Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity
|
|
- Julie Ševčíková
- před 6 lety
- Počet zobrazení:
Transkript
1 Dfúz Fckův zákon dfúz v plynu Přdpokládjm dální plyn s konstantní tplotou T a konstantním tlakm p v kldu, v ktrém j nízká nhomognní hmotnostní koncntrac příměs Pak v staconárním stavu musí být clková síla na příměs nulová m n pu p m n pu kt n, kd p j srážková frkvnc příměs s molkulam plynu Tok částc j kt n u D n n m p Fckův zákon Po dosazní do rovnc kontnuty n dvd n D n t nboť kofcnt dfúz j zd konstantní Parabolcká parcální dfrncální rovnc L = D D
2 Dfúz v slabě onzovaném plynu nn f n n n n v v f Pohybové rovnc (bz nbo podél magntckého pol) u m n u u q n E m n nu p t u j typ částc, staconární stav. t, čln u u zandbám (kvadratcký) q k T n u E n u n E D n m n m n n, jsou pohyblvost q m n D, D dfúzní kofcnty D kt m n D
3 Ambpolární dfúz př dfúz vznká lktrcké pol zajšťující kvaznutraltu hustota náboj musí zůstat => q q qn qn Slabě onzovaný plyn Z q q n n n ne Dn ne D n E D D n n Elktrcké pol j úměrné gradntu hustoty a kofcnt ambpolární dfúz D a j v plazmatu bz j a D D n D n a T Da D D ( D př stjné tplotě a ) T D 3
4 Dfúz v směru kolmém na Nchť j sumární srážková frkvnc sldovaných částc s ostatním druhy částc, nchť j v směru osy z a gradnt hustoty j v směru osy x, a nchť u n k T nqu nmu nqu nmu x y x x y k T x Pak c m c c c nm D D Pokud n k T n D n x x x c c f r L D k T D mk T pak c m c q Dfúzní kofcnt napříč j přímo úměrný srážkové frkvnc, bz srážk by k žádné dfúz nmohlo dojít, po srážc s částc posun o maxmálně Larmorovy radusy, čl Larmorův rádus nahrazuj střdní volnou dráhu. D 4
5 Napříč onty pohyblvější nž lktrony př ambpolární dfúz vznkající lktrcké pol urychlí lktrony a zpomalí onty Navíc dostanu tok částc v směru kolmém na a n, jd o damagntcký drft, ktrý jsm př zandbání srážk ( c ) odvodl už dřív (kaptola 4). Klascká srážková dfúz j úměrná, al často př magntckém udržní (v tokamacích apod.) j dfúz větší, úměrná Z xprmntálních výsldků ddukován kofcnt ohmovy dfúz Různá vysvětlní - ) Závady magntckého pol - možnost slokřvky vdoucí na stěnu D 6 ) Nsymtrcké lktrcké lktrcké pol asymtr vakuové komory č asymtr tvorby č ohřvu plazmatu Ex drft - konvktvní cly 3) Nstablty vdoucí k gnrac plazmových vln, ktré vytvářící osclující lktrcké pol a Ex drfty Pčlvou konfgurací pol lz dfúz snížt a přblížt s k klasckému srážkovému lmtu V torodálních magntckých nádobách můž být dfúz zvýšna v důsldku xstnc protáhlých uzavřných orbtů ( banánový orbt ) a mluvím o noklascké dfúz. kt D 5
6 Stěnová vrstva Oblast bz kvaznutralty rkombnac na stěnách Σ toku náboj na stěny = u u m Ionty přdpokládjm studné s rychlostí u pro n x n u u x n Elktrony v rovnováz s polm xp x n n kt mu D 6
7 d n n n xp dx Possonova rovnc kt mu přvdm do bzrozměrných souřadnc u x u M kt kt c s D m M rovnc a pak ntgrujm M M v bodě j E a tdy D 7
8 Stěnová vrstva odpuzuj lktrony a přtahuj onty n n Okolí rovny, kd plazma vstupuj do stěnové vrstvy, odvodím z Taylorova rozvoj pro člny úměrné a s vyruší, první nnulové ~ M lz jn pro M > ohmovo krtérum staconární řšní xstuj jn pro u c Jak zjstt potncál stěny φ s? k T u v T n xp( ) n u ln v s s kt T V okolí stěny n n, M s M M D 8
9 po ntgrac (z označuj místo, kd lz už přdpokládat n ) z M z za přdpokladu z, z M poloha stěny j s z d ( d j tloušťka vrstvy n ) pak platí vztah M s d Podobnou stěnovou vrstvou j J 3 4 s 9 m d n u Chld-Langmurův zákon bzsrážková onto-akustcká rázová vlna (collsonlss shock) Sagděvův potncál D 9
Jednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i
Úvod do fyziky plazmatu
Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně
1. Okrajové podmínky pro tepeln technické výpo ty
1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol
Fyzikální podstata fotovoltaické přeměny solární energie
účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav
Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu
Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t
L HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu
Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b
Univerzita Tomáše Bati ve Zlíně
Unvrzta Tomáš Bat v Zlíně LABORATORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Vntřní odpor zdroj a voltmtru Jméno: Ptr Luzar Skupna: IT II/ Datum měřní: 0.října 2007 Obor: Informační tchnolog Hodnocní: Přílohy:
I. MECHANIKA 8. Pružnost
. MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.
4.3.2 Vlastní a příměsové polovodiče
4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu 1 Dfinic plazmatu (S. Ichimaru, Statistical Plasma Physics, Vol I) Plazma j jakýkoliv statistický systém, ktrý obsahuj pohyblivé nabité částic. Pozn. Statistický znamná makroskopický,
Měrný náboj elektronu
Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt
Trivium z optiky 37. 6. Fotometrie
Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit
2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami
Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy
ELEKTŘINA A MAGNETIZMUS
ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ
Farmakokinetika. matematický popis procesu podání, absorpce, distribuce, metabolismu a vyloučení léků z těla
Farmakokntka matmatcký pops procsu podání, absorpc, dstrbuc, mtabolsmu a vylouční léků z těla Proč????? U léku j zapotřbí znát (kromě jného) traputckou dávku hranc přdávkování ntrakc mz léčvy vhodnost
Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění
Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm
Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)
pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku
Univerzita Tomáše Bati ve Zlíně
Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační
základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie
Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází
Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu
- 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.
ve fyzice plazmatu Mgr. Petr Bartoš, Ph.D.
Hybdní modlování v fyzc plazmatu Mg. Pt Batoš, Ph.D. Základní modlovací tchnky Hybdní modly Na úovn částcového modlování Kombnac spojtého a částcového přístupu Modlovací tchnka Spojtá Částcová Dtmnstcký
Transport hmoty a tepla v mikrofluidních systémech
Transport hmoty a tepla v mkrofludních systémech Konvektvní transport v zařízeních s malým charakterstckým rozměrem Konvektvní tok vznká působením plošných, objemových, nercálních a třecích sl v objemu
INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE
Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn
FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění
FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt
Aplikace VAR ocenění tržních rizik
Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH
PJS Přednáška číslo 2
PJS Přdnáška číslo Jdnoduché lkromagncké přchodné děj Přdpoklady: onsanní rychlos všch očvých srojů (časové konsany dlší nž u l.-mg. dějů) a v důsldku oho frkvnc lkrckých vlčn. Pops sysému bud provdn pomocí
6 Elektronový spin. 6.1 Pojem spinu
6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě
Aktivita. Curie (Ci) = rozp.s Ci aktivita 1g 226 Ra (a, T 1/2 = 1600 let) počet rozpadů za jednotku času
Aktivita počt rozpadů za jdnotku času Curi (Ci) = 3.7 10 10 rozp.s -1 1 Ci aktivita 1g 6 Ra (a, T 1/ = 1600 lt) 1 Bcqurl (Bq) = 1 rozp. s -1 =.7 10-11 Ci = 7 pci 1 MBq = 7 mci Dávka množství radiac absorbované
Klasický svět. Přednáška 5, Pavel Cejnar. Principy kvantové fyziky. Ústav částicové a jaderné fyziky MFF UK
Pavl Cjnar Ústav částcové a jadrné fyzky MFF UK Přdnáška 5, v ktré s budm chtít vrátt zpátky domů, al nbudm vědět jak Klascký svět Prncpy kvantové fyzky Fyzka jako dobrodružství poznání MFF UK v Praz,
Úloha 4 Šíření vodní páry a povrchová teplota
SF Podkldy ro cční Úloh 4 Šířní odní áry orchoá tlot Ing. Kml Stněk, 10/010 kml.stnk@fs.cut.cz 1 Vlhkost zduchu 1.1 Zákldní zthy Přhld, ysětlní oužtí zthů ro ýočt lhkostních chrktrstk zduchu jsou udny
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praz Úloha 3: Měrný náboj lktronu Datum měřní: 18. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátk 7:30 Vypracoval: Tadáš Kmnta Klasifikac: 1 Zadání 1. DÚ: Odvoďt
Úloha 1 Přenos tepla
SF Podklady pro cvční Úloa 1 Přnos tpla Ing. Kaml Staněk 09/010 kaml.stank@fsv.cvut.cz 1 Základní pojmy 1) Tplota Míra kntcké nrg částc látky. Jdnotka klvn [K] nbo stupň Clsa [ C] ( C) T(K) 7315 (1.1)
Obr. 1. Tepelné toky ve stáji pro dochov selat
1.Tplná blanc stáj: Čská změdělská unvrzta v Praz v Praz c + t p v = 0 [W] (1) c produkc ctlného tpla zvířaty [W], t výkon vytápěcího zařízní [W], p tplná ztráta prostupm tpla stavbním konstrukcm [W],
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
M ě ř e n í o d p o r u r e z i s t o r ů
M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:
Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected
CCSD(T) Stationary Schrödingr quation H Ψ = EΨ MP Elctron corrlation Expansion ovr Slatr dt. Φ= C0Ψ 0 + CSΨ S + CDΨ D + Non-rlativistic Hamiltonian Born-Oppnhimr approximaion occ Elctron Dnsity ρ( r) ϕ
Jednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jenokapalinové přiblížení (HD-magnetohyroynamika) Zákon zachování hmoty zákony zachování počtu elektronů a iontů násobeny hmotnostmi a sečteny n e + iv = ( nu ) ni + iv( nu i i) = e e iv ( u ) (1) t ρ
Absolutní nebo relativní?
Statstcká odynaka II dální plyn chcká rovnováha a kntka bsolutní nbo rlatvní? absolutní ají přrozné a unvrzální rrnční stavy ( K), ( a), ( ), n ( ol),, rlatvní číslnou hodnotu ůž přsoudt jn zěně U, H,,
Úvod do vln v plazmatu
Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní
(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ
Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB. Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v Praze
ČESKÉ YSOKÉ UČENÍ TECHNICKÉ PRAZE Fakulta stavbní Laboratoř TZB Cvční č. 3 Stanovní účnnost výměníku ZZT Ing. Danl Adamovský, Ph.D. Katdra TZB, fakulta stavbní, ČUT v Praz Praha 2011 Evropský socální fond
Rentgenová strukturní analýza
Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční
4. PRŮBĚH FUNKCE. = f(x) načrtnout.
Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.
Teoretické a praktické úspory tepla panelových domů po jejich zateplení 1. část
Tortické a praktické úspory tpla panlových domů po jjich zatplní 1. část Miloš Bajgar Autor s v dvoudílném příspěvku zamýšlí nad skutčnými přínosy zatplní panlových objktů. Tnto první díl j věnován analýz
3.10. Magnetické vlastnosti látek
3.10. Magntické vlastnosti látk 1. Sznáit s s klasifikací látk podl charaktru intrakc s agntický pol. 2. Nastudovat zdroj agntického pol atou, ktré souvisí s pohyb lktronu v lktronové obalu atou. 3. Vysvětlit
Jihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ
Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum: 3. 5. 3 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již
Ý Ý Ý Ý Ý Ú Ý Ý Ý Ý Ú Ý Ý Ý Ú Ú Ý Ě ď Ú Ý Ý Ú Ý Ý Ď ž ž ž ž ž ž ž Ú ž Ú ž ň ž Ď Ř Ů Ř Ú Ď ž Ř ž ž ž Ů ž ž Ň Ň Ň Ň Ú ŇŇ Ň Ý Ů Ů Ň Ň Ň ř ž ž ž ž ž ž ž ž ž Ď Ú ž Ě Ř Ě Ý É ž ž Ů Ě ž Ě ď ž ž ž ž ž Ů ž ž Ď
Kdo otevřel Pandořinu skříňku? Kvantová teorie atomů. Fotoelektrický jev. Fotoelektrický jev světlo je částice. Tepelná kapacita za nízkých teplot
Kvantová tor atomů Kdo otvřl Pandořnu skříňku? př studu zářní abs. črného tělsa (hvězda) použl Max von Planck (900, NP 98) přdpoklad, ž osclátor má dskrétní spktrum, s vlkostí kvanta ε hν ω Planckova konstanta
Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!
Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika
hledané funkce y jedné proměnné.
DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální
Zkouškový test z fyzikální a koloidní chemie
Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:
Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice.
Fyzka bopolymerů Elektrostatcké nterakce makromolekul ve vodných roztocích Robert Vácha Kamence 5, A4 2.13 robert.vacha@mal.mun.cz Vodné roztoky ldské tělo se skládá z 55-75 % z vody (roztoků) většna roztoků
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Zjednodušený výpočet tranzistorového zesilovače
Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy
(1) 2 kde m je klidová hmotnost a q je náboj elektronu. + -
Učbní txt k přdnášc UFY Vnější fotofkt a Entnovo pojtí fotonu Fotolktrcký jv (fotofkt) byl objvn na základě zjštění, ž znk po ovětlní ultrafalovým zářním nabíjí kladně. Čam ukázalo, ž podobným způobm covají
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Stanovení koncentrace složky v roztoku potenciometrickým měřením
Laboratorní úloha B/1 Stanovní koncntrac složky v roztoku potnciomtrickým měřním Úkol: A. Stanovt potnciomtrickým měřním koncntraci H 2 SO 4 v dodaném vzorku roztoku. Zjistět potnciomtrickým měřním body
2. Frekvenční a přechodové charakteristiky
rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy
Diskontinuity a šoky
Diskontinuity a šoky tok plazmatu Oblast 1 Oblast ( upstream ) ( downstream ) ρu Uu Bu pu ρd Ud Bd pd hranice mezi oblastmi může tu docházet k disipaci (růstu entropie a nevratným změnám) není popsatelná
část 8. (rough draft version)
Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním
Koróna, sluneční vítr
Koróna, sluneční vítr Sluneční fyzika ZS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Přechodová oblast Změna teplotní režimu mezi chromosférou (104 K) a korónou (106 K) Nehomogenní,
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
1 Pracovní úkoly. 2 Vypracování. Datum m ení: Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:
FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praz Úloha #12 M ní m rného náboj lktronu Datum m ní: 31.3.2014 Skupina: 7 Jméno: David Rosl Krouºk: ZS 7 Spolupracovala: Trza Schönfldová Klasikac: 1 Pracovní úkoly
Řešení Navierových-Stokesových rovnic metodou
Řšní Navrovýc-Stoksovýc rovnc mtodou končnýc prvků Lbor Črmák prosnc 2009 Označní: Abstrakt Txt obsauj klasckou a varační formulac 2D-úloy nstlačtlnéo nstaconárnío proudění, pops prostorové dskrtzac mtodou
8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní...
Sbírka úloh z mamaik 8. Občjné difrnciální rovnic 8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE... 94 8.. Difrnciální rovnic prvního řádu sparovalná homognní linární Brnoulliova akní... 94 8... Sparovalná difrnciální
Digitální učební materiál
Číslo projku Názv projku Číslo a názv šablony klíčové akvy Dgální učbní marál CZ..07/.5.00/4.080 Zkvalnění výuky prosřdncvím CT / novac a zkvalnění výuky prosřdncvím CT Příjmc podpory Gymnázum, Jvíčko,
KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD
40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc
, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:
Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi
REGULACE. Rozvětvené regulační obvody. rozvětvené regulační obvody dvoupolohová regulace regulační schémata typických technologických aparátů
REGULACE (pokračování 2) rozvětvné rgulační obvody dvoupolohová rgulac rgulační schémata typických tchnologických aparátů Rozvětvné rgulační obvody dopřdná rgulac obvod s měřním poruchy obvod s pomocnou
ť ž Á ň ž ř ž ř ý ů ó ů ž ř ř ů Č Í Í Č Á ť ž ť Í Ú ů ř ú ť ř é ň ž ř Ú Č ŠŤ Í ů ů ž ý ř ť ů é ó ř ž ř é ť ř ř ý ú ď ů ř ú ž é ř é ž ó ř ž ů ž ž é ů é ž ú ů ř ž é ň ý ř ž ř ř ý é ý ž é ť ý ř é ů ý ž ý
Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa.
26 Zářní těls Ověřní Stfanova-Boltzmannova zákona ÚKOL Ověřt platnost Stfanova-Boltzmannova zákona a určt pohltivost α zářícího tělsa. TEORIE Tplo j druh nrgi. Vyjadřuj, jak s změní vnitřní nrgi systému
Vojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
3.3. Derivace základních elementárních a elementárních funkcí
Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců
ů ů Č ů ů Š ž ů žď ž ž ž žď ů ů ž ů ó Č Ý Š ú Ý Á Š ž ů ž ž ž ů Š ú Ž ů ú ž Ř ó ž ú ž ň ž Á Š ň ď ž ú Ý ť Č Ř ň Š Á Š ž Š Š ž ú Ý ť Ř žď Š ž Á ž Š ů ť ť ů ú Ý Č Ř Ň ť Á ž Š ú Ý ž ž ó ž Ř žď Ň ž ž ň Ť ó
VZNIK TRHLIN V BETONU VLIVEM NESILOVÝCH ÚČINKŮ INITIATION OF CONCRETE CRACKING DUE TO NON-FORCE EFFECTS
VZNIK TRHLIN V BETONU VLIVEM NESILOVÝCH ÚČINKŮ INITIATION OF CONCRETE CRACKING DUE TO NON-FORCE EFFECTS Mark Vnklr, Jaroslav Procházka Článk s zabývá vznkm trhln v btonových konstrukcích vlvm nslových
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211
10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
5. Minimální kostry. Minimální kostry a jejich vlastnosti. Definice:
5. Minimální kostry Tato kapitola uvd problém minimální kostry, základní věty o kostrách a klasické algoritmy na hldání minimálních kostr. Budm s inspirovat Tarjanovým přístupm z knihy[1]. Všchny grafy
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ IZOLAČNÍ MATERIÁLY M02 TECHNICKÉ IZOLACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ RADEK STEUER, HANA KMÍNOVÁ IZOLAČNÍ MATERIÁLY M02 TECHNICKÉ IZOLACE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Izolační matály Modul
KINETICKÁ TEORIE PLYNŮ
KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu
Plazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30
Československá společnost pro růst krystalů ČVUT FEL Praha, 30. března 2006, 13:30 30. března 2006 1 2 3 4 5 Heterofázové fluktuace vznk nové Nově vznkající (kapalná, krystalcká... ) Matečná (podchlazená
ε, budeme nazývat okolím bodu (čísla) x
Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž
Kinetika spalovacích reakcí
Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak
Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.
Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření
D1 - detail ETICS v místě stropu nad částečně vytápěným prostorem - svislý řez. min. d /2 3. Tloušťky d, d, d se stanoví tepelně technickým výpočtem
D - tal ETICS v místě stropu na částčně vytápěným prostorm - svslý řz řšní ETICS 3 mn. 500 nbo l TT posouzní mn. /2 3 mn. 500 nbo l TT posouzní 2 g 2c mn 30 2 g Prostor s nžší návrhovou vntřní tplotou
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První
Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá
HONEYWELL. DL424/425 DirectLine modul čidla pro sondy rozpusteného kyslíku DL5000
DL424/425 DirctLin modul čidla pro sondy rozpustného kyslíku DL5000 HONYWLL Přhld Moduly čidla DL424/425 DirctLin patří k řadě čidl fy Honywll nové gnrac pro analytické měřní. Unikátní architktura čidl
Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Automatizační technika. Obsah. Syntéza regulačního obvodu. Seřizování regulátorů
30.0.07 Akadmcký rok 07/08 řpravl: Radm Farana Automatzační tchnka Syntéza rgulačního obvodu Obah Syntéza rgulačního obvodu Exprmntální mtody Analytcké mtody Analytcko-xprmntální mtody 3 Sřzování rgulátorů
3 Základní modely reaktorů
3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném