecnění: hledá se nejlepší vážicí koeficient pro jednotlivé atributy. 5
6 Metoda n nejbližších sousedů 6 Pozor na následující vlastnosti této metody: Je velmi citlivá na výběr parametru n - počet hledných sousedů U dat s vysokým počtem atributů hrozí nebezpečí, že vzdáoenost bude ovlivněna nějakým irelevantním atributem s velký rozsahem hodnot (curse of dimensionality)
7 Rozhodovací strom 1 pro danou množinu příkladů Klasifika Usmíva_se kravata tělo hlava v_ruce ce přítel ano ano kruh 3úhelník nic přítel ne ne 3úhelník 3úhelník balon nepřítel ne ano čtverec 3úhelník balón kravata nepřítel ne ano čtverec kruh meč přítel ano ne 3úhelník kruh květ ano ne přítel ano ano kruh kruh nic nepřítel ano ne čtverec čtverec nic nepřítel ne ne kruh kruh meč úsměv tělo ano ne jiné přítel nepřítel nepřítel přítel 7
8 Rozhodovací strom 2 pro tutéž množinu příkladů hlava Klasifika Usmíva_se kravata tělo hlava v_ruce ce přítel ano ano kruh 3úhelník nic přítel ne ne 3úhelník 3úhelník balon úsměv nepřítel nepřítel ne ano čtverec 3úhelník balón nepřítel ne ano čtverec kruh meč přítel ano ne 3úhelník kruh květ přítel ano ano kruh kruh nic nepřítel ano ne čtverec čtverec nic nepřítel ne ne kruh kruh meč ano ne přítel kravata úsměv ano ne ano ne nepřítel 8 přítel přítel nepřítel
9 Rozhodovací strom 3 pro tutéž množinu příkladů Klasifika Usmíva_se kravata tělo hlava v_ruce ce přítel ano ano kruh 3úhelník nic Který strom je lepší a jak jej najdeme? přítel ne ne 3úhelník 3úhelník balon nepřítel ne ano čtverec 3úhelník balón nepřítel ne ano čtverec kruh meč přítel ano ne 3úhelník kruh květ přítel ano ano kruh kruh nic nepřítel ano ne čtverec čtverec nic nepřítel ne ne kruh kruh meč tělo ano přítel v_ruce nepřítel 9 nepřítel meč nic přítel Ockamova břitva: jednoduchý strom je lepší!
10 Proč dáváme přednost jednoduchým hypotézám? Argument : Jednoduchých hypotéz je výrazně méně než složitých. Proto, pokud některé z jednoduchých h. data odpovídají, pak asi nejde o náhodný jev Occamova břitva : Nejlepší hypotéza je ta nejjednodušší, která odpovídá datům. Související problémy: - proč zrovna tato malá množina? - pozor na použitý jazyk! 10 William of Ockham, born in the village of Ockham in Surrey (England) about 1285, was the most influential philosopher of the 14th century and a controversial theologian. witten & eibe
11 Hledání atributu poskytujícího nejvíce informací Klasifikace úsměv kravata tělo hlava v_ruce přítel ano ano kruh 3úhelník nic přítel ne ne 3úhelník 3úhelník balon nepřítel ne ano čtverec 3úhelník balón nepřítel ne ano čtverec kruh meč přítel ano ne 3úhelník kruh květ přítel ano ano kruh kruh nic nepřítel ano ne čtverec čtverec nic nepřítel ne ne kruh kruh meč Souhrn významu atributů dle klasifikace 11 úsměv Kravata tělo=3úh. hlava=3úh v_r.=nic Ano:3P,1N Ne: 1P,3N Ano:2P,2N Ne: 2P,2N Ano:2P,0N Ne: 2P,4N Ano:2P,1N Ne:2P,3N Ano:2P,1N Ne: 2P,3N
12 Indukce rozhodovacího stromu z trénovací množiny dáno: S... trénovací množina (množina klasifikovaných příkladů) 1. Nalezni "nejlepší" atribut at 0 pro S (t.j. atribut, jehož hodnoty nejlépe diskriminují mezi pozitivními a neg. příklady) a vybraným atributem ohodnoť kořen vytvářeného stromu. 2. Rozděl množinu S na podmnožiny S 1,S 2,...,S n podlemožných hodnot atributu at 0 a pro každou množinu příkladů S i vytvoř nový uzel jako následníka právě zpracovávaného uzlu (kořenu) 3. Pro každý nově vzniklý uzel s přiřazenou podmnožinou S i proveď: Jestliže všechny příklady v S i mají tutéž klasifikaci (všechny jsou pozitivní nebo všechny jsou negativní), 12 pak uzel ohodnocený S i je prohlášen za list vytvářeného rozhodovacího stromu (a tedy se už dále nevětví), jinak jdi na bod 1 s tím, že S : = S i.
13 Entropie množiny S vzhledem k dané klasifikaci Posuzuje různorodost klasifikace prvků z množiny S Nechť klasifikaci představuje atribut y, který má jen 2 hodnoty {0,1}. Pak označme S 0 = {z S : z y = 0} a S 1 = {z S : z y = 1} Entropy(S ) = - S 0 / S * log 2 S 0 / S - S 1 / S * log 2 S 1 / S, kde A označuje mohutnost množiny A 13 Je-li S 0 =, pak Entropy (S )=0 Je-li S 0 = S 1, pak Entropy (S )=1 Je-li S 0 = S, pak Entropy (S )= 0
14 Volba nejlepšího atributu pro množinu příkladů S vzhledem k dané klasifikaci Kriterium minimální entropie rozkladu (KMER) Nechť at je pevně zvolený atribut, který může nabývat hodnot v 1 až v n. Označme S i = {z S : z at = v i } podmnožinu S, která obsahuje právě ty objekty, které v atributu at maji hodnotu v i Vážená entropie E(S,at) rozkladu S podle hodnot atributu at charakterizuje čistotu klasifikace v jednotlivých složkách rozkladu S a je definována E(S,at) = n i=1 S i / S * E(S i ) KMER vypočte E(S,at) pro všechny atributy at a jako nejlepší atribut at 0 zvolí ten z nich, pro který je hodnota E(S,at 0 ) nejmenší 14
15 Základní algoritmus ID3 Realizuje prohledávání prostoru všech stromů, které lze zkonstruovat v jazyku trénovacích dat : shora dolů s použitím hladové strategie Volba atributu pro větvení na základě charakterizace (ne)homogenity nově vzniklého pokrytí (používají se různé míry), např.: Kriterium minimalní entropie rozkladu Informační zisk (gain) odhaduje předpokládané snížení entropie pro pokrytí vzniklé použitím hodnot odpovídajícího atributu Maximalizace tohoto kritéria vede k témuž výsledku jako KMER! 15
16 Nebezpečí použití kriteria KMER Co se stane, pokud některý atribut má hodně skoro unikátních hodnot, které takřka jednoznačně charakterizují každý trénovací příklad? Například pro rodné číslo je S i = 1 a tedy E(S i ) = 0 a E(S, rodne_cislo ) = 0 Tento agrument je tedy kriteriem KMER vybrán jako nejlepší! Je takový atribut opravdu užitečný pro testovací data? 16
17 Nebezpečí použití kriteria KMER Co se stane, pokud některý atribut má hodně skoro unikátních hodnot, které takřka jednoznačně charakterizují každý trénovací příklad? Například pro rodné číslo (RČ) je S i = 1 a tedy E(S i ) = 0 a E(S, rodne_cislo ) = 0 Tento agrument je tedy kriteriem KMER vybrán jako nejlepší! Je takový atribut opravdu užitečný pro testovací data? Ne, má malou generalizační schopnost! Nebylo by vhodné takovou situaci nějak penalizovat? JAK? Zde (pro KMER = 0) nepomůže penalizace pomocí multiplikačního koeficientu! Raději využijeme kriterium zisku Gain E(S,at) = E(S) - E(S,at) = E(S) - n i=1 S i / S * E(S i ) které je v tomto případě nenulové a které je třeba naopak maximalizovat: 17 V případě RČ by pomohlo Gain vydělit počtem skupin, do nichž se původní množina rozpadá!
18 Jak charakterizovat rozklad množiny S na c disjunktních podmnožin S i podle všech hodnot uvažovaného atributu A? Stačí počet skupin? Raději zavedeme SplitInformation odpovídá entropii rozdělení S podle všech hodnot atributu A. Např. když se S rozpadne na S podmnožin, pak SplitInformation (S, A ) = (log 2 S ). Co když se S rozpadne na 2 stejně velké části? GainRatio penalizuje atributy s příliš mnoha hodnotami (protože při tvorbě stromu vybíráme atributy s max hodnotou tohoto kriteria! 18
19 Volba atributů a další speciální situace Jak se pracuje s reálnými hodnotami? používá se diskretizace v průběhu tvorby stromu Lze zohlednit cenu získání hodnoty atributu? Cenou lze penalizovat Gain nebo GainRatio 19
20 Volba atributů a speciální situace 1 Reálné hodnoty používá se diskretizace JAK SE VOLÍ VHODNÉ MEZNÍ HODNOTY? Vhodné řešení (Fayyad 91): Uspořádejte příklady podle velikosti zpracovávaného atributu a zvolte jako kandidátní mezní hodnoty ty, které leží v intervalu, kde se mění klasifikace. Hodnota, která maximalizuje Gain, je nutně jednou z nich. 20
21 Volba atributů a speciální situace 2 Různé ceny pro získání hodnoty atributu. Určíme-li cenu Cost(A) v intervalu <0,1>, pak použijeme změněné kriterium, např. 21
22 22 Používaný postup prohledávání
23 23 Vlastnosti ID3: důsledky postupu prohledávání Pro klasifikační úlohu s diskrétními atributy je prohledávaný prostor hypotéz úplný (tj. je schopný reprezentovat libovolnou možnou cílovou funkci) --> existuje mnoho hypotéz konzistentních s daty! Aktuální množina hypotéz je vždy jednoprvková (hladová volba následníka), nelze jej tedy použít pro odpověď na dotaz kolik je alternativních stromů konzistentních s daty? Nepoužívá zpětný chod --> možnost uvíznutí v lokálním optimu Rozhoduje se na základě všech příkladů (nikoliv inkrementálně) --> metoda není příliš ovlivněna šumem
24 Kdy je vhodné použít algoritmy pro konstrukci rozhodovacího stromu? Cílová funkce má několik (málo) diskrétních hodnot (jedná se o klasifikační problém) Instance trénovacích dat mají jednotný formát popisující hodnoty atributů Nevadí, pokud trénovací data jsou zašuměná Nebo obsahují chybějící hodnoty Je potřeba reprezentovat disjunkci podmínek (pravidla) 24
25 Otázky související s ID3 Jak velké stromy konstruovat? Až do pokrytí všech příkladů? Co s přeučením? Spojitý definiční obor atributů Metody volby nejvhodnějšího atributu Atributy o různých cenách Chybějící hodnoty??? 25
26 Přeučení Nechť H je prostor hypotéz. Hypotéza h H je přeučená, pokud exituje jiná hypotéza h1 H taková, že chyba h na trénovacích datech je menší než chyba h1, avšak na celém prostoru instancí uvažovaných objektů je chyba h1 menší než chyba h Často pozorovaná vlastnost zkonstruovaných stromů 26
27 Jak se vyhnout přeučení? Jak zvolit správnou velikost stromu? Jak získat strom správné velikosti? 1. Zastavit růst stromu dřív než jsou vyčerpána všechna trénovací data 2. Prořezávání hotového stromu ukazuje se jako zvlášť užitečné! Volba vhodného prořezání se provádí pomocí validační množiny dat (musí být vybraná nezávisle, tedy bez náhodných vlivů případně přítomných v trénovacích datech). Algoritmus prořezávání redukce chyby : Vyberte uzel, odstraňte podstrom, v něm začínající a přiřaďte většinovou klasifikaci. Pokud se chyba na validačních datech zmenšila, proveďte uvedené proříznutí (ze všech možností vyberte tu s největším zlepšením). 27
28 Hodnocení přesnosti klasifikace v závislosti na složitosti použitého stromu Výsledky na hladké linii odpovídají stromům získaným prořezáním tak, jak bylo otestováno na validačních datech (jiná než testovací!!!) 28
29 Rozhodovací strom jako logický výraz Klasifika Usmíva_se kravata tělo hlava v_ruce ce přítel ano ano kruh 3úhelník nic přítel ne ne 3úhelník 3úhelník balon nepřítel ne ano čtverec 3úhelník balón kravata nepřítel ne ano čtverec kruh meč přítel ano ne 3úhelník kruh květ ano ne přítel ano ano kruh kruh nic nepřítel ano ne čtverec čtverec nic nepřítel ne ne kruh kruh meč Usmívá_se tělo ano ne jiné přítel nepřítel nepřítel přítel (Kravata=ano & usmívá_se=ano) V (Kravata=ne & tělo=3úh.) -> přítel 29
30 Závěrečné prořezávání pravidel (rule post-pruning) použité v C Vytvořte přeučený rozhodovací strom 2. Zapište výsledný strom ve tvaru disjunkce pravidel (každá větev = jedno pravidlo) 3. Každé jednotlivé pravidlo co nejvíc prořežte (odstraní se postupně ty podmínky, které nezhorší jeho klasifikační přesnost) 4. Uspořádejte výsledná pravidla podle jejich odhadnuté přesnosti a dále je používejte jako rozhodovací seznam Odhad klasifikační přesnosti pravidla na validační množině (= relativní počet správných závěrů) na trénovacích datech (= pesimistický odhad počtu správých závěrů za předpokladu binomického rozdělení ) 30
31 31 Příklad: Létání na simulátoru F16 Úkol: sestavit řídící systém pro ovládání leteckého simulátoru F16 tak, aby splnil předem definovaný plán letu daný takto: 1. vzlet a výstup do výšky 2000 stop 2. let v dané výšce směrem N do vzdálenosti stop od místa startu 3. zahnout vpravo v kurzu ve vzdálenosti stop od místa startu (ve směru S-N) provést obrat vlevo a zamířit zpět do místa startu (obrat je ukončen při kurzu mezi 140 a 180 ) 5 vyrovnat směr letu s přistávací dráhou, tolerance 5 pro kurz a 10 pro výchylku křídel oproti horizontu 6. klesat směrem k počátku přistávací dráhy 7. přistát Trénovací data: 3x30 letů (od 3 pilotů). Každý let popsán pomocí 1000 záznamů (poloha a stav letounu, pilotem provedený řídící zásah)
32 on_gound g_limit wing_stall Záznam: Poloha a stav boolean: je letadlo na zemi? boolean: je překročen g limit letadla? boolean: je letadlo stabilní? twist integer: 0-360, výchylka křídel vůči obzoru elevation azimuth roll_speed elev_speed integer: 0-360, výchylka trupu vůči obzoru integer: 0-360, směr letu integer: 0-360, rychlost změny výchylky křídel [ /s] integer: 0-360, rychlost změny výchylky trupu [ /s] azimuth_speedinteger: 0-360, rychlost změny kurzu [ /s] airspeed climbspeed 32 integer: rychlost letadla v uzlech integer: rychlost změny výšky [stop/s]
33 E/W distance N/S distance fuel 33 Řízení: rollers elevator thrust flaps Záznam: Poloha a stav + Řízení real: vzdálenost ve směru východ-západ od místa startu real: vzdálenost ve směru sever-jih od místa startu integer: váha paliva v librách real: nastavení ovladače horizontálního vychýlení real: nastavení ovladače vertikálního vychýlení integer: 0-100%, plyn integer: 0, 10 nebo 20, nastavení křídlových lopatek Každá ze 7 fází letu vyžaduje vlastní typ řízení (jiné zásahy pilota): trénovací příklady rozděleny do 7 odpovídajících skupin. V každé skupině je zkonstruován samostatný rozhodovací strom pro každý typ řídícího zásahu (rollers, elevator, thrust, flaps), t.j. 7 x 4 stromů ) Ref. Sammut C., Hurst S., Kedzier D., Michie D.: Learning to fly. In D.Sleeman&P.Edwards: Proc. of the ninth int.conference on machine learning. Aberdeen (pp ), Morgan Kaufann 1992
34 Zkuste navrhnout nejjednodušší klasifikační algoritmus přátelští nepřátelští 34
Rozhodovací stromy a jejich konstrukce z dat
Rozhodovací stromy a jejich konstrukce z dat Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a nepřátelské roboty? Učení s učitelem: u některých už víme, jakou mají povahu (klasifikace)
Rozhodovací stromy a jejich konstrukce z dat
Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a přátelské roboty? Rozhodovací stromy a jejich konstruk z dat Učení s učitelem: u některých už víme, jakou mají povahu (klasifika) Neparametrická
3.1 Úvod do problematiky
3 Strojové učení rozhodovací stromy 3.1 Úvod do problematiky 3.1.1 Úvod a motivace Naše stroje jsou nedokonalé: potřebují údržbu selhávají (hroutí se),... Rádi bychom dostali varování předem. Konstruktér
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení. PAC učení 1
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení PAC učení 1 Cíl induktivního strojového učení Na základě omezeného vzorku příkladů E + a E -, charakterizovat (popsat) zamýšlenou
DATA MINING KLASIFIKACE DMINA LS 2009/2010
DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? 2 Osnova Úvod různé klasifikační modely a jejich kvalita Hodnotící míry (kriteria kvality) pro zvolený model. Postup vyhodnocování
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Testování modelů a jejich výsledků. tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Předzpracování dat. Lenka Vysloužilová
Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Změkčování hranic v klasifikačních stromech
Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment
Chybějící atributy a postupy pro jejich náhradu
Chybějící atributy a postupy pro jejich náhradu Jedná se o součást čištění dat Čistota dat je velmi důležitá, neboť kvalita dat zásadně ovlivňuje kvalitu výsledků, které DM vyprodukuje, neboť platí Garbage
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
5.1 Rozhodovací stromy
5.1 Rozhodovací stromy 5.1.1 Základní algoritmus Způsob reprezentování znalostí v podobě rozhodovacích stromů je dobře znám z řady oblastí. Vzpomeňme jen nejrůznějších klíčů k určování různých živočichů
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Umělá inteligence II
Umělá inteligence II 11 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Dnešní program! V reálném prostředí převládá neurčitost.! Neurčitost umíme zpracovávat pravděpodobnostními
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
PQ-stromy a rozpoznávání intervalových grafů v lineárním čase
-stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S
Získávání znalostí z dat
Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj)
Rozhodovací stromy Úloha klasifikace objektů do tříd. Top dow iductio of decisio trees (TDIDT) - metoda divide ad coquer (rozděl a pauj) metoda specializace v prostoru hypotéz stromů (postup shora dolů,
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Dnes budeme učit agenty, jak zlepšit svůj
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Úvodem Dnes budeme učit agenty, jak zlepšit svůj výkon při ř řešení š í budoucích úloh na základě pozorování
Rozhodovací pravidla
Rozhodovací pravidla Úloha klasifikace příkladů do tříd. pravidlo Ant C, kde Ant je konjunkce hodnot atributů a C je cílový atribut A. Algoritmus pokrývání množin metoda separate and conquer (odděl a panuj)
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
Prohledávání svazu zjemnění
Prohledávání svazu zjemnění Rekonstrukční chyba je monotonně neklesající podél každé cesty svazu zjemnění: Je-li G i G k G j potom (G i ) (G k ) (G j ) Rekonstrukční chyba je aditivní podél každé cesty
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných
Instance based learning
Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
TEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/
Čtyřpolní tabulky Čtyřpolní tabulky 14. prosinec 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 O čem se bude mluvit? Čtyřpolní tabulky Osnova prezentace Čtyřpolní tabulky 1. přístupy
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Úvod do mobilní robotiky AIL028
Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
8. Strojové učení. Strojové učení. 16. prosince 2014. Václav Matoušek. 8-1 Úvod do znalostního inženýrství, ZS 2014/15
Strojové učení 16. prosince 2014 8-1 Klasifikace metod strojového učení podle vynaloženého úsilí na získání nových znalostí Učení zapamatováním (rote learning, biflování) Pouhé zaznamenání dat nebo znalostí.
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Úvod do mobilní robotiky AIL028
md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní
State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node
State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
Kombinování klasifikátorů Ensamble based systems
Kombinování klasifikátorů Ensamble based systems Rozhodování z více hledisek V běžném životě se často snažíme získat názor více expertů, než přijmeme závažné rozhodnutí: Před operací se radíme s více lékaři
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
jedna hrana pro každou možnou hodnotu tohoto atributu; listy jsou označeny předpokládanou hodnotou cílového atributu Atribut Outlook
Rozhodovací stromy Outlook Sunny Overcast Rain Humidity Yes Wind High Normal Strong Weak Atribut hodnota cílového atributu Hodnota atributu No Yes No Yes Rozhodovací strom pro daný cílový atribut G je
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Metody založené na analogii
Metody založené na analogii V neznámé situaci lze použít to řešení, které se osvědčilo v situaci podobné případové usuzování (Case-Based Reasoning CBR) pravidlo nejbližšího souseda (nearest neighbour rule)
Matematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ
REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Informační systémy pro podporu rozhodování
Informační systémy pro podporu rozhodování 2 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Strojové učení, umělá inteligence, dolování z dat Strojové učení je moderní,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Počítačové šachy. Otakar Trunda
Počítačové šachy Otakar Trunda Hraní her obecně Hra je definovaná pomocí: Počáteční situace Funkce vracející množinu přípustných tahů v každé situaci Ohodnocení koncových stavů Našim cílem je najít strategii
Výpočetní teorie učení. PAC učení. VC dimenze.
Výpočetní teorie učení. PAC učení. VC dimenze. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics COLT 2 Koncept...........................................................................................................
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy
9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou