PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
|
|
- Leoš Staněk
- před 6 lety
- Počet zobrazení:
Transkript
1 PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1
2 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované náhodné veličiny X, resp. náhodného vektoru, anebo pro známé rozdělení nemáme potřebná testová kritéria. Omezením neparametrických metod je obvykle požadavek, že pozorované náhodné veličiny mají spojitá rozdělení, avšak v některých případech stačí znát pouze pořadí uspořádaných hodnot daného statistického souboru, tj. hodnoty odpovídajícího ordinálního statistického znaku. Slabší předpoklady o rozdělení (na rozdíl od parametrických testů testy u nichž známe rozdělení) mají za následek, že neparametrické metody nejsou tak silné, jako jejich parametrické protějšky. Základním principem neparametrických testů je nahrazení původních pozorovaných hodnot jejich pořadími co do velikosti a proto se také v literatuře hovoří o pořadových testech. Při pořadových testech se místo se střední hodnotou (jak je tomu u parametrických testech) pracuje s většinou mediánem.
3 Znaménkový test Předpoklady: Nechť X 1, X,, X n je náhodný výběr ze spojitého rozdělení s mediánem ~ x Hypotéza: Testujeme hypotézu: Princip: Nechť náhodná proměnná Y popisuje počet hodnot X i c. Pokud X i c pak vynecháme náhodnou proměnnou X i a zmenší se n. Pak Y ~ Bin, 0,5 Hypotézu H zamítáme, pokud je Y malé nebo velké: P( Y k1) P( Y k ) Platí: k n k 1, pak při označení P( Y k je ) W ; k n k ; n výpočet kvantilu: k p H : ~ x c proti alternativní: : ~ x c 1 max k, n k j0 n j p 0
4 Znaménkový test Postup: Nechť y je počet kladných hodnot x i c, hodnoty x i c vynecháme. (y je počet realizace náhodné proměnné Y) Pokud y W hypotézu nezamítáme. Hypotéza: H doplněk kritického oboru: : ~ x c, alternativní: : ~ x c W k 1; n k 1 : ~ x c W k 1; n : ~ x c W 0 ; n k 1 Poznámky: Test má malou sílu, ale je vhodný pro zešikmená data. Existuje také obecnější varianta znaménkového testu (tzv. kvantilový test), když testujeme hypotézu: H : x q c, kde je q-kvantil pozorované náhodné veličiny X.
5 Znaménkový test Asymptotická verze: Y n as. Pro n, v praxi n 0 je U ~ N (0, 1) n y n Testovací kritérium: u n Hypotézu nezamítáme, pokud: Hypotéza: u W H : ~ x c, alternativní: : ~ x c : ~ x c : ~ x c doplněk kritického oboru: W u W u 1 ; W ; u1 u 1 ; 1
6 Znaménkový test Kvantily pro k p binomického rozdělení Bi(n, 0.5) Příklad: Zaznamenejte, jak každý z vás odhadne 1min. Otestujte H : x~ = 60s na hladině významnosti 0:05.
7 Znaménkový test pro párové hodnoty Párové hodnoty: Znaménkový test se často používá pro tzv. párové hodnoty X, X 1, kdy testujeme hypotézu, že medián rozdílu X X 1 X je roven hodnotě c (nejčastěji pro c = 0). Příklad: U 10 auta porovnávali skutečnou průměrnou spotřebu oproti teoretické spotřebě. Získali následující výsledky: x i -skutečná spotřeba, y i -teoretická spotřeba. = (8.1; 7.1), (9.5; 9.6), (6.1; 5.4), (7.6; 7.), (11.3; 10.), (8.6; 8.6), (5.9; 6.1), (8.6; 7.9), (1.5; 1.6), (7.; 7.1). Pomocí znaménkového testu ověřte domněnku, že reálná spotřeba je větší než teoretická na hladině významnosti 0,05.
8 Pořadí Nechť X 1, X,, X n je náhodný výběr z rozdělení, které neznáme, nebo je z jiného než normálního, ale rozsah je malý pro použití asymptotických metod. Nechť x, x,, je jeho realizace a x( 1), x(),, x( n je uspořádání( x( i ) x( i 1). ) K realizaci x 1, x,, x n spočítáme uspořádání: R 1, R,, R n, kde Ri je pořadí prvku x i (= počet čísel z x, x,,, které jsou menších, rovno x i ). Jestliže nejsou všechna čísla navzájem různá, pak všem stejným číslům x( i) x( i1) x( i p) přiřadíme aritmetický průměr takových pořadí, jakoby následovala těsně za sebou. Platí: n i1 1 x n ) R i n( n 1) 1 x n
9 Wilcoxonův jednovýběrový test Předpoklady: Nechť X 1, X,, X n je náhodný výběr ze spojitého rozdělení s hustotou f, která je symetrická kolem bodu d a jeho okolí f(d - x) = f(d + x). Proto x~ = d. Hypotéza: Testujeme hypotézu: proti alternativní: Princip: Zavedeme náhodné veličiny: Yi X i c. V případě X i c vypustíme náhodnou veličinu X i a upravíme n. Uspořádáme Y i : Y Y ( 1) ( n) Nechť R R,, je příslušné pořadí. Spočteme: 1, S R n Y i 0 R i H : ~ x c a S Y i 0 R i : ~ x c n ( n 1) platí: S S Hypotézu H : ~ x c zamítáme, pokud min S, S w,kde w je Wilcoxonův kvantil.
10 Wilcoxonův jednovýběrový test Postup: Nechť y i je realizace Y i. Spočítáme S - testovací kritérium. Pokud Hypotéza: S W hypotézu nezamítáme. H : ~ x c, alternativní: : ~ x c : ~ x c : ~ x c doplněk kritického oboru: n ( n 1) W 1, 1 w w n ( n 1) W w 1, n ( n 1) W 0, w 1 kde w p je p-kvantil Wilcoxonova rozdělení (tabulka)
11 Wilcoxonův jednovýběrový test kvantily w p
12 Wilcoxonův jednovýběrový test příklad Příklad: Zaznamenejte, jak každý z vás odhadne 1min. Otestujte H : x~ = 60s na hladině významnosti 0:05.
13 Wilcoxonův jednovýběrový test pro párové hodnoty Párové hodnoty: Wilcoxonův jednovýběrový test se často používá pro tzv. párové hodnoty X, X, kdy testujeme hypotézu, že medián rozdílu X X 1 1 X je roven hodnotě c (nejčastěji pro c = 0). Příklad: U 10 auta porovnávali skutečnou průměrnou spotřebu oproti teoretické spotřebě. Získali následující výsledky: x i -skutečná spotřeba, y i -teoretická spotřeba. = (8.1; 7.1), (9.5; 9.6), (6.1; 5.4), (7.6; 7.), (11.3; 10.), (8.6; 8.6), (5.9; 6.1), (8.6; 7.9), (1.5; 1.6), (7.; 7.1). Pomocí Wilcoxonova testu rozdílů dvojic zjistěte na hladině významnosti 0,01, zda rozdílné výsledky jsou statisticky nevýznamné.
14 Wilcoxonův jednovýběrový test - asymptotická verze Platí: Nechť platí předpoklad symetrie a hypotéza H : ~ x c, pak 1) E( X i ) c n ) Označme: S R i sgn( Y i ), pak i1 1 n( n 1) S 4 3) vektory Y ),,sgn( ) a, Y jsou nezávislé 4) E S 5) DS 6) U Y n n( n 1) 4 n ( n 1) (n 1) 4 n ( n 1) S as 4 ~ n ( n 1) (n 1) 4 T sgn( 1 T. N (0,1) S Y, ( 1) ( n )
15 Wilcoxonův jednovýběrový test - asymptotická verze Asymptotická verze: Pro n, v praxi n 10 je U n ( n 1) S Testovací kritérium: u 4 n ( n 1) (n 1) 4 Hypotézu nezamítáme, pokud: u W Hypotéza: H : ~ x c, alternativní: : ~ x c : ~ x c : ~ x c n ( n 1) S 4 n ( n 1) (n 1) 4 doplněk kritického oboru: W u W u 1 ; W ; u1 u 1 ; 1 as. ~ N (0,1)
16 Wilcoxonův jednovýběrový test příklad Příklad: Zaznamenejte, jak každý z vás odhadne 1min. Otestujte H : x~ = 60s na hladině významnosti 0:05 pomocí asymptotické verze Příklad: Na dvou váhách bylo provedeno vážení 10 vzorků s výsledky : (15; 18), (130; 131), (18; 16), (150; 15), (10; 14), (140; 136), (13; 133), (136; 136), (15; 18), (15; 150). Pomocí asymptotické verze Wilcoxonova testu rozdílů dvojic zjistěte na hladině významnosti 0,01, zda rozdílné výsledky jsou statisticky nevýznamné.
17 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Předpoklady: Nechť X, X, 1, funkcí F, Y 1, Y,, funkcí G, X m Y n Hypotéza: Testujeme hypotézu: H je náhodný výběr ze spojitého rozdělení s distribuční je náhodný výběr ze spojitého rozdělení s distribuční : F G proti alternativní: : F G Princip: Náhodné výběry X, X, a Y 1, Y,, Y 1, X m n sloučíme do jednoho souboru Z, Z,, a spočteme pořadí R, R,,. 1 Z m n Nechť Tx R i a T y R i. Zi( X1,..., Xm ) Z i ( Y 1,..., Y n ) 1 R m n Platí: T x T y ( m n) ( m n 1) Wilcoxonův dvouvýběrvý test test založený na T x, T y
18 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Princip: Častěji se používá Mannův-Whitneyův test založený na U x T x Platí: m ( m 1) m n U x U y m n U m n n( n 1) y T y U x, U y,kde Hypotézu: H : F G proti alternativní: : F G zamítáme, pokud min U, U v, kde je Mannův-Whitneyův kvantil. x y v Postup: Pomocí realizace x, x, 1, x m a y, y, 1, yn spočítáme T x, T y a U x, U y. Pokud m n, pak hypotézu H : F G nezamítáme, pokud U x W, pokud m n, pak hypotézu H : F G nezamítáme, pokud U y W, kde W 1, 1 v m n v je doplněk kritického oboru a v je p p-kvantil Mannovy Whitneyovy statistiky (tabulka).
19 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Kvantily v p Mannova - Whitneyova rozdělení pro P=0,05
20 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Příklad: Při statistickém šetření byl sledován obsah Cl (mg/l) v minerální x~ vodě ze dvou blízkých zdrojů. Z prvního zdroje bylo náhodně odebráno 5 vzorků a ze druhého zdroje 9 vzorků: xi = 3,5; 3,57; 3,71; 3,34; 3,68 yi = 3,75; 3,67; 3.56; 3,66; 3,7; 3,79; 3,64; 3.55; 3,65. Pomocí Mannův-Whitneyůva testu zjistěte na hladině významnosti 5%, že minerální voda z obou zdrojů má stejný obsah Cl.
21 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Poznámka: Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test citlivý zvlášť na posunutí: F( x) G( x ). U x Hodnotu statistiky můžeme také určit bez sloučení původních statistických souborů a výpočtu součtu pořadí přímo ze vztahu: m n U x h i i1 j1 Platí: Nechť platí hypotéza m( m n 1) T m n EU x, kde h 1, x y a, j i, j i j i, j i j H : F G E x DT DU x x T x h 0, x, pak mn( m n 1) 1 mn( m n 1) 1 y
22 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Asymptotická verze: Pro m, n, v praxi m 10, n 10, m n je m n U x as. U ~ N (0,1) m n ( m n 1) 1 m n U x Testovací kritérium: u m n ( m n 1) 1 Hypotézu nezamítáme, pokud: u W, kde W u 1, u 1
23 Wilcoxonův dvouvýběrvý test - Mannův-Whitneyův test Příklad: Při statistickém šetření byl sledován obsah Cl (mg/l) v minerální x~ vodě ze dvou blízkých zdrojů. Z prvního zdroje bylo náhodně odebráno 5 vzorků a ze druhého zdroje 9 vzorků: xi = 3,5; 3,57; 3,71; 3,34; 3,68 yi = 3,75; 3,67; 3.56; 3,66; 3,7; 3,79; 3,64; 3.55; 3,65. Pomocí asymptotické verze Mannův-Whitneyůva testu zjistěte na hladině významnosti 5%, že minerální voda z obou zdrojů má stejný obsah Cl.
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Neparametrické testy
Neparametrické testy Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální (Gaussovo) rozdělení. Například: Grubbsův test odlehlých
Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.
Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PRINCIPY STATISTICKÉ INFERENCE identifikace závisle proměnné
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Matematika III. 3. prosince Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 3. prosince 2018 Úvod do testování hypotéz Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu
6. T e s t o v á n í h y p o t é z
6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Cvičení 9: Neparametrické úlohy o mediánech
Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Neparametrické metody v systému STATISTICA
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA Bakalářská práce Neparametrické metody v systému STATISTICA DAGMAR LAJDOVÁ VEDOUCÍ BAKALÁŘSKÉ PRÁCE RNDr. MARIE BUDÍKOVÁ, Dr. Brno 2009 Čestné prohlášení Čestně
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme
motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
4. Na listu Znaménkový test ověřte účinnost pohlcovačů pachů v páchnoucích bytech. 5. Na listu Znaménkový test se pokuste zjistit, zda je některý z
1. Na listu Mann-Whitneyův test na hladině významnosti 5 % rozhodněte, zda se štěňata naučí chodit n 2. Na listu Mann-Whitneyův test na hladině významnosti 1 % rozhodněte, zda se štěňata naučí chodit n
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná